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Abstract

Aims: Reactive astrocytes in Alzheimer’s disease (AD) have traditionally been demonstrated by 

increased glial fibrillary acidic protein (GFAP) immunoreactivity; however, astrocyte reaction 

is a complex and heterogeneous phenomenon involving multiple astrocyte functions beyond 

cytoskeletal remodelling. To better understand astrocyte reaction in AD, we conducted a 
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systematic review of astrocyte immunohistochemical studies in post-mortem AD brains followed 

by bioinformatics analyses on the extracted reactive astrocyte markers.

Methods: NCBI PubMed, APA PsycInfo and WoS-SCIE databases were interrogated 

for original English research articles with the search terms ‘Alzheimer’s disease’ AND 

‘astrocytes.’ Bioinformatics analyses included protein–protein interaction network analysis, 

pathway enrichment, and transcription factor enrichment, as well as comparison with public 

human -omics datasets.

Results: A total of 306 articles meeting eligibility criteria rendered 196 proteins, most of 

which were reported to be upregulated in AD vs control brains. Besides cytoskeletal remodelling 

(e.g., GFAP), bioinformatics analyses revealed a wide range of functional alterations including 

neuroinflammation (e.g., IL6, MAPK1/3/8 and TNF), oxidative stress and antioxidant defence 

(e.g., MT1A/2A, NFE2L2, NOS1/2/3, PRDX6 and SOD1/2), lipid metabolism (e.g., APOE, 

CLU and LRP1), proteostasis (e.g., cathepsins, CRYAB and HSPB1/2/6/8), extracellular matrix 

organisation (e.g., CD44, MMP1/3 and SERPINA3), and neurotransmission (e.g., CHRNA7, 

GABA, GLUL, GRM5, MAOB and SLC1A2), among others. CTCF and ESR1 emerged as 

potential transcription factors driving these changes. Comparison with published -omics datasets 

validated our results, demonstrating a significant overlap with reported transcriptomic and 

proteomic changes in AD brains and/or CSF.

Conclusions: Our systematic review of the neuropathological literature reveals the complexity 

of AD reactive astrogliosis. We have shared these findings as an online resource available at 

www.astrocyteatlas.org.
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INTRODUCTION

Astrocytes are known to undergo profound morphological and functional changes 

in central nervous system diseases, collectively termed astrocyte reaction or reactive 

astrogliosis [1]. This astrocyte reaction has traditionally been depicted by an increased 

immunoreactivity for the cytoskeletal intermediate filament glial fibrillary acidic protein 

(GFAP). However, in recent years, transcriptomic studies of acutely isolated astrocytes 

or single nuclei from mouse models and postmortem human brains have revealed 

that astrocyte reaction is heterogeneous, context-dependent (e.g., different in acute 

injuries vs chronic neurodegenerative diseases) [1, 2] and complex beyond cytoskeletal 

rearrangement (reviewed in previous studies [3–6]). Unfortunately, transcriptomic and 

proteomic approaches in the Alzheimer’s disease (AD) brain are limited by lack of spatial 

information, which is relevant as there are layer-specific subtypes of astrocytes [7] and 

reactive (GFAP+) astrocytes tend to localise near both dense-core neuritic amyloid-β (Aβ) 

plaques and neurofibrillary tangles (NFTs) [8–10]. While ongoing efforts to develop spatial 

-omics methods will eventually overcome this constraint [11, 12], immunohistochemistry 

remains the gold-standard technique to capture spatial expression patterns of astrocytes in 

post-mortem tissue sections.
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Here, we conducted a systematic review of post-mortem human brain neuropathological 

immunohistochemical studies describing potential markers of AD reactive astrocytes 

(ADRA). We hypothesised that compiling the neuropathological literature could provide 

a catalogue of dysregulated proteins in ADRA around plaques and tangles, shed light on the 

complexity of their associated functional changes, and inform the development of fluid (CSF 

and plasma/serum) and positron emission tomography (PET) imaging biomarkers to detect 

ADRA in patients.

MATERIAL AND METHODS

Systematic review

We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

(PRISMA) guidelines [13] as explained in detail in the Supporting Information [14, 15].

Bioinformatics analyses

Additional details regarding the bioinformatics analyses can be found in the Supporting 

Information.

Pathway enrichment analysis—We first classified the astrocyte proteins into one of 

18 functional categories based on published evidence. The interconnectivity between these 

assigned functions was demonstrated via chord and Circos plots. In addition, to validate 

these functional pathways, we performed pathway enrichment analysis (PEA) on the ADRA 

markers against the Gene Ontology (GO) and Reactome databases available from the 

Molecular Signatures Database (MSigDB) [16–19].

Protein-protein interaction network analysis—To examine direct (physical) and 

indirect (functional) interactions between the ADRA protein set, a protein–protein 

interaction (PPI) network was constructed via the application programming interface (API) 

to the STRING biological database of known and predicted PPIs (version 11.0, Homo 
sapiens) [20].

Transcription factor enrichment analysis—We identified transcription factors 

potentially regulating the expression of the ADRA markers with two analogous tools: 

TFEA.ChIP [21] and Enrichr [22]. While sequence-based tools using position weight 

matrices to predict transcription factor binding sites proximal to genes of interest have 

suboptimal specificity, TFEA.ChIP and Enrichr compute enrichment analysis based on 

databases of publicly available chromatin immunoprecipitation sequencing (ChIP-seq) 

experiments [23–26].

Comparison with transcriptomic and proteomic studies—To corroborate the 

results of our systematic review of AD neuropathological post-mortem studies, we compared 

the ADRA protein set with recent transcriptomic and proteomic studies on human control 

and AD brains [27–29]. First, enrichment analysis against differentially expressed genes or 

proteins (between control and AD individuals) was conducted with Fisher’s exact test. Next, 
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we created heatmaps to illustrate the expression levels of the overlapping transcripts and 

proteins.

RESULTS

Summary of systematic review results

Figure 1 depicts the PRISMA flowchart with the number of articles obtained after each 

step (i.e., identification, screening, eligibility and inclusion). A total of 306 articles were 

ultimately included in the systematic review and reviewed by either LV or AS-P to extract 

relevant data. Across these 306 articles, a total of 196 proteins were identified, which we 

refer to as the ADRA protein set. Table 1 summarises these 196 markers by functional 

category; a more detailed description of the neuropathological studies included in this 

systematic review is provided in Table S1.

Functional characterisation of markers of astrocyte reaction

As expected, an increase in GFAP immunoreactivity was the most frequently described 

hallmark of astrocyte reaction, even without considering studies that only used GFAP to 

colocalise their marker of interest with reactive astrocytes. However, the ADRA protein 

set revealed many other functional changes beyond cytoskeletal rearrangement, which we 

review below.

Cytoskeletal remodelling—Of note, while GFAP isoform 1 (full length) is the main 

isoform in the brain, less abundant splice forms [30, 31] and caspase-3-cleaved GFAP 

fragments [32] have also been reported to increase in ADRA. Additionally, the cytoskeletal 

remodelling that reactive astrocytes undergo in AD involves the upregulation of other 

intermediate filaments proteins such as vimentin (VIM) [31, 33] and nestin (NES) [31, 34], 

as well as actin-interacting proteins such as the 280-kDa actin-binding protein filamin-A 

(FLNA) [35] and ankyrin-1 (ANK1) [36].

Inflammation—Multiple studies report increased immunoreactivity for a wide variety of 

inflammatory cytokines, including the inflammasome-activating enzyme caspase-1 (CASP1) 

[37]; interleukins such as interleukin-1 beta (IL1B) [37, 38], interleukin-6 (IL6) [37, 39, 

40], interleukin-18 (IL18) [41], interleukin-33 (IL33) [42] and its receptor interleukin-1 

receptor-like 1 (IL1RL1) [42], as well as tumour necrosis factor (TNF) [43]; chemokines 

such as C–C motif chemokine ligand 2 (CCL2) [40], C–C motif chemokine ligand 4 

(CCL4) [44], C–X–C motif chemokine ligand 10 (CXCL10) [45] and stromal cell-derived 

factor 1 (CXCL12) [46]; cell adhesion molecules such as intercellular adhesion molecule 

1 (ICAM1) [47]; eicosanoid metabolism enzymes such as prostaglandin G/H synthase 2 

(PTGS2, also known as cyclooxygenase-2) [48], cytosolic phospholipase A2 (PLA2G4A) 

[49] and haematopoietic prostaglandin D synthase (HPGDS) [50] (while the microsomal 

prostaglandin E synthase (PTGES) was reported to be decreased in ADRA [51]); and 

the immunomodulatory receptor sphingosine 1-phosphate receptor 3 (S1PR3) [52] but 

not sphingosine 1-phosphate receptor 1 (S1PR1) [53]. In addition, some studies have 

shown increased immunoreactivity for transcription factors known to mediate immune and 

inflammatory responses such as nuclear factor of activated T-cells, cytoplasmic 2 (NFATC2) 
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[54]; nuclear factor of activated T-cells, cytoplasmic 4 (NFATC4) [54]; transcription factor 

p65 (RELA, also known as nuclear factor NF-kappa-B p65 subunit) [55, 56]; adipocyte 

enhancer-binding protein 1 (AEBP1) [57]; CCAAT/enhancer-binding protein delta (CEBPD) 

[58]; and glia maturation factor (e.g., GMFB) [59, 60]. Lastly, reactive astrocytes also 

express chitinase-3-like protein 1 (CHI3L1, also known as YKL-40) [61–64] and the 18 kDa 

translocator protein (TSPO) [65, 66]; although their function remains to be fully elucidated, 

these two proteins are commonly interpreted as evidence of inflammation when measured in 

CSF and detected via PET imaging, respectively.

Oxidative stress—Numerous studies implicate ADRA in oxidative stress, based on an 

increased immunoreactivity for advanced glycation end-products (AGEs) [67–69] and the 

AGE-specific receptor (AGER, also known as RAGE) [69, 70]; DNA [71–73] and protein 

[74] oxidative damage markers; and pro-oxidant enzymes such as myeloperoxidase (MPO) 

[75] and the three nitric oxide synthase isoforms: brain (NOS1) [76], inducible (NOS2) [43, 

77] and endothelial (NOS3) [78]. In addition, ADRA exhibit decreased immunoreactivity 

for nuclear factor erythroid 2-related factor 2 (NFE2L2) [79]—the main transcription 

factor orchestrating the antioxidant response—and for solute carrier family 40 member 

1 (SLC40A1, also known as ferroportin-1) and hepcidin (HAMP) [80], both of which 

regulate iron homeostasis. Conversely, there is also strong evidence for a role of ADRA 

in antioxidant defence, including increased immunoreactivity for antioxidant enzymes such 

as the metallothioneins −1 (e.g., MT1A), −2 (MT2A) and, to a lesser extent, −3 (MT3, 

also known as growth inhibitory factor or GIF) [73, 81–85], which are also important 

for zinc and copper homeostasis; the superoxide dismutases [Cu-Zn] (SOD1) and [Mn], 

mitochondrial (SOD2) [86, 87]; heme oxygenase 1 (HMOX1) [88]; thioredoxin (TXN) 

[89]; peroxiredoxin-6 (PRDX6) [90]; epoxide hydrolase 1 (EPHX1) [91]; and aflatoxin B1 

aldehyde reductase member 2 (AKR7A2) [92].

Lipid metabolism—The lipid metabolism markers found in our systematic review can 

be classified as (1) apolipoproteins, which bind and transport cholesterol and phospholipids 

packed as lipoproteins; (2) lipoprotein receptors, which internalise these via endocytosis; 

and (3) enzymes that meta-bolise lipids. As expected, the most studied apolipoprotein is 

apolipoprotein E (APOE), followed by clusterin (CLU, also known as APOJ). Most studies 

investigating APOE report increased expression in ADRA [93–98], but some authors have 

described reduced expression restricted to the vicinity of amyloid plaques [99, 100] or 

unchanged [101] expression compared with normal brain astrocytes. In general, all other 

apolipoproteins including CLU [102, 103] and the apolipoproteins A-I (APOA1) [98], C-I 

(APOC1) [104] and D (APOD) [105] have been shown to increase in ADRA. Among 

the lipoprotein receptors, low-density lipoprotein (LDL) receptor-related protein 1 (LRP1) 

is the most frequently studied and is increased in ADRA according to the majority of 

studies [39, 95, 106, 107] (but unchanged in the basal ganglia [101]). In contrast, the 

LDL receptor (LDLR) is unchanged in ADRA vs normal brain astrocytes [95]. Finally, 

two cholesterol enzymes, cholesteryl ester transfer protein (CETP) [108] and cholesterol 

24-hydroxylase (CYP46A1) [109, 110], have been shown to be increased in ADRA, while 

two immunohistochemical studies have shown accumulation of ceramide in ADRA [52, 

111].
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Extracellular matrix—Reactive astrocytes in AD also play an essential role in 

reorganisation of the extracellular matrix, as judged by their increased immunoreactivity 

for secreted proteases such as the matrix metalloproteinases interstitial collagenase 

(MMP1) [112] and stromelysin-1 (MMP3) [113] as well as urokinase-type plasminogen 

activator (PLAU) [107]; protease inhibitors such as alpha-1-antichymotrypsin (SERPINA3, 

also known as ACT) [114–116], the inter-alpha-trypsin inhibitors (e.g., ITIH1) [117] 

and plasminogen activator inhibitor 1 (SERPINE1) [107]; protein-lysine 6-oxidase 

(LOX), which oxidises ECM proteins [118, 119]; the protein-glutamine gamma-

glutamyltransferases K (TGM1) and 2 (TGM2), which crosslink ECM proteins [120, 121] 

(but are unchanged in ADRA based on [122]); and cell surface and extracellular matrix 

adhesion receptors and ligands such as CD44 antigen (CD44) [64, 123, 124], the heparan 

sulphate proteoglycans (e.g., HSPG2) [125], neuregulin 1 (NRG1) [126, 127] and the 

ganglioside GM1 [128].

Proteostasis—Evidence for an activation of protein degradation systems in ADRA is 

indicated by increased immunoreactivity for lysosomal enzymes such as the cathepsins 

B (CTSB) [129], D (CTSD) [94, 129, 130], H (CTSH) [130] and L (CTSL) [130], beta-

hexosaminidase subunit alpha (HEXA) [130] and lysosomal membrane proteins including 

macrosialin (CD68) [131] and Beclin-1 (BECN1) [132]; small chaperones such as alpha-

crystallin B chain (CRYAB) [133–135], the heat shock proteins beta-1 (HSPB1, also known 

as HSP27) [134–136], beta-2 (HSPB2) [134, 135], beta-6 (HSPB6) [134, 135], beta-8 

(HSPB8) [135] and Parkinson disease protein 7 (PARK7, also known as DJ-1) [137]; the 

E3 ubiquitin-protein ligases Parkin (PRKN) [138] and synoviolin (SYVN1, also known as 

HRD1) [139]; and proteases such as calpain-10 (CAPN10) [140] and prolyl endopeptidase 

(PREP) [141].

Neurotransmission—The fine processes from protoplasmic astrocytes are structural 

components of excitatory synapses and modulate glutamatergic transmission by taking 

up glutamate via the membrane-bound excitatory amino acid transporters 1 (SLC1A3, 

better known as EAAT1 or GLAST-1) and 2 (SLC1A2, better known as EAAT2 or 

GLT-1) and converting glutamate into glutamine via glutamine synthetase (GLUL). GLUL 

immunoreactivity has been reported to be increased [142, 143], decreased [144, 145] 

and unchanged [146] in ADRA, whereas SLC1A2 levels have more consistently been 

documented as reduced [147–149], and SLC1A3 levels appear to be stable [147, 148]. In 

addition, metabotropic glutamate transporter 5 (GRM5) [56, 150, 151] and serine racemase 

(SRR, which converts L-serine into D-serine, a gliotransmitter that modulates neuronal 

NMDA receptors) [152] are increased in ADRA. Besides glutamatergic neurotransmission, 

other neurotransmitter systems have also been associated with ADRA based on increased 

immunoreactivity for specific markers, including (1) GABAergic: γ-aminobutyric acid 

(GABA) [153, 154], the 67-kDa glutamate decarboxylase 1 (GAD1, also known as 

GAD-67) [153] and sodium- and chloride-dependent GABA transporter 3 (SLC6A11) [153]; 

(2) cholinergic: neuronal acetylcholine receptor subunit alpha-7 (CHRNA7) [155–159], 

choline O-acetyltransferase (CHAT) [158] and muscarinic receptors (e.g., CHRM1) [160]; 

(3) catecholaminergic: amine oxidase (flavin-containing) B (MAOB) [154] (but see Pugliese 

et al. [34] as well) and D(1B) dopamine receptor (DRD5) (but not D (3) dopamine receptor 

Viejo et al. Page 6

Neuropathol Appl Neurobiol. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[DRD3], which is unchanged) [161]; (4) serotoninergic: 5-hydroxytryptamine receptor 2A 

(HTR2A) [162]; (5) kynurenergic: quinolinic acid and indoleamine 2,3-dioxygenase (IDO1) 

[163]; and (6) purinergic: adenosine receptor A2a (ADORA2A) [164].

Trophic factors—Although homeostatic astrocytes have traditionally been considered as 

ancillary cells providing trophic support to neurons for neuronal development and survival, 

remarkably, multiple trophic growth factors have been reported to increase in ADRA by 

immunohistochemistry. These trophic factors include hepatocyte growth factor (HGF) [165, 

166] and its activator (HGFAC) [167]; fibroblast growth factors 1 (FGF1, also known as 

acidic FGF) [168, 169] and 2 (FGF2, also known as basic FGF) [170–173] and FGF 

receptor 1 (FGFR1) [174]; transforming growth factors beta-2 (TGFB2) [175–177] and 

beta-3 (TGFB3) [177]; and neuromodulin (GAP43) [178]. By contrast, TGF-beta receptor 

type-2 (TGFBR2) has been reported to be reduced in ADRA [177], whereas both early 

growth response protein 1 (EGR1) [179] and astrocytic phosphoprotein PEA-15 (PEA15) 

[180] are unchanged.

Proliferation and apoptosis—Several studies have suggested that ADRA are actively 

proliferating based on an increased immunoreactivity for proliferative markers including the 

proto-oncogenes apoptosis regulator Bcl-2 (BCL2) [181, 182], Myc (MYC) [183], N-myc 

(MYCN) [183] and protein C-ets-2 (ETS2) [184], as well as the cell cycle proteins cyclin 

C (CCNC) [185] and the cyclin-dependent kinases −1 (CDK1) [186] (although CDK1 

is unchanged according to [187]), −7 (CDK7) [185] and −8 (CDK8) [185]. Conversely, 

multiple studies argue against ADRA proliferation based on increased immunoreactivity for 

tumour suppressors such as cellular tumour antigen p53 (TP53) [188] (although unchanged 

based on [72]), the hyperphosphorylated form of retinoblastoma-associated protein (RB1, 

also known as pRb) [189], retinoblastoma-like protein 2 (RBL2, also known as p130) 

[190], adenomatous polyposis coli protein (APC) [191], transcription factor E2F1 (E2F1) 

[189], Forkhead box protein O3 (FOXO3) [143], phosphatidylinositol 3,4,5-trisphosphate 

3-phosphatase and dual-specificity protein phosphatase PTEN (PTEN) [192] and cyclin-

dependent kinase inhibitor 2A (CDKN2A, also known as p16INK4a) [112, 193], together 

with decreased immunoreactivity for the microtubule-associated neuronal migration protein 

doublecortin (DCX) [194]. Lastly, ADRA apoptosis has been suggested due to an increased 

immunoreactivity for activated caspase-3 (CASP3) [32, 195] (but unchanged according to 

Simpson et al. [72]), caspase-cleaved actin (ACTB, where the caspase-cleaved form is 

known as fragment of actin, or fractin) [72] and caspase-cleaved GFAP [32], as well as the 

death receptor TNF receptor superfamily member 6 (FAS) [188, 196, 197] and its ligand, 

TNF ligand superfamily member 6 (FASLG) [197]. Similarly, increased DNA fragmentation 

has been shown using dUTP nick-end labelling by many authors [131, 182, 197, 198] but 

not others [199].

Kinase/phosphatase activity—ADRA have been shown to upregulate multiple kinases 

and phosphatases. Among these kinases, besides the cyclin-dependent kinases described 

above, there is also evidence of increased immunoreactivity for the mitogen-activated 

protein kinases 1 (MAPK1, also called extracellular signal-regulated kinase 2, or ERK2) 

[200] (but unchanged based on Webster et al. [201]), 3 (MAKP3, also called ERK1) [200, 
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201], 8 (MAPK8, also called SAPK1c or JNK1) [200] and 14 (MAPK14, also called p38) 

[200]; glycogen synthase kinase-3 beta (GSK3B) [200]; casein kinase II (e.g., CSNK2A1, 

also known as CK II) [202]; and tyrosine-protein kinase Fyn (FYN) [203], whereas DNA-

dependent protein kinase (PRKDC) is unchanged [72]. Regarding phosphatases, besides 

PTEN listed as a tumour suppressor above, there is evidence of increased immunoreactivity 

for the serine/threo-nine-protein phosphatases 2A (PPP2CA) [204] and 2B (PPP3CA, also 

known as calcineurin) [56, 204–206], whereas serine/threonine-protein phosphatase PP1-

alpha (PPP1CA) remains unchanged [204].

Insulin signalling—ADRA appear to mobilise their energy metabolism, as indicated 

by an increased immunoreactivity for the limiting enzyme in glycogenolysis, pancreatic 

alpha-amylase (AMY2A, also called amylase alpha 2A) [207]. In addition, ADRA exhibit 

increased immunoreactivity for insulin-like growth factor I (IGF1) [208, 209] and its 

receptor (IGF1R) [210], as well as for cation-independent mannose-6-phosphate receptor 

(IGFR2, which is the receptor for insulin-like growth factor II) [211] and for insulin-like 

growth factor-binding protein 3 (IGFBP3) [205].

Intracellular trafficking—ADRA feature active intracellular trafficking, as assessed by an 

increased immunoreactivity for clathrin light chains A (CLTA) and B (CLTB) [212], which 

are critical for clathrin-mediated endocytosis; protein Hook homolog 2 (HOOK2), which 

is a microtubule-binding protein that participates in endosomal transport [213]; kinesin-like 

protein KIF21B (KIF21B) [214], a motor protein that transports cargo along microtubules; 

carboxypeptidase E (CPE) [215], which functions as a sorting receptor for processing of 

pro-peptides and secretion of the resulting peptides via the regulated secretory pathway; 

and secretogranin-3 (SCG3) [215], which is also involved in the sorting of peptides within 

secretory granules in the regulated secretory pathway.

Blood–brain barrier integrity—Astrocytes are a key structural element of the blood–

brain barrier, with their vascular endfeet wrapping capillaries as well as small arteries and 

veins. ADRA have increased levels of the vasoconstrictor endothelin-1 (EDN1) [216, 217] 

and of the tight junction proteins claudin-2 (CLDN2) and claudin-11 (CLDN11), but not 

claudin-5 (CLDN5) [218]. Moreover, ADRA surrounding leaky capillaries take up plasma 

proteins such as fibrinogen (e.g., FGA) [219] and immunoglobulins A (e.g., IGHA1), G 

(e.g., IGHG1) and M (e.g., IGHM) [220].

Calcium homeostasis—Increased immunoreactivity for cytosolic calcium (Ca2+)-

binding proteins, which buffer any excess of Ca2+, provides indirect evidence of Ca2+ 

dyshomeostasis in ADRA. Indeed, protein S100-A6 (S100A6, also known as calcyclin) 

[221], calsenilin (KCNIP3) [222], calbindin (CALB1) [223] and calretinin (CALB2) [223] 

have all been shown to increase in ADRA by immunohistochemistry. The Ca2+-binding 

protein S100-B (S100B) has been reported to be increased by some studies [38, 224–227] 

but not others [148, 149].

Water/K+ homeostasis—Astrocytes regulate brain water and potassium (K+) 

homeostasis through specific membrane channels. ADRA show increased immunoreactivity 

for aquaporin-1 (AQP1) [228, 229], whereas aquaporin-4 (AQP4) levels have been reported 
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to be unchanged [228, 230, 231], decreased [232] and elevated [233] by different authors. 

Moreover, ADRA exhibit increased immunoreactivity for K+ channel subunits, including 

intermediate conductance calcium-activated potassium channel protein 4 (KCNN4, also 

known as KCa3.1) [234] and ATP-sensitive inward rectifier potassium channel 11 (KCNJ11, 

also known as Kir6.2) [235].

Phagocytosis—ADRA have increased immunoreactivity for the opsonin complement C3 

(C3) [152, 236] and for scavenger receptor class B member 1 (SCARB1) [237]. One study 

reported that the C3b/C4b receptor complement receptor type 1 (CR1)—which is a genome-

wide association study AD risk locus—is expressed by astrocytes but unchanged in AD 

vs control brains [238]. Another study reported reduced immunoreactivity for lactadherin 

(MGFE8) in ADRA, which has been involved in Aβ phagocytosis by astrocytes [239].

Aβ and tau—Numerous studies have reported Aβ immunoreactivity in ADRA, especially 

in subpial cortical astrocytes in close proximity with extracellular diffuse Aβ deposits 

[69, 101, 158, 240–252], supporting effective Aβ phagocytosis by astrocytes. Of note, 

Aβ within ADRA has been described as granules or dot-like staining and is best 

observed with antibodies against its mid-segment and C-terminus (Aβ40 or Aβ42) due 

to prominent N-terminal truncation [241–244, 247, 250–252]. Aβ oligomeric species have 

also been shown in ADRA using a conformation-specific antibody [251]. Remarkably, 

amyloid-beta precursor protein (APP) [223, 253–255], beta-secretase 1 (BACE1) [256, 

257], the BACE1-cleaved soluble APP ectodomain fragment (i.e., sAPPβ) [258] and the 

presenilins −1 (PSEN1) [35, 255, 259–261] and −2 (PSEN2) [255, 259] have all been 

reported to increase in ADRA as well, raising the possibility that ADRA contribute to 

the production and secretion of Aβ. Indeed, APP and PSEN1/2-positive ADRA exhibit 

enhanced immunoreactivity for caveolin-3 (CAV3), which has been implicated in APP 

cleavage by BACE1 [255], and ADRA also have increased immunoreactivity for the 

transcriptional repressor protein YY1 (YY1, also known as Yin Yang 1), which can activate 

BACE1 transcription [262]. In addition, ADRA are immunoreactive for the adaptor protein 

SHC-transforming protein 1 (SHC1, also known as ShcA), which is known to interact 

with APP C-terminal fragments and may mediate its intracellular signalling [263, 264]. 

Conversely, the Aβ-degrading enzymes neprilysin (MME) and insulin-degrading enzyme 

(IDE) have also been reported to increase in ADRA [265].

Similar to Aβ, multiple studies have reported the existence of the microtubule-associated 

protein tau (MAPT, hereafter referred to as tau) in ADRA [200, 266–271] with two 

morphologies: thorn-shaped astrocytes and granular fuzzy astrocytes, collectively termed 

ageing-related tau astrogliopathy (ARTAG). ARTAG tau species are misfolded based on 

immunoreactivity for the conformation-specific mouse monoclonal antibodies Alz50 [200, 

267, 268, 270] and MC1 [200] and hyperphosphorylated based on positive staining with 

antibodies against pSer202, pSer202/205 (AT8), pSer214, pSer396, pSer396/404 (PHF1), 

pSer422, pThr181 and pThr231 [200, 267–269, 271]. One study also reported nitration of 

tau in ADRA at Tyr18 [270].

Miscellaneous—Lastly, ADRA have been reported to display increased immunoreactivity 

for the oestrogen receptors alpha (ESR1) [272] and beta (ESR2) [273], peptidyl-prolyl 
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cis-trans isomerase FKBP1A (FKBP1A, also known as 12-kDa FK506-binding protein or 

FKBP12) [274] and protein-arginine deiminase type-2 (PADI2) [275], which catalyses the 

citrullination of GFAP and VIM. On the other hand, cytosolic 10-formyltetrahydrofolate 

dehydrogenase (ALDH1L1, better known as aldehyde dehydrogenase 1 family member L1) 

was described as unchanged in ADRA [146]. Finally, one immunohistochemical study found 

deficient DNA methylation and hydroxymethylation in ADRA [276], whereas other authors 

observed no change [277].

Bioinformatics analyses

Pathway enrichment analysis—To further evaluate the functional changes associated 

with astrocyte reaction in AD, we applied PEA on the 196 ADRA proteins against 

the curated GO and Reactome pathway databases available from MSigDB [16–19]. The 

most salient enriched functional pathways included inflammatory cytokines and innate 

immune response (e.g., MAPK, toll-like receptor and interleukin signalling, as well as 

inflammasomes), response to nitrosative and oxidative stress, lipoprotein metabolism, 

extracellular matrix organisation, protein degradation, signalling by nuclear receptors 

(including oestrogen receptor and ERBB4-mediated signalling) and trophic factors (e.g., 

FGF) (Figure 2, Table S2).

Protein-protein interaction network analysis—PPI network analysis on the ADRA 

protein set (n = 196) using the STRING database [20] rendered a highly connected 

functional network with 193 nodes, 2331 edges (expected 836), an average node degree 

of 24.2, an average local clustering coefficient of 0.563 and a PPI enrichment p value of < 

1.0e-16 (Figure 3). Based on centrality scores, IL6, TP53, CASP3, TNF, MAPK3, MAPK8, 

MAPK1, MYC, PTGS2, IGF1, APP, IL1B, CCL2, FGF2 and ESR1 were the top 15 hub 

proteins. The remarkable interconnectivity between the individual markers of the ADRA 

protein set was visualised with a network plot (Figure 3A), a Circos plot (Figure S1) and 

a network heatmap (Figure S2). Similarly, a chord plot (Figure 3B) illustrated the high 

interconnectivity of these ADRA proteins at the functional pathway level, with inflammation 

as the most prominent functional alteration in AD reactive astrogliosis.

Transcription factor enrichment analysis—To explore the main transcription factors 

driving the expression changes associated with ADRA, we performed transcription 

factor enrichment analysis (TFEA) against publicly available datasets of ChIP-seq 

studies in a wide variety of cell lines [21, 22, 278] (see Methods). TFEA using two 

separate bioinformatics tools—namely, TFEA.ChIP and Enrichr—uncovered transcriptional 

repressor CTCF (CTCF, also known as CCCTC-binding factor) and ESR1 as novel 

transcription factors potentially implicated in astrocyte reaction (Figure 4). The antioxidant 

defence orchestrator NFE2L2 reached statistical significance in Enrichr but not in 

TFEA.ChIP, whereas RELA (the catalytic subunit of NF-kappa-B) and signal transducer 

and activator of transcription 3 (STAT3) were mostly not significantly enriched (Table S3).

Comparison with transcriptomic and proteomic studies—Lastly, we aimed to 

compare the ADRA markers with publicly available human -omics datasets, including 

a microarray study of laser-capture microdissected GFAP+ astrocytes in the temporal 
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neocortex [27], the astrocyte subset of a single-nuclei RNA-sequencing (RNA-seq) study 

of the entorhinal cortex [28], the AMP-AD Consortium bulk brain proteomic dataset (total 

n = 419) [29] and Cohort 1 of the AMP-AD CSF proteomic study (total n = 297) [29] 

(see Supporting Information). We found a substantial representation of ADRA proteins 

in each of the four datasets examined. Enrichment analysis of the 196 ADRA markers 

against all genes or proteins differentially expressed between control and AD dementia 

in Simpson et al. [27], Grubman et al. [28] and Johnson et al. (bulk brain) [29] revealed 

that this overlap was consistently significant, with p values of 1.55e-2, 3.45e-12 and 

2.25e-13, respectively (calculated by Fisher’s exact test). Cross-validation with the two 

astrocyte-specific transcriptomic studies listed above indicated that the expression of the 

genes encoding ADRA proteins correlates with disease progression as measured by Braak 

NFT stage [27] (Figures 5A and S3) and/or with AD vs control diagnosis [28] (Figures 5B 

and S4). Notably, cross-validation with the AMP-AD CSF proteomics dataset showed that 

the levels of many ADRA proteins in CSF correlate with the Aβ42/p-tau ratio, which is 

a surrogate biomarker of the severity of brain AD neuropathological changes [29] (Figure 

5C). Similarly, cross-validation with the AMP-AD bulk tissue proteomics dataset revealed 

that a considerable proportion of ADRA proteins change in parallel to the diagnostic group 

(control vs asymptomatic AD vs AD dementia) and/or Braak NFT stage [29] (Figures 5D 

and S5).

DISCUSSION

We demonstrate the feasibility and validity of a systematic review of post-mortem 

human neuropathological studies to characterise the protein expression changes associated 

with astrocyte reaction in the AD brain. Some limitations of this approach should 

be acknowledged in advance. Systematic reviews are inherently affected by a risk of 

publication bias; in this case, increased immunoreactivity indicating protein upregulation 

is typically more obvious to the examiner (and likely more readily reported) than 

decreased immunoreactivity associated with protein downregulation; therefore, loss of 

normal astrocyte functions might be underreported. Moreover, the possibility of missing 

studies because they are published in non-indexed journals, rarely cited and therefore less 

likely to be captured from reference lists, inappropriately indexed in databases or simply 

not encompassed by our search strategy should be considered. Other limitations are inherent 

to post-mortem neuropathological studies: antibody specificity was not always tested; the 

effects of ante-mortem agonal period and post-mortem interval on marker immunoreactivity 

were usually not investigated; most studies compared healthy control brains with advanced 

AD brains, hence, the described changes in immunoreactivity may only reflect end-stage 

status and may differ at earlier stages of disease; and qualitative and semi-quantitative 

reports could be affected by examiner subjectivity. Nevertheless, some of these biases are 

offset by the significant overlap demonstrated between the ADRA protein set and various 

human -omics datasets, which have different inherent methodological biases. Therefore, our 

thorough bioinformatics analyses on the ADRA protein set provide important clues about 

the physiological changes central to astrocyte reaction in AD.

PEA on the 196 ADRA proteins revealed that astrocyte reaction is a complex process 

involving multiple astrocyte functions beyond cytoskeletal remodelling (viz., beyond the 
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classic upregulation of GFAP). These include neuroinflammation (e.g., the cytokines 

IL1B, IL6 and TNF and the stress kinases MAPK 1, 3 and 8), oxidative stress 

(e.g., the metallothioneins MT1A, MT2A and MT3; the nitric oxide synthases NOS1, 

NOS2 and NOS3; and the superoxidase dismutases SOD1 and SOD2), lipid metabolism 

(e.g., APOE, CLU and LRP1), extracellular matrix (e.g., CD44, SERPINA3, the matrix 

metalloproteinases MMP1 and MMP3 and the tissue transglutaminases TGM1 and TGM2) 

and proteostasis (e.g., CRYAB, HSPB1 and the cathepsin protease family).

PPI network analysis of the ADRA protein set revealed an extraordinary interconnectivity 

across many of these functions, suggesting that one or more parallel pathogenic cascades 

occur within the reactive astrocyte (i.e., domino effect). This analysis identified IL6 as the 

protein with the highest connectivity by eigenvalue centrality score. Importantly, mouse 

models genetically engineered to over-express IL6 in astrocytes (i.e., Gfap-Il6 transgenic 

mice) exhibit a neurodegenerative phenotype with loss of cortical synapses and cerebellar 

atrophy [279], indicating that IL6 secretion by reactive astrocytes could be neurotoxic. 

Although our TFEA on the 196 ADRA genes did not detect STAT3, IL6 signalling is known 

to activate the JAK/STAT pathway, which is thought to be key for astrocyte reaction in 

transgenic mouse models of β-amyloidosis [280, 281]. IL6 signalling could be blocked by 

repurposing IL6 inhibitors (e.g., siltuximab), IL6 receptor inhibitors (e.g., sarilumab and 

tocilizumab) and JAK inhibitors (e.g., bariticinib, tofacitinib and ruxolitinib). Interestingly, a 

recent machine learning study to identify candidates for drug repurposing in AD concluded 

that Food and Drug Administration-approved JAK inhibitors could be beneficial in AD 

[282]. Taken together, these observations strongly support the design of clinical trials aimed 

at inhibiting the IL6/JAK/STAT signalling axis to attenuate astrocyte reaction in AD.

Intriguingly, CTCF and ESR1 emerged as potential novel transcription factors involved 

in astrocyte reaction according to two separate TFEA tools. While these methods use 

curated databases of ChIP-seq experiments and outperform methods based on ascertaining 

binding motifs within the DNA sequence, most ChIP-seq experiments correspond to 

tumour cell lines of various organs; hence, any extrapolation to astrocytes in the human 

brain should be taken with caution. However, CTCF was also enriched in the ChIP-seq 

experiments conducted on primary astrocytes and astrocytoma cell lines in our TFEA. 

ChIP analysis (Table S3). CTCF regulates 3-D genome architecture and facilitates enhancer–

promoter interactions across multiple cell types in the brain [283]; mutations in this 

transcription factor cause a neurodevelopmental disorder with intellectual disability, possibly 

by deregulating the expression of multiple genes [284]. Conditional deletion of CTCF from 

excitatory glutamatergic neurons in mice impairs synaptic plasticity, learning and memory 

and causes both neurodegeneration and reactive gliosis [285–287]. Further, upon TGF-beta 

stimulation of astrocytes in vitro, CTCF enhances APP expression [288]; of note, APP 

ranked 11th in our PPI network by centrality score and is significantly upregulated in AD vs 

controls in both CSF and bulk brain proteomic studies [29]. The oestrogen receptors ESR1 

and ESR2 are present in the plasma membrane and are trafficked to the nucleus, where 

they act as transcription factors regulating gene expression. Consistent with the results of 

our PEA and TFEA, ESR1 ranked 15th in our PPI network by centrality score. Further, 

ESR1 and ESR2 have been reported as upregulated in reactive astrocytes in AD [272, 

273], in male primates after transection of the fimbria fornix [289] and in male rats after 
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kainic acid-induced status epilepticus [290]. Hence, together with our findings, the available 

literature suggests that CTCF and ESR1 warrant further investigation as regulators of AD 

astrocyte reaction.

Finally, a significant subset of the ADRA protein set was also altered in AD vs control 

individuals in several reference transcriptomics and proteomics studies. For example, in 

their microarray study of laser-capture microdissected GFAP-immunoreactive astrocytes, 

Simpson et al. highlighted actin cytoskeleton, proliferation/apoptosis and proteostasis, as 

well as stress and immune responses as the main dysregulated astrocyte functions, and 

implicated the MAPK signalling pathway [27]. The pro-inflammatory astrocyte phenotype 

has also been shown in aged wild-type mice and APP/PS1 AD transgenic mice [2, 291, 292]. 

These similarities are remarkable given the large technical and biological discrepancies 

frequently observed between these methods [293]. Moreover, these findings have two 

important implications. First, astrocyte-specific transcriptomic studies and bulk brain or CSF 

proteomics studies could be validated by cyclic multiplex immunohistochemistry methods 

in post-mortem brain sections [294]. Second, our ADRA protein atlas may inform ongoing 

efforts to discover serum/plasma, CSF and PET imaging biomarkers of reactive astrocytes, 

which may assist the early diagnosis and prognostication of AD. For example, many of the 

overlapping proteins between the ADRA protein set and a public CSF proteomic dataset 

strongly correlated with the levels of AD CSF biomarkers, which are used for the clinical 

diagnosis of AD and as a proxy for the severity of AD neuropathological changes (Aβ 
plaques and NFTs) in the brain.

In summary, our systematic review of the neuropathological literature reveals the complexity 

of AD-associated astrocyte reaction, which has been increasingly recognised [1, 3–6]. 

Besides biomarker discovery, these findings could inform future astrocytecentric single-

cell and single-nuclei RNA-seq studies as well as spatial transcriptomic and proteomic 

investigations. To this end, we have shared these results as a web-based resource available at 

www.astrocyteatlas.org.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key points

• This is a systematic review of human post-mortem immunohistochemical 

studies followed by bioinformatics analyses to define the functional changes 

of reactive astrocytes in Alzheimer’s disease (AD).

• A total of 306 eligible articles rendered 196 markers of AD reactive astrocytes 

(ADRA), implicating inflammation, oxidative stress, lipid metabolism, 

proteostasis, extracellular matrix remodelling, neuromodulation and blood–

brain barrier integrity, among other alterations.

• This ADRA protein set is catalogued in a new online resource available at 

www.astrocyteatlas.org.
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FIGURE 1. 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart 

of the systematic review. The PubMed, APA PsycInfo and Web of Science-Science Citation 

Index Expanded (WoS-SCIE) databases were queried with the search terms ‘Alzheimer’s 

disease’ AND ‘astrocytes,’ yielding 1237 records, plus 54 additional records identified by 

scanning reference lists. The titles and abstracts of the 1067 unique records were screened. 

Of these, 391 were assessed for eligibility based on prespecified inclusion and exclusion 

criteria. Finally, a total of 306 original articles were thoroughly reviewed to extract relevant 

information, including markers of Alzheimer’s disease reactive astrocytes (ADRA)
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FIGURE 2. 
Pathway enrichment analysis (PEA) highlights neuroinflammation, oxidative stress, lipid 

metabolism and extracellular matrix in Alzheimer’s disease reactive astrocytes (ADRA). 

PEA was performed on the 196 ADRA proteins against the following curated pathway 

databases: Gene Ontology (GO): Biological Process (BP); GO: Cellular Component 

(CC); GO: Molecular Function (MF); and Reactome. Bar graphs illustrate the statistical 

significance of enrichment (i.e., −log10[FDR q value]) for the top 15 pathways in each 

database
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FIGURE 3. 
Protein–protein interaction (PPI) network analysis reveals complex functional changes in 

Alzheimer’s disease reactive astrocytes (ADRA). (A) STRING PPI functional network 

analysis on the 196 ADRA proteins resulting from our systematic review demonstrates a 

highly connected network with IL6, TNF and MAPK 1, 3, and 8 as top hub proteins. 

(B) Chord diagram based on expert annotation of the 196 ADRA markers in one of 18 

functional categories shows the high interconnectivity of the functional alterations of ADRA
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FIGURE 4. 
Transcription factor enrichment analysis (TFEA) reveals novel potential drivers of astrocyte 

reaction. (A) Volcano plot represents the effect size (i.e., log[fold-change] on the x-axis) 

against the statistical significance (i.e., −log[p value] on the y-axis) of the TFEA.ChIP 

enrichment analysis for each of the ChIP-seq experiments. The horizontal red line 

corresponds to p value = 0.05, whereas the vertical blue lines represent fold-changes of +1.5 

and −1.5. (B) Bar graph represents the statistical significance (nominal p values; adjusted 

p values are available in Table S3) of the Enrichr TFEA results. The vertical red line 

corresponds to p value = 0.05. Both methods showed CTCF and ESR1 as novel transcription 

factors potentially implicated in astrocyte reaction
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FIGURE 5. 
Comparison of Alzheimer’s disease reactive astrocytes (ADRA) protein set with publicly 

available human -omics datasets. (A) Heatmap shows the z scores of gene expression of 

the top 30 upregulated and downregulated ADRA markers across all 18 subjects (n = 6 

Braak I/II, n = 6 Braak III/IV and n = 6 Braak V/VI) included in a microarray study of 

laser-capture microdissected GFAP+ astrocytes from the temporal neocortex (Simpson et 

al. [27]). (B) Heatmap shows the z scores of gene expression of the top 30 upregulated 

and downregulated ADRA markers across all 12 subjects (n = 6 control and n = 6 AD) 

included in a single nuclei RNA-sequencing (RNA-seq) study from the entorhinal cortex 

(Grubman et al. [28]). (C) Heatmap represents the z scores of protein expression of all 

available ADRA markers averaged by deciles of cerebrospinal fluid (CSF) Aβ42/p-tau ratio 
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across the n = 147 control and n = 150 AD subjects from Cohort 1 of the Accelerating 

Medicines Partnership-Alzheimer’s Disease (AMP-AD) Consortium CSF proteomic study 

(Johnson et al. [29]). (D) Heatmap illustrates the z scores of protein expression of the top 

30 upregulated and downregulated ADRA markers averaged by Braak neurofibrillary tangle 

(NFT) stage within each diagnostic group (n = 91 control, n = 98 asymptomatic AD and n 
= 230 AD dementia subjects) described in the AMP-AD Consortium bulk brain proteomic 

dataset (Johnson et al. [29])
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