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SUMMARY

Lineage reconstruction is central to understanding tissue development and maintenance. To 

overcome the limitations of current techniques that typically reconstruct clonal trees using 

genetically encoded reporters, we report scPECLR, a probabilistic algorithm to endogenously 

infer lineage trees at a single-cell-division resolution by using 5-hydroxymethylcytosine (5hmC). 

When applied to 8-cell pre-implantation mouse embryos, scPECLR predicts the full lineage tree 

with greater than 95% accuracy. In addition, we developed scH&G-seq to sequence both 5hmC 

and genomic DNA from the same cell. Given that genomic DNA sequencing yields information 

on both copy number variations and single-nucleotide polymorphisms, when combined with 

scPECLR it enables more accurate lineage reconstruction of larger trees. Finally, we show that 

scPECLR can also be used to map chromosome strand segregation patterns during cell division, 

thereby providing a strategy to test the “immortal strand” hypothesis. Thus, scPECLR provides 
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a generalized method to endogenously reconstruct lineage trees at an individual-cell-division 

resolution.

In brief

Wangsanuwat et al. develop a probabilistic algorithm to reconstruct cellular lineages at an 

individual-cell-division resolution by using strand-specific 5hmC measurements in single cells, 

and combine it with the development of a single-cell multi-omics technology to quantify 5hmC 

and genomic DNA from the same cell to reconstruct larger lineage trees.

Graphical Abstract

INTRODUCTION

Understanding lineage relationships between cells in a tissue is a central question in biology. 

Reconstructing lineage trees is not only fundamental to understanding tissue development, 

homeostasis, and repair but is also important for gaining insights into the dynamics of 

tumor evolution and other diseases. Genetically encoded fluorescent reporters have been a 

powerful approach to reconstruct the lineage of many tissues (Kretzschmar and Watt, 2012). 

However, these methods require the generation of complex animal models for each stem 

or progenitor cell type of interest, and are limited to a clonal resolution (Kretzschmar and 

Watt, 2012). Similarly, other techniques, such as the use of viruses (Naik et al., 2013), 

transposons (Sun et al., 2014; Wagner et al., 2018), Cre-loxP-based recombination (Pei et 
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al., 2017), and CRISPR/Cas9 (Alemany et al., 2018; Kalhor et al., 2017; McKenna et al., 

2016; Perli et al., 2016; Raj et al., 2018; Spanjaard et al., 2018) have also been used to 

genetically label cells to primarily reconstruct clonal lineages. This clonal resolution limits 

our ability to understand tissue dynamics at a single-cell-division resolution. Although a 

recent report that combined CRISPR/Cas9-mediated mutagenesis with single-molecule RNA 

fluorescence in situ hybridization (FISH) enabled reconstruction of lineages at a single-cell­

division resolution (MEMOIR) (Frieda et al., 2017), their ability to infer lineages dropped 

substantially by the third cell division.

Furthermore, as these methods involve exogenous labeling, they cannot be used to directly 

map cellular lineages in human tissues, thereby posing a barrier to understanding human 

development and diseases. Although endogenous somatic mutations have been used to 

reconstruct lineages, their low frequency of occurrence over the whole genome make them 

challenging to detect and therefore limit their application as a lineage reconstruction tool 

(Behjati et al., 2014; Ju et al., 2017; Lodato et al., 2015). Similarly, recent methods 

have used mutations within the mitochondrial genome or microsatellites to reconstruct 

lineages, but these approaches are also limited to a clonal resolution (Biezuner et al., 

2016; Evrony et al., 2015; Ludwig et al., 2019; Xu et al., 2019). Previously, we developed 

a method to detect the endogenous epigenetic mark 5-hydroxymethylcytosine (5hmC) in 

single cells (scAba-seq) and showed that the lack of maintenance of this mark during 

replication resulted in older DNA strands containing higher levels of 5hmC (Mooijman et 

al., 2016). The ability to track individual DNA strands through cell division allowed us to 

deterministically reconstruct lineages that were limited to two cell divisions (Mooijman et 

al., 2016). Therefore, to reconstruct larger trees and overcome limitations of other methods, 

we report single-cell Probabilistic Endogenous Cellular Lineage Reconstruction (scPECLR), 

a generalized probabilistic framework to endogenously reconstruct cellular lineages at an 

individual-cell-division resolution by using single-cell 5hmC sequencing. This approach can 

be used to successfully reconstruct up to four cell divisions. To reconstruct larger trees, 

we developed an integrated single-cell method, scH&G-seq, to simultaneously sequence 

5hmC and genomic/mitochondrial DNA from the same cell. By combining information 

from genomic variants that can be used to identify clonal subtrees within the complete tree, 

together with strand-specific 5hmC that enables tracking the lineage of individual cells, 

scH&G-seq can be generalized to endogenously reconstruct the lineage of larger trees at a 

single-cell-division resolution.

RESULTS

Genome-wide strand-specific 5hmC enables initial lineage bifurcation of individual cells 
into two subtrees

As proof of principle, we dissociated 8-cell mouse embryos and performed scAba-seq to 

quantify strand-specific genome-wide patterns of 5hmC in single cells (Figure 1A). As 

shown previously, a majority of 5hmC is present on the paternal genome during these stages 

of pre-implantation development (Inoue and Zhang, 2011; Iqbal et al., 2011; Wossidlo et 

al., 2011). Single cells from an 8-cell embryo displayed a mosaic genome-wide distribution 

with no overlap of 5hmC between the plus and minus strands of a chromosome (Figure 1B). 
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Furthermore, for each chromosome the strand-specific 5hmC was localized to a few cells, 

and other cells contained undetectable levels of the mark (Figure 1B). These observations 

show that only one allele carries a majority of 5hmC and that we are primarily detecting 

5hmC on the original paternal genome, with DNA strands synthesized in subsequent rounds 

of replication carrying very low levels of the mark. We used this as our basis to reconstruct 

cellular lineages of 8-cell embryos.

As the first step toward reconstructing lineage trees, we noted that the original plus and 

minus strands of each paternal chromosome in the 1-cell zygote will be found in distinct 

cells on opposite sides of the lineage tree after n cell divisions. As a result, all cells can 

be placed in one of two subtrees, thereby reducing the number of cell divisions to be 

reconstructed from n to n – 1. For example, at the 8-cell stage, the original paternal plus 

strand of chromosome 7 is detected in cell 8 and the minus strand is detected in cells 1 and 2 

(Figure 1B). This suggests that cell 8 is on the opposite side of the tree compared with cells 

1 and 2. Performing this first step of scPECLR, referred to as original strand segregation 

(OSS) analysis, over all the chromosomes enables us to place cells 1–4 and 5–8 on opposite 

sides of the lineage tree, reducing the complexity of the problem from reconstructing 3 cell 

divisions with 315 tree topologies to 2 cell divisions with 9 tree topologies (Figure 1C).

Probabilistic lineage reconstruction using scPECLR accurately predicts 8-cell embryo 
trees

To reconstruct the complete lineage tree, we next used the mosaic pattern of 5hmC arising 

from abrupt transitions in hydroxymethylation levels among cells along the length of a 

chromosome. These sharp transitions in 5hmC that are shared between two cells are the 

result of homologous recombination during sister chromatid exchange (SCE) events in the 

G2 phase of a previous cell cycle (Mooijman et al., 2016). Detection of 5hmC transitions 

that are common to two cells therefore indicate a shared evolutionary history between these 

cells (Figure 1A, inset). However, although an SCE event at the 4-cell stage would imply 

that the cells are sisters (Figure 1C, left), one occurring at the 2-cell stage would indicate 

that the same pattern of 5hmC transition can also be observed between cousins (Figure 1C, 

right). Thus, the observation of a single shared SCE event between two cells cannot be used 

to immediately discriminate between sister and cousin cell configurations.

To systematically determine the likelihood of observing different tree topologies, we 

developed a probabilistic framework where the occurrence of SCE events is modeled as 

a Poisson process. The total number of SCE events is used to estimate the parameter b 

of the Poisson process, the rate of SCE events per chromosome per cell division, using 

maximum-likelihood estimation (STAR Methods). After OSS, 8-cell trees can be grouped 

into two 4-cell subtrees, each with three possible tree arrangements (Figure 2A). Next, we 

used the probabilistic model to calculate the likelihood of observing an SCE pattern for a 

chromosome given a tree topology. We observed a large variety of SCE patterns, ranging 

from commonly observed patterns, such as one or two SCE transitions shared between 

two cells, to more complex distributions of 5hmC between cells (Figure S1). For the most 

common pattern of one SCE transition between two cells, scPECLR predicts that the tree 

with the two cells as sisters (tree A) is twice as likely as one where the two cells are cousins 
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(tree B or C), in good agreement with simulated data (Figure 2B and STAR Methods). 

Similarly, when two SCE transitions are shared between two cells, the probability that the 

two cells are sisters is 2–3 times higher than the probability that they are cousins, with 

the likelihood ratio between sister and cousin tree configurations depending on the relative 

position of the SCE transition on the chromosome (Figures 2C and S2; STAR Methods). 

More complex 5hmC distribution patterns, such as when two SCE events are shared between 

three cells, substantially favors the configuration of tree A (Figure 2C and STAR Methods). 

After the SCE pattern of each chromosome is analyzed, we can estimate the total likelihood 

of observing different tree topologies, assuming that the SCE events on each chromosome 

are independent (STAR Methods). Finally, the likelihood of an 8-cell tree is the product of 

the likelihoods of the two corresponding 4-cell subtrees (Figure 2D and Method S1).

To test the accuracy of scPECLR, we simulated 5hmC patterns of 8-cell embryos with 

an SCE rate similar to the experimentally observed value (b = 0.3) and within the range 

found in other cell types (Falconer et al., 2012; Hongslo et al., 1991; Tateishi et al., 

2003; Wu et al., 2017; Zack et al., 1977). scPECLR predicted the lineage tree correctly in 

96% of all simulations (Figure 3A, left). In contrast, MEMOIR predicted the lineage tree 

accurately in only ~67% of the top 40% most reliably reconstructed trees, although this 

was based on ground truth obtained from imaging data (Figure 3A, left). This improved 

accuracy of scPECLR strongly suggests that endogenous strand-specific 5hmC patterns 

present an accurate tool to reconstruct lineage trees at an individual-cell-division resolution. 

Furthermore, to directly validate our method against experimental data, we combined the 

lineage trees predicted by scPECLR from simulated 8-cell embryos to estimate the number 

of SCE events at the 4-cell stage. We hypothesized that if scPECLR predicted the correct 

tree then it would produce a distribution of SCE events similar to that of the experimental 

data at the 4-cell stage. We found that the scPECLR-predicted distribution of SCE events per 

cell at the 4-cell stage was statistically indistinguishable from the experimentally obtained 

distribution in 4-cell embryos (p>0.8, two-sample Kolmogorov-Smirnov [KS] test) (Figure 

3A, right). In contrast, when one of the 314 incorrect tree topologies at the 8-cell stage were 

sampled randomly, it resulted in a distribution of SCE events per cell that was significantly 

different from the experimental data (p<10−4, two-sample KS test) (Figure 3A, right). These 

results show that scPECLR can reconstruct three cell divisions with high accuracy. Finally, 

we applied scPECLR on the 8-cell mouse embryo shown in Figure 1B and other embryos to 

predict lineage trees with high confidence (Figure 2D and Data S1).

As SCE transitions play a central role in reconstructing lineage trees with scPECLR, we 

next explored how the endogenous rate of SCE events influences the accuracy of the 

model. As expected, the accuracy of lineage reconstruction increases monotonically with 

increasing rates of SCE events, and greater than 98% of the simulated 8-cell trees were 

correctly predicted for b≥0.4 (Figure 3B and STAR Methods). These simulations were 

performed by using 19 paternal autosomes based on our observations in pre-implantation 

mouse embryos; however, most cell types carry 5hmC on both alleles, and therefore we 

also performed simulations with 38 chromosomes. Again, as expected, the predictive power 

of the model increases, and more than 98% of the simulated 8-cell trees were accurately 

predicted for b≥0.2 (Figure 3B). These results demonstrate that the lineage tree can be 
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accurately predicted up to three cell divisions even with low rates of SCE events (Figure 

3B).

scPECLR can be extended to reconstruct the lineage of 16-cell trees

We next extended scPECLR to reconstruct the lineage of 16-cell trees, whereby the number 

of possible tree topologies increases exponentially to more than 6 × 108. Although the ability 

to predict the complete lineage tree decreases (17% accuracy for b = 0.3), large parts of the 

tree were reconstructed accurately, with the most common error being the misidentification 

of one sister pair within a 4-cell subtree (Figures 3B and 3C). For an SCE rate of b = 

0.3, 83% of all 4-cell subtrees and 63% of all 2-cell subtrees were predicted correctly 

(Figure 3C). These results suggest that when reconstructing 16-cell trees it is important to 

identify parts of the tree that can be predicted with high confidence. To accomplish this, we 

first included all tree topologies with probabilities above a threshold in relation to the tree 

with the highest probability (Figure 3D). A consensus tree that is consistent with all these 

tree topologies is then established (Figures 3D and S3; STAR Methods). As the relative 

threshold is increased (i.e., we include fewer tree topologies to construct the consensus 

tree), the median consensus tree contains fewer topologies, resulting in a more specific 

consensus tree. However, this results in an increase in false discovery rate (FDR). For 

example, with b = 0.3 and a relative threshold of 0.1, the median consensus tree contained 

24 tree topologies (Figure 3E, solid red line). The consensus trees displayed an FDR of 

~26%, implying that in 26% of the simulations the consensus tree has at least some part of 

the lineage tree that is not consistent with the true tree (Figure 3E, dotted red line). Thus, the 

relative threshold allows us to tune the competing goals of specificity and accuracy of the 

consensus tree. These results show that for a certain rate of SCE events and a desired level 

of FDR, the median number of topologies contained in the consensus tree can be estimated, 

yielding insights into how much lineage information can be extracted (Figure 3F and STAR 

Methods). Finally, as proof of principle, we sequenced a 16-cell mouse embryo and applied 

scPECLR to show that we can extract partial lineage information from larger trees (Figure 

3G and STAR Methods).

Integrated single-cell genomic DNA and 5hmC sequencing enables reconstruction of 
larger lineage trees

For larger 32-cell trees, the number of possible tree topologies increases to more than 1026, 

making it computationally very expensive to calculate the likelihood of all trees. Therefore, 

we extended scPECLR by developing an algorithm that efficiently searches through the tree 

topology space to reconstruct these larger trees. After OSS bifurcates the 32 cells into 2 

16-cell subtrees, we identify groups of 8 cells that when combined minimize the number of 

SCE events at the 4-cell stage. This algorithm relies on the strategy that incorrectly grouped 

cells will increase the number of SCE events at the 4-cell stage, and this subsampling 

enables rapid search through the tree topology space. Finally, the four groups of eight 

cells are reconstructed using scPECLR as described above (STAR Methods). As expected, 

although the ability to predict the complete lineage tree is lower than that for 16-cell trees, 

this method can rapidly predict subtrees within the 32-cell tree. For example, for b = 1 

and 19 alleles, 2-, 4-, and 8-cell subtrees are predicted with 50%–60% accuracy, whereas 

the 16-cell subtrees are predicted at close to 100% accuracy (Figure 4A, solid lines). For 
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the more general case of 38 alleles in mouse genomes, the prediction accuracy increases 

substantially, and 80%–95% of the 2-, 4-, and 8-cell subtrees were predicted correctly for b 
= 1 (Figure 4A, dotted lines).

To endogenously reconstruct large lineage trees at an individual-cell division resolution, 

we hypothesized that single-cell strand-specific 5hmC data combined with information 

on genomic variants, such as genomic copy-number variations (CNV), genomic single­

nucleotide polymorphisms (SNPs), or mitochondrial SNPs, could significantly improve the 

prediction accuracy. Genomic variants have previously been used to reconstruct clonal 

lineages and, therefore, when integrated with strand-specific 5hmC could help anchor 

subtrees within the complete lineage tree (Biezuner et al., 2016; Evrony et al., 2015; 

Ludwig et al., 2019; Xu et al., 2019). To test this hypothesis, we simulated trees with 

genomic variants together with SCE events and found that the prediction accuracy increases 

dramatically compared with the use of SCE events alone (Figures 4A, 4B, S4B, and S4C; 

STAR Methods). For example, for b = 1, the complete 32-cell lineage tree was predicted 

correctly in 76% of all simulations, and the 2- to 16-cell subtrees were predicted with greater 

than 96% accuracy (Figure 4B). In contrast, when using 5hmC or genomic variants alone, 

the prediction accuracy was lower (Figures 4A and 4B). Overall, these results demonstrate 

that 5hmC and genomic variants together present a general strategy to accurately reconstruct 

large lineage trees at a single-cell division resolution.

To accomplish this goal experimentally, we developed a method to simultaneously quantify 

5hmC and the genome from the same cell (scH&G-seq). Single cells are lysed, and 

the genomic DNA (gDNA) and mitochondrial DNA (mtDNA) are digested by using the 

restriction enzymes AluI and/or BseRI (Figure 4C). After stripping chromatin from gDNA, 

5hmC sites are glucosylated, and these sites are thereafter digested by the restriction enzyme 

AbaSI (Figure 4C). Double-stranded adapters, containing a cell-specific barcode, a 5′ 
Illumina adapter, and T7 promoter, together with restriction enzyme-compatible overhangs, 

are ligated to the fragmented DNA molecules (Figure 4C). These ligated molecules are 

then amplified by in vitro transcription and used to prepare Illumina libraries as described 

previously (Hashimshony et al., 2016; Mooijman et al., 2016; Rooijers et al., 2019; Sen 

et al., 2021), enabling simultaneous quantification of gDNA, mtDNA, and 5hmC from the 

same cell.

As proof of concept, we applied scH&G-seq to single H9 human embryonic stem cells 

with different combination of restriction enzymes—AluI and AbaSI, BseRI and AbaSI, or 

AluI, BseRI, and AbaSI—and successfully detected both gDNA/mtDNA and 5hmC from 

the same cell (Figures 4D and S4D). We detected a similar number of 5hmC sites per cell, 

when compared with scAba-seq control cells, and integration with additional restriction 

enzymes enabled genome-wide sequencing of gDNA/mtDNA (Figures 4D and S4D). To 

show that gDNA variants can infer clonal cellular relationships, we called CNVs in single 

cells. Hierarchical clustering identified two major clusters with a diploid and non-diploid 

population, with additional subgroups within the non-diploid population (Figures 4E and 

4F). These results demonstrate that scH&G-seq can be used to predict large lineage trees at 

a single-cell-division resolution. Similarly, the high mutation rate in mtDNA has previously 

been used to reconstruct clonal lineage trees, and therefore we used scH&G-seq to identify 
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mtSNPs. Although we identified nearly 40 mtSNPs in H9 cells when mapping to the 

reference human genome, these SNPs were observed at a frequency of close to 100%. 

Comparison with previously published ATAC-seq data from H9 cells together with SNP 

calls from another human cell line also identified the same SNPs, suggesting that these 

nucleotides represented the wild-type sequence (Table S1) (Diroma et al., 2020; Liu et al., 

2017). Nevertheless, these results show that in addition to sequencing 5hmC in single cells, 

scH&G-seq can be used to obtain clonal lineage information that can together be used to 

reconstruct larger trees.

scPECLR can be used to infer the rate of SCE events at each cell division and test the 
“immortal strand” hypothesis

In addition to reconstructing lineage trees, scPECLR can also be used to infer the rate of 

SCE events at each cell division. For example, in 8-cell embryos, the 5hmC distribution 

at the 4-cell and 2-cell stages can be reconstituted on the basis of the predicted lineage, 

enabling us to estimate the rate of SCE events at each cell division (Figure 2D and Data 

S1). Although the overall SCE rate over three cell divisions for all the 8-cell mouse embryos 

analyzed in this study was estimated to be 0.35 events per chromosome per cell division on 

average, the individual SCE rates for the 1- to 2-cell, 2- to 4-cell, and 4- to 8-cell stages 

were 0.31, 0.24, and 0.51, respectively. Furthermore, we found that the different rates of 

SCE events at each cell division did not affect the prediction accuracy of scPECLR (Figure 

S5 and STAR Methods). These results show that scPECLR can be used to infer the rate of 

double-stranded DNA (dsDNA) breaks at each cell division and that the rate of SCE events 

can vary during development.

Finally, we explored another application of scPECLR. As scPECLR uses endogenous 

strand-specific 5hmC in single cells to accurately reconstruct 8-cell trees, we hypothesized 

that this method could quantify how paternal alleles are segregated during cell division 

(Figure 5A). Different stem cell populations, such as hair follicle (Huh et al., 2013), neural 

(Karpowicz et al., 2005), satellite muscle (Conboy et al., 2007; Rocheteau et al., 2012), 

and intestinal crypt stem cells (Falconer et al., 2010; Potten et al., 2002), have been shown 

to display non-random segregation of DNA strands that can influence cell-fate decisions. 

These results have led to the “immortal strand” hypothesis, which postulates that old DNA 

strands are retained by daughter stem cells during asymmetric cell divisions to reduce the 

mutational load arising from genome replication of these long-lived cells. During mouse 

pre-implantation development, recent reports have shown that blastomeres show biases in 

cell fate specification as early as the 4-cell stage (Goolam et al., 2016; White et al., 2016). 

Therefore, we investigated sister chromatid segregation patterns of the paternal alleles at 

the 4-cell stage. We first combined 5hmC data from reconstructed sister cell pairs at the 

8-cell stage to generate the distribution of the oldest DNA strands at the 4-cell stage (Figure 

5B). In the example shown, when comparing cells (1,2) and (3,4), the original DNA strands 

appear to preferentially segregate to cell (1,2). In contrast, such a non-random pattern of 

DNA strand segregation is not observed between sister cells (5,6) and (7,8). Quantitatively, 

we analyzed 14 8-cell mouse embryos (equivalent to 28 2- to 4-cell division events) to 

find one sister pair at the 4-cell stage that displayed statistically significant non-random 

segregation of DNA strands (p<0.05) (Figure 5C and STAR Methods). To directly validate 
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these results, we performed scAba-seq on 13 4-cell mouse embryos (equivalent to 26 2- to 4­

cell division events). We again observed a similar distribution with one sister pair displaying 

a statistically significant non-random segregation pattern of DNA strands (p<0.05), which 

was statistically indistinguishable from that observed in 8-cell embryos (p>0.8, two-sample 

KS test) (Figure 5C and STAR Methods). The observation of two non-random segregation 

events out of 27 embryos was not statistically significant (p>0.15), suggesting this level 

of non-random segregation at the 4-cell stage of mouse embryogenesis could arise by 

random chance (Figure 5D and STAR Methods). Thus, this study shows that strand-specific 

reconstruction of lineage trees can be a powerful approach to test the immortal strand 

hypothesis in different stem cell populations.

DISCUSSION

Cellular lineage reconstruction plays an important role in answering fundamental questions 

in several areas of biology, such as immunology, cancer biology, and developmental biology. 

However, most current methods have two major limitations: (1) clonal lineage reconstruction 

cannot establish lineage relationships at the resolution of individual cell divisions; and (2) 

the use of transgenes involves time-intensive generation of complex animal models and is 

an approach that cannot be extended to map lineages in human tissues. To overcome these 

limitations, we developed a generalized probabilistic framework, scPECLR, to reconstruct 

short-term cellular lineage trees at an individual-cell-division resolution by using strand­

specific single-cell 5hmC sequencing data. Using simulated 8-cell trees, scPECLR showed a 

prediction accuracy of 96%. Because simultaneous live-cell imaging combined with single­

cell 5hmC sequencing to directly compare lineage predictions is challenging, we validated 

our results by showing that 8-cell trees predicted by scPECLR, and not randomly selected 

incorrect trees, allow us to estimate the distribution of SCE events at the 4-cell stage that 

is consistent with experimental data (Figure 3A). These results highlight that scPECLR is 

not only accurate at reconstructing short-term lineage trees at an individual-cell-division 

resolution but can also be used to quantify DNA strand segregation patterns and test the 

immortal strand hypothesis in stem cell biology.

Furthermore, scPECLR can be applied to single-cell measurements of other non-maintained 

epigenetic marks, such as non-CpG methylation, 5-formylcytosine, and 5-carboxylcytosine, 

to reconstruct lineages (Sen et al., 2021; Wu et al., 2017), and more generally to systems 

where the chromosome strands present in the original cell can be distinguished from 

subsequently synthesized strands, such as those exposed to bromodeoxyuridine (Claussin 

et al., 2017; Sanders et al., 2020). Finally, we show that by integrating 5hmC data with 

information on genomic variants from the same cell (scH&G-seq) significantly improves the 

prediction accuracy of larger lineage trees. Importantly, the use of an endogenous epigenetic 

mark and genomic variants to reconstruct lineage trees suggests that this method can be 

directly extended to study human development.

Limitations of the study

Although scPECLR enables endogenous lineage reconstruction at a single-cell-division 

resolution, the method suffers from two limitations. First, it cannot be applied to cell types 
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in which the levels of 5hmC are below the detection limit of scAba-seq and scH&G-seq. 

However, as scPECLR relies on the relative levels of 5hmC between the two strands of a 

chromosome, it can be applied to many cell types, including those with low levels of 5hmC 

in their genome. For example, 16-cell mouse embryos display distinct mosaic genome-wide 

strand-specific 5hmC patterns that enable lineage reconstruction despite undergoing global 

erasure of DNA methylation (Messerschmidt et al., 2014; Saitou et al., 2012) (Figure 

3G). A second general limitation of reconstructing larger lineage trees at an individual-cell 

division resolution is that the number of tree topologies increases exponentially, resulting 

in a drop in prediction accuracy with each additional cell division. However, as this 

work demonstrates, scPECLR, in combination with scH&G-seq, significantly improves the 

lineage-reconstruction accuracy of larger trees (Figure 4B). Finally, as most other lineage­

reconstruction methods employing CRISPR/Cas9, viruses, transposons, or Cre-loxP resolve 

larger-scale clonal information, scPECLR presents a complementary approach to these 

methods for applications that require reconstructing smaller lineage trees at an individual­

cell-division resolution.
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Lead contact—Additional information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Siddharth S. Dey (sdey@ucsb.edu)

Materials availability—This study did not generate new unique materials nor reagents

Data and code availability

• The raw and processed single-cell sequencing data have been deposited at GEO 

and are publicly available as of the date of publication. The accession number is 

listed in the key resources table.

• All original code for scPECLR implementation is available in this paper’s 

supplemental information. All original code for scH&G-seq implementation has 

been deposited at GitHub and is publicly available as of the date of publication. 

The GitHub link is listed in the key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Embryo isolation and cell picking—Embryos were gently flushed out of the 

infundibulum of E2.5 pregnant mice using warm M2 medium. Embryos were then 

manipulated in 4-ring IVF dishes coated with RNase-free BSA. Embryos were washed in 

PBS-0 and in Tyrode’s acid to remove the zona pellucida, then placed in a 1/3 dilution of 

TrypLE Select Gibco A12177–01 (stock solution is referred by Gibco as 10x concentrated) 

and placed on the warm plate for 2 minutes. Glass capillaries of different diameters were 

then used to dissociate the embryo into 2–3 clusters. Cells were then progressively extracted 

from each cluster, one after the other, using glass capillaries. Every single cell that is 
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released from the clusters is immediately placed into a well of a 384-well plate containing 

lysis buffer.

Embryos were obtained by mating CBA and C57BL/6 mice with age ranging from 8 to 

25 weeks. Mice were placed together in the evening and considered to mate at midnight 

(E0). The next morning, plugged females were separated. All experiments were approved by 

the Dutch ethical committee under the DEC KNAW HI14.2402. Mice were bred under the 

oversight of the animal facility of the Hubrecht Institute.

Cell culture and cell sorting—H9 cells were grown on Matrigel (Fisher cat #08–

774-552) in mTeSR1 (Stem Cell Technologies cat #85850). Cells were passed in clumps 

using Versene solution (Thermo fisher scientific cat # 15040066). For sorting, cells were 

dissociated into single cells using TrypLE, resuspended in 1x PBS, and passed through a cell 

strainer.

METHOD DETAILS

Single-cell 5hmC sequencing (scAba-Seq)—Single cells isolated from 4-, 8- and 

16-cell mouse embryos were deposited into 384-well plates and the scAba-Seq protocol was 

performed using the Nanodrop II liquid-handing robot. Briefly, after protease treatment 

to strip off chromatin, 5hmC sites in the genome were glucosylated using T4-Phage 

β-glucosyltransferase. Next, AbaSI, which recognizes glucosylated sites and introduces 

double-stranded breaks with 3’ overhangs 11–13 nucleotides downstream of the recognition 

site, was added to the reaction mixture. The fragmented genomic DNA molecules were 

ligated to double-stranded adapters containing a cell barcode, 5’ Illumina adapter, and T7 

promoter. The ligated molecules were amplified by in vitro transcription and then used to 

prepare Illumina libraries. A detailed protocol can be found in Mooijman et al. (2016).

Modeling SCE events as a Poisson process—The 5hmC data was discretized into 2 

or 4 Mb bins and all SCE transitions in the 8-cell mouse embryos were identified manually. 

A specific SCE transition on chromosome 14 was found at the same genomic position in all 

embryos due to a misorientation of the reference genome (mm10), consistent with previous 

reports (Falconer et al., 2012; Wu et al., 2017). The stochastic nature of SCE events is 

modeled as a Poisson process. In using a Poisson process to model SCE events, we assume 

that all SCE events occur independently and at a constant rate. The probability of observing 

x SCE transitions in one cell cycle is given by:

P[x] = bx ∗ e−b

x! (Equation 1)

where b is the average number of SCE transitions per chromosome per cell division. Further, 

to build a probabilistic framework to reconstruct cellular lineages, we define the following 

parameters: (1) r is the probability that an original strand is inherited by a particular daughter 

cell, which is equal to ½ for randomly segregating DNA strands; (2) kij is the genomic 

length fraction of the jth segment (1≤j≤l + 1; where l is the number of SCE transitions) of the 

original DNA strand that is observed in cell i; and (3) N is the number of unique positions 

where SCE events can occur.
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scPECLR—The first step is to use the numbers of observed SCE events to estimate 

b using maximum likelihood estimation (MLE). Thereafter, Original Strand Segregation 

(OSS) analysis is used to separate the cells into two groups, reducing the number of cell 

divisions to be reconstructed from n to n – 1. Next, within each subtree, we calculate the 

probability of observing a SCE pattern of a chromosome given a tree topology. For example, 

for the most frequently occurring pattern of one SCE event shared between two cells (see 

example in Figure 2A), the probability of observing it in Tree A is given by the product 

of the probability of having no SCE events in the first cell division and the probability of 

having one SCE event in the second cell division

P k11, k22 ∣ τA = PτA = r
eb

br
ebN (Equation 2)

Similarly, the probability of observing this pattern in Tree B is given by the product of the 

probability of having one SCE event in the first cell division, and no SCE events within the 

original DNA strands in both cells in the second cell division

P k11, k22 ∣ τB = PτB = br
ebN

r
ebe

1 − k11 (N + 1)
N b

r
ebe

1 − k22 (N + 1)
N b

(Equation 3)

which leads to

PτA
PτB

= 2
e

b
N

(Equation 4)

Detailed analytical expressions for the probability of observing different SCE patters are 

provided in the Quantification and Statistical Analysis section “Analytical expressions for 

the probability of observing the three most common SCE patterns”.

Subsequently, we assume that the SCE patterns on each chromosome are independent and 

compute the overall probability of observing SCE events over the whole genome for each 

tree topology. Moreover, as a 4-cell subtree has only three distinct topologies, we get

P τA ∣ D + P τB ∣ D + P τC ∣ D = 1 (Equation 5)

where D represents the genome-wide SCE patterns in all cells of the embryo. 

Rearrangement gives us the probability of observing different tree topologies given the SCE 

patterns over the whole genome

P τA ∣ D = 1
1 + P D ∣ τB

P D ∣ τA
+ P D ∣ τC

P D ∣ τA
(Equation 6)
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Finally, the probability of observing the topology of a particular 8-cell tree is a product 

of the probabilities of the two corresponding 4-cell subtrees (For details on implementing 

scPECLR computationally, see Methods S1: Matlab scripts for scPECLR implementation, 

related to STAR methods).

In 8- and 16-cell predictions, after the probabilities of all tree topologies are estimated, 

scPECLR assigns the topology with the highest probability as the predicted tree. Then, 

starting with this predicted tree, b values specific to each cell division are estimated. A 

second iteration with cell division-specific b values is then performed to obtain a new 

predicted tree. If the new predicted tree is not the same tree as that inferred in the first 

iteration, another iteration is performed starting from the predicted tree in the current 

iteration. This iterative process is carried out till the predicted tree is the same as that 

obtained in the previous iteration or until 10 iterations have been performed. In all in vivo 
mouse embryos and almost all simulated embryos, the predicted tree converges by the 

3rd iteration. Since we know that the iterative prediction is mostly useful when the rates 

of SCE events generating the simulated embryos are different for each cell division (see 

Quantification and Statistical Analysis section “scPECLR is robust to initial estimates of 

the SCE rate and to varying SCE rates at each cell division”), iterative prediction was not 

performed in 32-cell tree predictions to conserve computational resources.

Single-cell hydroxymethylation & genomic DNA sequencing (scH&G-seq)—
384-well plates containing 4 μL of Vapor-Lock (Qiagen) and 200 nL of lysis buffer 

(0.0875% IGEPAL CA-630) are prepared and single cells are FACS sorted into each 

reaction well. After sorting, plates are stored at −80°C until use. The cells were lysed 

at 65°C for 3 minutes, and reaction wells receive 500 nL of either 1.4x Buffer4 (NEB) 

[negative control, scAba-Seq only], BseRI mix [1.4x Buffer 4, 0.25 units BseRI (NEB)], 

AluI mix [1.4x Buffer 4, 0.25 units AluI (NEB)], or a combined mixture containing both 

BseRI and AluI (1.4x Buffer 4, 0.125 units BseRI, 0.125 units AluI). BseRI was selected 

because it yields the same 2 nucleotide 3’ overhang as AbaSI, while AluI was selected 

because we have previously used it successfully to digest gDNA (Rooijers et al., 2019). 

The plate is incubated for 1 hour at 37°C followed by heat inactivation at 80°C for 20 

minutes. Next, 1.8 μL of protease mix (1x Buffer 4, 6 μg Qiagen protease) is added, and 

the plate is heated to 50°C for 16 hours, 75°C for 20 minutes, and 80°C for 5 minutes. 

Then 5hmC sites in the genome are glucosylated by adding 500 nL of glucosylation mix 

[1x Buffer 4, 1x UDP-Glucose (NEB), 1 unit T4-BGT (NEB)] and incubated at 37°C for 

16 hours. Afterwards, 500 nL of protease mix (1x Buffer 4, 2 μg Qiagen protease) is added, 

and the plate is heated to 50°C for 3 hours, 75°C for 20 minutes, and 80°C for 5 minutes. 

To detect 5hmC, 500 nL of AbaSI reaction mix (1x Buffer 4, 1 unit AbaSI) is added and 

the plate is incubated at 25°C for 1.5 hours, and 65°C for 25 minutes. Cells receiving the 

AluI mix or the combined BseRI and AluI mix have 200 μL of 64 nM blunt end adapter 

added as described previously (Rooijers et al., 2019). All cell also receive 200 μL of 75 

nM scAba-seq adapters as described in Mooijman et al. (2016). Ligation mix [1x T4 DNA 

Ligase reaction buffer (NEB), 4 mM ATP (NEB), 140 units T4 DNA Ligase (NEB)] is then 

added to bring the total volume of each reaction well to 5 μL. Subsequently, the plate is 

incubated at 16°C for 16 hours. Excluding the Vapor-Lock, all reagents are dispensed using 
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the Nanodrop II liquid handling robot. After ligation, the reaction wells are pooled and the 

downstream steps are performed as described previously (Gell et al., 2020; Sen et al., 2021).

QUANTIFICATION AND STATISTICAL ANALYSIS

Analytical expressions for the probability of observing the three most 
common SCE patterns

Case I:  The most common SCE pattern that we observed in mouse embryos is one SCE 

transition shared between two cells (cells 1 and 2 in Figures 2A and S1). This pattern alone 

cannot discriminate between sister (Tree A) or cousin (Trees B and C) cell configurations as 

all three topologies are consistent with the SCE pattern. Therefore, we developed a model to 

rigorously determine the probability of observing any SCE pattern given a tree topology. For 

Tree A, the probability of observing one shared SCE transition is given by the product of the 

probability of having no SCE events in the first cell division and the probability of having 

one SCE event in the second cell division. Further, there is a 1 N chance that the observed 

SCE event occurs at a specific discretized genomic position. The probability that the original 

DNA strand is inherited by the mother of cells 1 and 2 is r, and the probability of inheriting 

the observed SCE pattern between cells 1 and 2 is given by r.

P k11, k22 ∣ τA = PτA = r
eb

br
ebN (Equation 7)

Similarly, for Tree B,

P k11, k22 ∣ τB = PτB = br
ebN

r
eb + m r

eb + m (Equation 8)

Here, m represents the probability that the SCE events during the second cell division 

occur within newly synthesized DNA strands that contain undetectable levels of 5hmC. To 

estimate m on the left branch of the lineage tree that gives rise to cells 1 and 3, we can show 

that

Probability of 1 undetectable SCE transition = br
eb 1 − k11

N + 1
N

Probability of 2 undetectable SCE transitions = b2r
eb2!

1 − k11
N + 1

N
2

Probability of n undetectable SCE transitions = bnr
ebn!

1 − k11
N + 1

N
n

Therefore, m is given by
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m = br
eb KN + b2r

eb2!
KN

2 + b3r
eb3!

KN
3 + …

= r
eb

KNb 1

1! + KNb 2

2! + KNb 3

3! + … = r
eb eKNb − 1

(Equation 9)

where

KN = 1 − k11
N + 1

N

Thus, (Equation 8) becomes

P k11, k22 ∣ τB = PτB = br
ebN

r
ebe

1 − k11 (N + 1)
N b

r
ebe

1 − k22 (N + 1)
N

b (Equation 10)

Further, it is trivial to show that the probability of observing the SCE pattern given Tree B or 

C is equal, that is

PτB = P k11, k22 ∣ τB = P k11, k22 ∣ τC = PτC (Equation 11)

Therefore, the ratio of the probability of cells 1 and 2 being sisters (Tree A) versus cousins 

(Trees B or C) is given by

PτA
PτB

=
PτA
PτC

=
Pτsisters
Pτcousins

= 2
e

b
N

(Equation 12)

Note that the probability ratio is a function of only the SCE rate and the number of bins, and 

is not dependent on the location of the SCE event in this case.

Case II:  Another common SCE pattern is the observation of two SCE transitions that 

are shared between two cells (Figures 2C, S1, and S2). For the original DNA strand to be 

observed in only two cells, SCE transitions must occur in the same cell cycle. Thus, the 

probability of observing this SCE pattern in Tree A is given by

P k11, k2, k13 ∣ τA = PτA = r
eb

b2r
eb2!

2
N2 (Equation 13)

The first term is the probability that no SCE event occurs in the first cell division, and the 

second term is the probability of having two SCE transitions during the second cell division.
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Similarly, for Tree B

P k11, k22, k13 ∣ τB = PτB = b2r
eb2!

2
N2

r
eb + q r

ebe
k11 + k13 (N + 1)

N b (Equation 14)

where q is the probability that undetectable SCE events occur within the 5hmC-depleted 

genomic region between k11 and k13, whose length is equal to k22. Note that the observed 

SCE pattern is possible for an even number of SCE events occurring within this region. To 

estimate q, we can show that

Probability of 2 undetectable SCE transitions = b2r
eb2!

k2(N + 1) + 1
N

2

Probability of 4 undetectable SCE transitions = b4r
eb4!

k22(N + 1) + 1
N

4

Probability of n undetectable SCE transitions = bnr
ebn!

k2(N + 1) + 1
N

n

Thus, q is given by

q = b2r
eb2!

KN
2 + b4r

eb4!
KN

4 + … = r
eb

KNb 2

2! + KNb 4

4! + …

= r
eb cosh bKN − 1

(Equation 15)

where KN =
k22(N + 1) + 1

N

Therefore, (Equation 14) becomes

PτB = b2r
eb2!

2
N2

r
ebcosh bk22(N + 1) + 1

N
r
ebe

k11 + k13 N + 1
N b (Equation 16)

and the ratio of the probability of cells 1 and 2 being sisters (Tree A) versus cousins (Trees B 

or C) is given by

PτA
PτB

=
PτA
PτC

=
Pτsisters
Pτcousins

= 2e 1 −
1 − k22 (N + 1)

N b

cosh b
k22(N + 1) + 1

N
(Equation 17)

In this case, the probability ratio is a function of the genomic location of the SCE events, in 

addition to the SCE rate and the number of bins.
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Case III:  The second most common and more complicated SCE pattern occurs when an 

original DNA strand is shared between three cells (Figure 2C). Intuitively, Tree B with cells 

1 and 3 as sisters is the least likely configuration as it requires one additional SCE transition 

compared to the other two trees. The probability of observing this SCE pattern in Trees A 

and C are given by

P k11, k22, k33 ∣ τA = PτA = br
ebN

br
ebN

eb
k33(N + 1)

N

r
ebeb

k11 + k22 (N + 1)
N

(Equation 18)

P k11, k22, k33 ∣ τC = PτC = br
ebN

r
ebeb

k22 + k33 (N + 1)
N

br
ebN

eb
k11(N + 1)

N
(Equation 19)

In (Equation 18), the first term accounts for one SCE event between k22 and k33. The second 

term includes one SCE event between k11 and k22 and undetectable SCE events within the 

right-most genomic region, whose length is equal to k33. The third term accounts for no 

SCE event within k33 and undetectable SCE events within the left region, whose length is 

equal to (k11 + k22). Similarly, in (Equation 19), the first term accounts for one SCE event 

between k11 and k22. The second term includes no SCE events within k11 and undetectable 

SCE events within the rest of the chromosome, equivalent in length to (k22 + k33). The third 

term includes one SCE event between k22 and k33 and undetectable SCE events within the 

left-most genomic region. Note that Trees A and C are mirror images of each other and the 

probability of observing this SCE pattern is equal for these two tree configurations. For Tree 

B,

P k11, k22, k33 ∣ τB = PτB = b2r
ebN2 (s) r

ebeb
k11 + k33 (N + 1)

N (Equation 20)

The first term is for two SCE events in the first cell division. The second term accounts 

for an odd number of undetectable SCE transitions within the genomic region between k11 

and k33, such that both cells 1 and 3 contain parts of the original DNA strand. The third 

term includes undetectable SCE events within both left and right genomic regions, whose 

combined length is (k11 + k33). Further, s is given by

s = br
eb KN

1 + b3r
eb3!

KN
3 + … = r

eb
KNb 1

1! + KNb 3

3! + …

= r
eb sinh bKN

(Equation 21)

where KN =
k22(N + 1) + 1

N .
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Therefore, (Equation 20) becomes

P k11, k22, k33 ∣ τB = PτB = b2r
ebN2

r
ebsinh bk22(N + 1) + 1

N
r
ebeb

k11 + k3 (N + 1)
N

(Equation 22)

and the ratio of the probability of Tree A versus B is given by

PτA
PτB

=
PτC
PτB

= ebk22
N + 1

N

sinh bk22(N + 1) + 1
N

(Equation 23)

Consistent with our intuition, Tree B is less likely than the other two tree topologies, and 

depending on the values of N; b, and k22, Tree B can be anywhere between 2 to 100 times 

less likely (Figure 2C).

The approach described above can be applied to any SCE pattern. The probability of 

observing different SCE patterns are estimated for all chromosomes. Next, we assume that 

each chromosome strand is independent and compute the overall probability of observing 

the SCE patterns over the whole genome (D) for each Tree i (τi). To determine the most 

likely tree, we compute and compare P(τA|D), P(τB|D), and P(τC|D) using Bayes’ theorem

P τi ∣ D = P D ∣ τi ∗ P τi
P(D) (Equation 24)

where P(τi) and P(D) are the probabilities of observing Tree i and the genome-wide SCE 

pattern data, respectively. P(τi) reflects prior belief of the likelihood that Tree i is the correct 

topology. As there are 3 possible topologies for any 4-cell tree, we get

P τA ∣ D + P τB ∣ D + P τC ∣ D = 1 (Equation 25)

Further, the ratio of the probability of observing Tree i versus Tree j is given by

P τi ∣ D
P τj ∣ D = P D ∣ τi ∗ P τi

P D ∣ τj ∗ P τj
= P D ∣ τi

P D ∣ τj
(Equation 26)

where Tree i or j is either Tree A, B, or C. The prior probabilities P(τi) are assumed to be 

equal to one another, a common practice in Bayesian analysis (Huelsenbeck and Ronquist, 

2001). After rearrangement, we get

P τA ∣ D = 1
1 + P D ∣ τB

P D ∣ τA
+ P D ∣ τC

P D ∣ τA
(Equation 27)
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Similarly, the probability of all tree topologies can be calculated. Finally, the probability of 

a particular 8-cell tree is given by the product of the probabilities of the two corresponding 

4-cell subtrees.

Simulating stand-specific 5hmC distributions—To validate the analytical 

expressions for the probability of observing different SCE patterns in Figures 2B and 2C, 

we simulated 8-cell trees where the occurrence of SCE events were modeled as a Poisson 

process with b = 0.3 and chromosome strands were assumed to segregate randomly (r = 0.5). 

Simulations were performed on chromosome 1 (N = 97 for 2 Mb bins). These simulations 

were then used to estimate the probability of observing Tree A versus Tree B as a function 

of the position of the SCE event.

To test the accuracy of scPECLR in predicting lineage trees in Figures 3B and 4A, 8-, 16- 

or 32-cell embryos with 19 or 38 chromosomes were simulated as described above. All bins 

in the original DNA strands were hydroxymethylated whereas all subsequently synthesized 

DNA strands contained no 5hmC, mimicking in vivo experimental observations. 5,000 and 

2,000 simulated trees were generated for each condition shown in Figures 3B and 4A, 

respectively. The trees were subsequently inputted into scPECLR to estimate the percentage 

of trees that are accurately predicted by the algorithm. For 16-cell trees, we also estimated 

the prediction accuracy of 2-, 4- and 8-cell subtrees within the full tree, and for 32-cell trees, 

the 16-cell subtree prediction accuracy was additionally estimated. In the 4-cell embryos in 

Figure 3B, as OSS accurately separates the four cells into two groups of two cells each, 

the lineage reconstruction problem becomes deterministic, and thus the trees are predicted 

with 100% accuracy. Similarly, in Figure 3C, OSS was assumed to successfully separate the 

two 8-cell subtrees from 16-cell trees. However, in 32-cell trees (Figure 4A), OSS could not 

separate cells into two groups in all embryos. Such cases would not continue forward with 

the calculation and would be classified as incorrect for all level of subtrees. Additionally, 

the prediction accuracy in 8- and 16-cell trees (Figures 3A and 3B) were bootstrapped 1000 

times. The bootstrap statistics are plotted along with the prediction accuracy.

In the 32-cell tree case where half of the sister pairs are known, 8 out of the 16 sister pairs 

were randomly selected and became known information about the cells in each simulation. 

In the 32-cell tree scH&G-seq cases, the genomic variants were also modeled with a Poisson 

process to occur at a certain rate v per chromosome per cell division. The process starts 

with the first cell division (n = 1, from one to two cells), which has two division actions, 

generating cells that are the ancestor of cells 1–16 or 17–32. If within a division action, 

at least one variant emerges, we would assume that we know all cells derived from that 

particular division action are clustered with one another. For example, if the first division 

action at n = 1 has a variant, we would assume that we know cells 1–16 are clustered 

together for that simulation. Next, the step proceeds to the two cells dividing at n = 2, 

which has four division actions. Similarly, if the third division action has a variant at n = 2, 

cells 17–24 would be assumed to cluster together. The process continues till n = 4, where 

there are sixteen division actions generating sister pairs. Each cell division action is treated 

independently. The additional information received from either half the sister pairs or the 

genomic variants were used to help OSS separate the cells into two groups. If cells are 
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separated into two groups, that simulation trial would continue to the 8-cell grouping step 

(see “Criteria to determine 32-cell topologies to be evaluated”).

Consensus tree analysis—This analysis was performed on 16-cell trees to identify parts 

of the lineage tree that can be predicted with high confidence. The two 8-cell subtrees 

obtained from OSS are treated independently. The first step is to use a desired relative 

threshold (RT) to identify all trees that have predicted probabilities within a threshold level 

of the highest probability tree and include such trees for downstream analysis. All included 

trees are subsequently weighed equally. The second step is to examine the 4-cell subtrees 

of each included tree. If all trees consistently predict the same 4-cell subtree, the consensus 

tree includes the 4-cell subtree. This is true for most datasets as scPECLR largely predicts 

the 4-cell subtrees accurately in 16-cell trees (Figure 3C). When disagreement arises, if 

the percentage of included trees that have the same 4-cell subtree exceeds a threshold (t8), 

ranging from 0.55 to 1.0, the consensus tree includes the 4-cell subtree, and tree topologies 

that conflict with this 4-cell subtree are excluded from further analysis. If the percentage is 

below t8, the consensus tree does not include the exact 4-cell subtree but instead attempts 

to identify as many pairs of cells as possible that appear in different 4-cell subtrees of 

all included trees, and the consensus analysis terminates. After the 4-cell subtrees are 

determined, the topology predicted within each of these subtrees is then considered. Again, 

if all of the remaining trees predict the same topology or if the percentage of remaining trees 

that predict a consistent topology exceeds a threshold (t4), ranging from 0.55 to 1.0, the 

consensus tree also includes that topology. Otherwise, it does not predict a specific topology 

within the 4-cell subtree but attempts to identify one cousin pair that appears in the 4-cell 

topology.

The consensus tree has different levels of specificity, ranging from predicting a full 16-cell 

tree, where the relationships between all cells are exact, to predicting only two 8-cell 

subtrees. In general, each consensus tree is constrained to contain a certain number of 

tree topologies, which provides information about how specific each consensus tree is. For 

example, in Figure 3D, the consensus tree contains six possible topologies, as there are two 

topologies arising from uncertainty in the subtree containing cells 5–8 and three topologies 

arising from uncertainty in the subtree containing cells 13–16. The lower the number of 

topologies contained within the consensus tree, the more specific and informative it is.

There are three parameters in the consensus tree analysis: RT, t8, and t4. RT has the largest 

influence on the structure of the consensus tree, while varying t8 and t4 leaves the consensus 

tree largely unchanged (Figures 3E, 3F, and S3) (Note: In Figure 3E, t8 and t4 are kept 

constant at 0.75 and 1, respectively). When the RT increases, the consensus tree becomes 

more specific but suffers from a higher false discovery rate (FDR). In contrast, although the 

effects are small, increasing t8 and t4 leads to a very modest decrease in the specificity of 

the consensus tree and reduction in FDR. Thus, using different parameter values allows us 

to tune the competing goals of specificity and accuracy of the consensus tree. In fact, for a 

specific FDR, there is an optimal set of parameters that gives the most specific consensus 

tree for a dataset. We performed a consensus tree analysis on the dataset in Figure 3B (solid 

blue lines), with different combinations of RT ranging from 0.05 to 0.50, and t8 and t4 

ranging from 0.55 to 1.0. Each parameter set provides a consensus tree with a different level 
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of specificity, measured by the median number of trees contained in the consensus tree, and 

the FDR. For any level of FDR tolerated, there is at least one parameter combination that 

yields the lowest median number of trees. For example, when b = 0.3 and the FDR is chosen 

to be 30%, the optimal parameter set has RT, t8, and t4 as 0.05, 0.75, and 1, respectively, 

yielding the median number of trees contained within the consensus tree to be 36. Thus, for 

any dataset, the rate of SCE events can be estimated using MLE, and with a user-selected 

FDR, an optimal parameter set can be estimated to give the most specific consensus tree.

Consensus tree analysis improves the accuracy of lineage prediction in all scenarios. When 

the SCE rate is low (b = 0.1) and the iterative prediction alone performs poorly for 16-cell 

trees, an error rate of greater than 99% in the iterative prediction decreases to a FDR 

between 30–75%. When the iterative prediction alone performs moderately (b = 0.5), an 

error rate of ~60% improves to a FDR between 10–45% (Figures 3B and 3E). Lastly, when 

the iterative prediction alone performs well (b = 1.0), an error rate of ~25% decreases to 

a FDR between 5–20% (Figures 3B and 3E). When b = 1.0, there are only 1 to 2 median 

topologies contained in each consensus tree, indicating that the consensus analysis increases 

the accuracy of the prediction without compromising its specificity. This result shows 

that scPECLR and the consensus tree analysis provides a significant amount of lineage 

information with reasonable accuracy for 16-cell trees (Figures 3E and 3F).

To generate the consensus tree for the 16-cell embryo in Figure 3G, 1000 16-cell embryos 

were simulated with the same SCE rates estimated from the in vivo 16-cell embryo. Next, 

different parameter combinations of RT, t8 and t4 were used to generate consensus trees. 

The consensus trees were evaluated against the true tree to calculate FDR rate for each 

parameter combination. The lowest possible FDR rate of 15% was selected. Subsequently, 

the parameter combination (RT = 0.05, t8 = 0.85, t4 = 0.8) that yields the most specific 

consensus tree with a FDR rate under 15% was chosen for the consensus tree for the in vivo 
16-cell embryo. There are 180 topologies contained within the consensus tree: 90 from the 

left 8-cell subtree and 2 from the right 8-cell subtree.

Criteria to determine 32-cell topologies to be evaluated—When the cells are 

successfully separated into two groups of 16 cells, the number of topologies to be considered 

reduces from more than 1026 to ~4*1017. We then perform “8-cell grouping”, which 

attempts to further split each 16-cell group into two groups of 8 cells, reducing the number 

of possible topologies further to fewer than 1010. The first step of 8-cell grouping is to 

consider all the possible combinations of 16 choose 8 (6435 groupings in total as cells 1–8 

grouping and cells 9–16 grouping are considered one grouping). In the case where additional 

information about the embryos are known, the groupings that conflict with the clonal 

information were discarded. Next, in each grouping, the 5hmC in all cells within the two 

8-cell sets were combined to generate hypothetical 5hmC data of the two cells at the 2-cell 

stage for that grouping. Then, the number of SCE events present in the hypothetical two 

cells were calculated. Only the groupings that generate the hypothetical two cells with the 

fewest number of SCE events were kept. The rationale is that cells accumulate SCE events 

on their original chromosome strands as they undergo cell division. Therefore, the fewer 

the SCE events present at the 2-cell stage, the more likely the 8-cell grouping is correct. 

The left side (cells 1–16) and right side (cells 17–32) undergo the process independently. 
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If there are more than 30 groupings remaining in total, the process is stopped and we 

would conclude that tree is incorrect for 2-, 4-, and 8-cell subtree levels. The number of 

remaining groupings, 30, was chosen as there would be about 10000 topologies left after a 

successful 8-cell grouping. Then scPECLR is used calculate the probabilities of all possible 

topologies within the four 8-cell sets independently. The topologies that conflict with known 

information about the embryo are removed. Then the 8-cell sets for each grouping are 

combined to generate the full 32-cell tree. The grouping combination that predicts lineage of 

any cell more than once (i.e. one or more cell is missing from the full tree) is discarded. The 

probability of the full 32-cell tree is the product of the four probabilities from the 8-cell sets. 

The full 32-cell tree with the highest probability is the predicted tree.

scH&G-seq analysis pipeline—Reads were separated by their molecule type barcodes 

and mapped to hg19 using Burrows-Wheeler Aligner (BWA). AluI based reads were 

identified as described in Rooijers et al. (2019). 5hmC based reads were identified as 

described in Mooijman et al. (2016), with the following modification. A custom Perl script 

was written to identify if a read also contained a BseRI recognition site. If a read contained 

recognition sites for both BseRI and AbaSI, it was discarded.

SNP calling and processing—Variant calling was done via bcftools in a custom shell 

script. Briefly, the sam file was sorted and only relevant chromosomes (genomic and 

mitochondria chromosomes) were retained. Next, bcftools called the SNPs with default 

parameters. SNP calls with quality of at least 20 were kept. A custom Perl script was then 

used to count the occurrences of SNPs and non-SNPs for each cell at each SNP location in 

the sam file.

CNV calling and clustering—For each library, cells with fewer than 10000 reads were 

filtered out. 34, 50, and 31 cells passed the cut-off in the AluI, BseRI, and dual enzyme 

libraries, respectively. Data from autosomes were discretized into 5 Mb bins. Each bin was 

subsequently normalized by the number of enzyme recognition sites present within that 

bin. The normalized raw reads were scaled such that the median of the total data is 100. 

In the dual enzyme library, the normalized raw reads of AluI and BseRI were combined 

before scaling. The circular binary segmentation (CBS) algorithm was used to call different 

read count sections in each chromosome. The read count in each bin was then replaced 

by its mean value from the CBS algorithm. Copy number for each bin was determined by 

normalizing the mean read count of each cell to two copies and rounding to the nearest 

integer. To remove outlier bins, the bins that showed more than four copies in any cell were 

retroactively removed from the normalized raw read data, which was again inputted into the 

CBS algorithm. The read count in each bin was once again replaced by its mean value from 

the CBS algorithm. The copy number of each bin in each cell was subsequently recalculated. 

The steps were performed independently in each library. All steps of the CBS algorithm 

have a significance level of 0.01. All cells from the three libraries were combined, with only 

bins that were present in all libraries retained.

The clValid package in R was used to decide between hierarchical, k-means, and pam 

clustering algorithms and the hierarchical algorithm was recommended. The agglomerative 

coefficient was then used to determine the appropriate method to calculate distances 
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between cells. Among the options: average, single, complete, and ward, the ward method 

was recommended. Subsequently, the NbClust package was used to determine the number of 

clusters based on the ward method and Euclidean distance. Two clusters were recommended 

for the combined data. A dendrogram was created based on the ward method and Euclidean 

distance.

scPECLR is robust to initial estimates of the SCE rate and to varying SCE 
rates at each cell division—We explored the robustness of scPECLR to initial estimates 

of the SCE rate by simulating strand-specific 5hmC data in 8-cell trees with a constant 

SCE rate (b = 0.3). We then used different values of SCE rates – ranging from 0.1 to 

2.0 – in scPECLR to predict the lineage tree (instead of estimating the SCE rate from 

the observed SCE pattern using MLE). We found that the percentage of trees that were 

accurately predicted did not change over the range of SCE rates, suggesting that scPECLR is 

robust to uncertainty in SCE rate estimation and the prediction accuracy mainly depends on 

the SCE rates used to generate the 5hmC data (Figures S5A and S5B).

As the 8-cell mouse embryos have varying rates of SCE events across cell divisions, we 

explored the robustness of scPECLR when the rates are different for each cell division. 

Because prediction accuracy of scPECLR is dependent on the rate of SCE events, in this 

analysis, we fixed the combined SCE rate (B) over 3 (or 4) cell divisions, but allowed 

individual cell divisions to have different rates. For 8-cell trees, the model is largely robust 

against varying rates of SCE events across cell divisions, with higher B and larger number 

of chromosomes resulting in better prediction accuracy (Figure S5C). For example, when the 

SCE rates are low for the first and second cell division (b1 and b2) and high for the third cell 

division (b3), similar to the experimental observation in 8-cell mouse embryos, scPECLR 

predicts the lineage tree with very high accuracy (Figure S5C, H3). One case where the 

prediction accuracy drops modestly is when the SCE rates of the first and third cell divisions 

(b1 and b3) are low and the SCE rate of the second cell division (b2) is high (Figure S5C, 

H2). In this case, the data has a large number of SCE events that are shared between cousin 

cells. As the SCE rate at each cell division is assumed constant during the first iteration of 

scPECLR, the algorithm predicts that cells sharing more SCE events are more likely to be 

sisters. This misidentification results in a large percentage of simulations not predicting the 

true tree after the first iteration. However, the prediction improves significantly after a few 

iterations because starting from the second iteration, the model accounts for different SCE 

rates at each cell division. Consequently, the varying SCE rates at each cell division has 

minimal impact on the accuracy of 8-cell tree prediction.

For 16-cell trees, there are a few cases where the prediction accuracy is worse than when 

the rates are uniformly distributed; these include situations where b4 is low (Figure S5D, H2, 

H3, H13, H23, and L4). In these cases, the prediction accuracy is lower because scPECLR 

inaccurately infers a pair of cousin or second cousin cells as sister cells due to a large 

number of SCE events shared between such pairs. In contrast, cases with high b4 values 

result in better prediction accuracy because scPECLR correctly identifies sister cell pairs 

(Figure S5D, H4, H14, H24, and H34). Finally, scPECLR also performs well when b2 and 

b3 are low as it does not misidentify cousin or second cousin pairs as sister pairs. These 
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results suggest that in addition to the combined SCE rate, how the individual SCE rates are 

distributed over each cell division impacts the accuracy of reconstructing 16-cell trees.

Statistical test to identify non-random DNA segregation—To test the segregation 

pattern of DNA strands at the 4-cell stage, the 5hmC profile of 8-cell mouse embryos were 

combined using the lineages predicted by scPECLR to obtain the distribution of 5hmC 

on the original DNA strands at the 4-cell stage, while the in vivo experimental 4-cell 

mouse embryo data could be used without prior processing. If a majority of an original 

chromosome strand is present in one cell at the 4-cell stage, that cell is considered to 

inherit the entire chromosome strand. This is to account for the limited number of original 

strands that undergo a few SCE events during cell division. A binomial two-tailed test 

was conducted with a null hypothesis of random segregation (π = 0.5) and an alternative 

hypothesis of non-random segregation (π ≠ 0.5). Two pairs of sister cells from 27 embryos 

were considered to display statistically significant non-random DNA segregation for p­

values lower than 0.05, one pair from the 4-cell embryo dataset and the other from the 8-cell 

embryo dataset.

To test whether the two events of non-random segregation can be explained by chance 

alone, we randomly sampled 27 embryos from a pool of 100000 simulated 4-cell randomly­

segregating embryos, generated with a constant SCE rate of b = 0.3, and counted how 

many events of non-random segregation with p<0.05 were found. The random sampling 

was conducted 10000 times. The cumulative distribution of the number of non-random 

segregation events found was plotted in Figure 5D. Despite a median of one event, we failed 

to reject the null hypothesis that two events of non-random segregation could be explained 

by chance alone.

scPECLR implementation in MATLAB—scPECLR was implemented in MATLAB to 

perform iterative probabilistic reconstruction of 8- and 16-cell lineage trees. The script first 

uses single-cell strand-specific 5hmC data to perform OSS analysis to eliminate a majority 

of tree topologies. Next, it calculates the SCE rate and estimates the probabilities of all 

tree topologies given the genome-wide SCE pattern to predict the tree with the highest 

probability. Using this predicted tree, the program estimates the SCE rate for each cell 

division and re-calculates the probabilities of all tree topologies. The program performs 

iterations until the predicted tree does not change or until 10 iterations are reached. The 

scripts implementing scPECLR in MATLAB, along with test files, are provided as Methods 

S1.
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Refer to Web version on PubMed Central for supplementary material.
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MOTIVATION

Reconstructing lineage trees is fundamental for gaining insights into basic biological 

and disease processes. Although powerful tools to infer cellular relationships have 

been developed, these methods typically have a clonal resolution that prevents the 

reconstruction of lineage trees at an individual-cell-division resolution. Moreover, these 

methods require a transgene, which poses a significant barrier to the study of human 

tissues. In this work, we develop a complementary approach that does not require 

exogenous labeling and can reconstruct each cell division within a lineage tree.
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Highlights

• scPECLR uses 5hmC to endogenously reconstruct lineage trees

• scPECLR reconstructs lineage trees at an individual-cell-division resolution

• Combined single-cell 5hmC and gDNA sequencing allows reconstruction of 

larger trees

• The method can be used to map DNA strand segregation patterns during cell 

division
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Figure 1. Strand-specific single-cell 5hmC enables initial lineage bifurcation of individual cells 
into two subtrees
(A) Schematic shows a zygote with chromosomes containing high 5hmC levels (solid lines) 

undergoing three cell divisions. The newly synthesized strands contain very low levels of 

5hmC (dotted lines). SCE events occur randomly during each cell cycle. Single cells are 

sequenced by using scAba-seq to quantify strand-specific 5hmC.

(B) Data showing mosaic pattern of strand-specific 5hmC in single cells obtained from an 

8-cell mouse embryo. 5hmC counts within 2-Mb bins on the plus and minus strands are 

shown in orange and blue, respectively.
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(C) OSS analysis on chromosome 7 places cell 8 in one 4-cell subtree and cells 1 and 2 

in the other subtree. Performing OSS on all chromosomes places cells in one of these two 

4-cell subtrees and reduces the complexity of the lineage reconstruction problem.
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Figure 2. Endogenous 5hmC-based lineage reconstruction using scPECLR
(A) Two cells sharing an original DNA strand (solid orange line) can either be sisters (Tree 

A) or cousins (trees B and C) depending on whether the SCE event occurred at the 4- 

to 8-cell or 2- to 4-cell stage, respectively. Newly synthesized DNA strands are shown as 

dashed black lines.

(B) For an SCE transition between two cells, the probability of the pair of cells being 

sisters versus cousins is plotted against the relative position of the SCE event on the 

chromosome (k11). The model prediction (black) and simulation results (yellow) are shown 

for chromosome 1 (N = 97 for 2-Mb bins) with b = 0.3.

(C) The probability ratio between Trees A and B are shown for N = 97 and b = 0.3 for two 

cases: two SCE transitions shared between two cells and two SCE events shared between 

three cells.

(D) For the 8-cell mouse embryo in Figure 1B, the probability of observing the different 

topologies, rounded to four decimal places, for the two 4-cell subtrees are shown.
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Figure 3. scPECLR can reconstruct 8- and 16-cell lineage trees
(A) (Left) scPECLR accurately predicts the lineage of 96% of simulated 8-cell trees 

(b = 0.3). Error bars indicate the bootstrapped standard error. In comparison, MEMOIR 

accurately predicts 67% of the top 40% most reliably reconstructed 8-cell trees (Frieda et 

al., 2017). (Right) The distribution of SCE events in 4-cell embryos (blue) is not statistically 

different from that of 4-cell trees inferred with scPECLR starting from 8-cell trees (orange, p 

> 0.8), but is different from 4-cell trees inferred from a random topology at the 8-cell stage 

(brown, p<10−4).
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(B) Percentage of simulated 8- and 16-cell trees that are correctly predicted by scPECLR 

for different SCE rates (b). The prediction accuracy is computed by simulating 5,000 trees. 

Error bars indicate the bootstrapped standard error.

(C) Percentage of 2-, 4-, and 8-cell subtrees that are accurately predicted within simulated 

16-cell trees as a function of the SCE rate (b). The prediction accuracy is computed by 

simulating 5,000 16-cell trees. Error bars indicate the bootstrapped standard error.

(D) Construction of consensus trees. In this example, the top six tree topologies (with the 

highest probabilities) obtained after applying scPECLR on a 16-cell tree are shown. The 

relative threshold (RT) parameter is used to determine the number of topologies considered 

in the consensus tree analysis. With an RT of 0.5, the top 5 topologies are selected to 

generate a consensus tree that is consistent with all these trees. The uncertainty within the 

consensus tree is quantified by the number of tree topologies it contains. Red fonts indicate 

parts of the lineage tree that are incorrectly predicted. The tree highlighted in bold is the true 

tree.

(E) Simulations show that as the RT increases, the median number of topologies in the 

consensus tree decreases (solid lines, left axis) whereas the false discovery rate (FDR) 

increases (dotted lines, right axis). In these simulations, two other parameters t8 and t4 are 

set to 0.75 and 1.0, respectively. For details, see STAR Methods.

(F) Graph showing how the specificity of the consensus tree is related to error tolerance. As 

the FDR decreases, the median number of topologies contained within the consensus tree 

increases. Note that the lowest FDR possible for b = 0.3, 0.5, 0.7, and 1.0 are 15%, 10%, 

10%, and 5%, respectively.

(G) Single-cell 5hmC sequencing data for a 16-cell mouse embryo (4-Mb bins). The 

consensus tree associated with this embryo is estimated to have a 15% FDR rate. RT, t8, and 

t4 are set at 0.05, 0.85, and 0.8, respectively. The consensus tree is constrained to only 180 

possible topologies, a significant reduction from the more than 600 million trees originally.
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Figure 4. Integrated single-cell 5hmC and genomic DNA sequencing can be used to endogenously 
reconstruct larger lineage trees
(A) Percentage of the full lineage, along with 2-, 4-, 8-, and 16-cell subtrees, that are 

accurately predicted in simulated 32-cell trees as a function of SCE rates (b). The prediction 

accuracy is computed by simulating 2,000 trees. Solid and dotted lines indicate cells where 

5hmC can be quantified in 19 or 38 chromosomes, respectively.

(B) Percentage of the full lineage, along with the subtrees, that are correctly predicted 

in simulated 32-cell trees as a function of SCE rates (b), by using information from 

both 5hmC and gDNA. Solid and dotted lines indicate prediction accuracy by using 
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integrated information and gDNA alone, respectively. The prediction accuracy is computed 

by simulating 2,000 38-chromosome trees, and the rate of occurrence of genomic variants is 

set to 0.6 per chromosome per cell division.

(C) Schematic illustration of scH&G-seq.

(D) scH&G-seq enables simultaneous detection of gDNA and 5hmC from the same cell.

(E) Heatmap of the Euclidean distance between cells and the corresponding dendrogram. 

Single cells cluster into two major groups. Cells from AluI, BseRI, and dual enzyme 

libraries are displayed in green, orange, and blue, respectively.

(F) Heatmap of the copy number profile of single cells sorted in the same order as the 

dendrogram in (E).
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Figure 5. scPECLR can be used to map DNA strand segregation patterns
(A) Schematic of DNA strand segregation patterns during cell division.

(B) Combining the experimental 5hmC data for the 8-cell embryo in Figure 1B with the 

lineage tree predicted by scPECLR enables the genome-wide reconstitution of 5hmC in 

single cells at the 4-cell stage.

(C) Testing non-random segregation of DNA strands at the 4-cell stage of mouse 

embryogenesis. The p values from a binomial test under a null hypothesis of random 

segregation shows that, out of 27 embryos, two pairs of sister cells display statistically 

significant (p<0.05) non-random segregation of DNA strands.

(D) Twenty-seven embryos were randomly sampled 10,000 times from a pool of 100,000 

simulated 4-cell embryos, generated with a constant SCE rate of b = 0.3. A cumulative 

distribution of the number of sister pairs that display statistically significant (p<0.05) non­

random segregation within the 27 embryos is shown. Red dot indicates the experimentally 

observed value of 2.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

TrypLE Select Enzyme (10X), no phenol red ThermoFisher A12177–01

Vapor-Lock Qiagen 981611

NEBuffer 4 New England BioLabs B7004S

Qiagen Protease Qiagen 19155

T4 Phage β-glucosyltransferase New England BioLabs M0357L

AbaSI New England BioLabs R0665S

T4 DNA Ligase New England BioLabs M0202M

Adenosine 5’-Triphosphate New England BioLabs P0756L

Agencourt AMPure XP Beckman Coulter A63880

SuperScript II Reverse Transcriptase ThermoFisher 18064014

RNaseOUT Recombinant Ribonuclease
Inhibitor

ThermoFisher 10777019

NEBNext High-Fidelity 2X PCR Master Mix New England BioLabs M0541L

IGEPAL CA-630 Sigma-Aldrich I8896–50ML

AluI New England BioLabs R0137S

BseRI New England BioLabs R0581S

Critical commercial assays

MEGAscript T7 Transcription Kit ThermoFisher AMB13345

Deposited data

Single-cell 5hmC sequencing data and scH&G-seq data This paper GEO: GSE131678

Experimental models: cell lines

Human: H9 WiCell WA09

Experimental models: organisms/strains

Mouse: C57BL/6J The Jackson Laboratory 000664

Mouse: CBA/J The Jackson Laboratory 000656

Oligonucleotides

Double-stranded adapters for scAba-Seq Mooijman et al., 2016 N/A

RandomhexRT primer Hashimshony et al., 2016 N/A

Illumina sequencing primers Hashimshony et al., 2016 N/A

Blunt-end adapter scDam&T NA

Software and algorithms

scPECLR (MATLAB) This paper N/A

scH&G-seq This paper https://github.com/alexchialastri/scH-G-seq
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