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Abstract

Quantifying individual differences in higher-order cognitive functions is a foundational area of 

cognitive science that also has profound implications for research on psychopathology. For the last 

two decades, the dominant approach in these fields has been to attempt to fractionate higher-order 

functions into hypothesized components (e.g., “inhibition”, “updating”) through a combination 

of experimental manipulation and factor analysis. However, the putative constructs obtained 

through this paradigm have recently been met with substantial criticism on both theoretical and 

empirical grounds. Concurrently, an alternative approach has emerged focusing on parameters of 

formal computational models of cognition that have been developed in mathematical psychology. 

These models posit biologically plausible and experimentally validated explanations of the data-

generating process for cognitive tasks, allowing them to be used to measure the latent mechanisms 

that underlie performance. One of the primary insights provided by recent applications of such 

models is that individual and clinical differences in performance on a wide variety of cognitive 

tasks, ranging from simple choice tasks to complex executive paradigms, are largely driven by 

efficiency of evidence accumulation (EEA), a computational mechanism defined by sequential 

sampling models. This review assembles evidence for the hypothesis that EEA is a central 

individual difference dimension that explains neurocognitive deficits in multiple clinical disorders 

and identifies ways in which in this insight can advance clinical neuroscience research. We 

propose that recognition of EEA as a major driver of neurocognitive differences will allow the 

field to make clearer inferences about cognitive abnormalities in psychopathology and their links 

to neurobiology.
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Introduction

The study of individual differences in performance on laboratory cognitive tasks and the 

neural basis of these differences has been a pillar of biological psychiatry research over the 

past several decades. This work is driven by the consistent observation that impairments 

in executive functions and cognitive control (hereafter “higher-order cognition”) are 

observed transdiagnostically across multiple mental disorders, including schizophrenia, 

externalizing disorders (ADHD, substance use)(1–4), depression, and anxiety(5,6). Links 

between deficits in higher-order cognition and psychopathology have prompted a swell 

of clinical neuroscience research aimed at better understanding their psychological and 

neurobiological basis(7–16). Moreover, this work is heavily emphasized in major funding 

agency initiatives, such as the Research Domain Criteria project(17) and Computational 

Psychiatry Program(18).

Our aim in this review is to offer a critical perspective on the current state of the science; we 

identify a set of interrelated obstacles that have arisen for current approaches and lay out the 

case for an alternative framework. Section 1 reviews the dominant “fractionation paradigm”, 

which aims to use factor analysis to break cognitive functions into constituent elements 

with selective relations to clinical disorders, and details recent findings that present serious 

problems for this approach. The next three sections introduce an alternative paradigm based 

on computational modeling, specifically focusing on efficiency of evidence accumulation 

(EEA), a central individual difference dimension measured in sequential sampling models 

of cognition. We review evidence that EEA is a primary driver of individual and clinical 

differences in cognitive performance across a broad array of ostensibly quite distinct 

cognitive tasks and exhibits several advantages over metrics derived from the fractionation 

paradigm. Finally, we highlight key implications of this framework for clinical neuroscience.

1. The Fractionation Paradigm and Recent Challenges

The dominant approach towards studying individual differences, and by extension clinical 

differences, in higher-order cognition involves fractionation. This framework assumes that 

cognition consists of multiple component functions and that each constitutes a relatively 

distinct individual difference dimension. This latter assumption is especially relevant to 

clinical neuroscience research, where it is common to postulate that disorders involve 

selective impairments in specific functions.

A primary tool for fractionation involves batteries of carefully constructed experimental 

tasks that are intended to selectively engage specific functions. For example, in the 

“incongruent” condition of the Stroop task(19), participants must respond as to the ink color 

of a word while ignoring the word’s semantic meaning, which indicates a discrepant color. 

This discrepancy is thought to engage an inhibition process that suppresses the dominant 

tendency to provide the (incorrect) word response. In an otherwise-similar “congruent” 

condition, where the color of the word and its meaning are matched, it is assumed that 

the inhibition process is unengaged. Performance differences between the two conditions 

are thus assumed to precisely index individuals’ inhibition. Tasks like the Stroop are often 

paired with factor analysis to study patterns of covariance across task batteries. Foundational 

work by Miyake and colleagues(20) yielded evidence for three core executive dimensions–
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response inhibition, task switching, and working memory updating–and this framework 

remains the most influential fractionation taxonomy (e.g.,(21,22)).

A growing body of findings, however, presents serious challenges for the fractionation 

approach. First, in a systematic review, Karr and colleagues(23) provided evidence that 

many factor models in this literature were overfit to underpowered samples, and that 

alternate models that contradict the foundational three-factor structure may be more 

plausible. A second challenge for this paradigm concerns fundamental psychometric 

properties of widely used tasks that utilize difference scores to selectively index higher-

order functions (e.g., the Stroop). Such measures consistently demonstrate poor test-

retest reliability(24–27); that is, the rank order of subjects fails to be preserved across 

testing occasions, limiting the usefulness of these metrics for individual-differences 

research(28,29). The same measures also have poor predictive validity; recent well-powered 

studies show that they have tenuous relationships with relevant criterion variables, such as 

self-regulation questionnaires(30–33). A third challenge for fractionation is the failure of 

disorder specificity, the idea that selective executive deficits could help establish boundaries 

between disorders. Researchers have long sought to selectively link deficits in working 

memory to schizophrenia(34–36), behavioral inhibition to ADHD(37–39), and inhibition 

of negative thoughts to anxiety and depression(40–42). However, such selectivity has been 

elusive. People with psychiatric disorders, including schizophrenia, bipolar disorder and 

ADHD, typically exhibit diverse cognitive impairments that cut across the higher-order 

domains fractionation researchers seek to distinguish(3,15,43–49).

None of these challenges to the fractionation paradigm are necessarily decisive, but they 

are serious enough that alternative approaches, the subject to which we now turn, deserve 

greater attention.

2. Mathematical Psychology, Computational Psychiatry and Sequential Sampling Models

Multiple recent commentaries in psychiatry, clinical psychology and the broader behavioral 

sciences(50–53) have highlighted a critical paradox: these fields have largely eschewed 

the use of formal mathematical process models, despite the substantial advancements in 

precision, theory development, and cumulative knowledge that such models have provided 

for other sciences. One notable exception is the subfield of mathematical psychology, which 

has a long tradition of using formalisms to specify, and stringently test, theories about the 

mechanisms behind cognitive processing(54–56). Beyond the general scientific advantages 

of mathematical modeling, including allowing greater explanatory clarity and stronger 

empirical tests of theoretical predictions(52,53,55), this approach has recently shown unique 

promise for identifying links between human cognition and neural functioning(57–59). 

Furthermore, mathematical psychology’s models are beginning to play a pivotal role in 

the emerging field of computational psychiatry, where they are used to identify candidate 

biobehavioral dimensions linked to psychopathology that may have clearer relationships 

with neurobiological mechanisms than existing cognitive constructs(50,60,61).

Sequential sampling models (SSMs)(62) are a prime example of computational frameworks 

from mathematical psychology that are now seeing wide application in the neurosciences 

and psychiatry. Although models in this class were originally developed to explain 
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recognition memory and simple perceptual decisions(62–64), they have been successfully 

applied to a variety of complex behavioral domains(65–67), including “executive” tasks(68–

72). For tasks in which individuals must choose between response options, SSMs assume 

they gradually accumulate noisy evidence for each option from the environment over time 

until evidence for one option reaches a critical threshold, which initiates the corresponding 

response.

SSMs come in two general variants(62) (Figure 1). In accumulator-type models, such as 

the linear ballistic accumulator (LBA)(73), evidence is gathered by separate accumulators 

for each response option that race towards an upper threshold. In random-walk models, 

such as the diffusion decision model (DDM)(63,74), relative evidence for each choice 

is represented as a single total that drifts between boundaries representing each option. 

The DDM and LBA, which are the most widely-used models in each class, differ on 

several major assumptions. Most prominently, DDM assumes that the rate of evidence 

accumulation varies stochastically over time within a trial. Conversely, the LBA assumes 

that the evidence accumulates in a linear and deterministic manner and that any variability 

in accumulation rate occurs between trials. Although the within-trial variability of the DDM 

may be more biologically plausible, the LBA’s simplified assumptions do not appear to limit 

its descriptive power, and make it easier to apply(73).

Despite these differences, parameters from both models can be used to measure three 

key latent processes: 1) the “drift rate”, or efficiency of evidence accumulation (EEA), 2) 

the “threshold” or “boundary separation”, which reflects an individual’s level of caution 

(i.e., speed/accuracy trade-off), and 3) “non-decision time”, which accounts for time spent 

on peripheral (e.g., motor) operations. Applications of the DDM and LBA to the same 

empirical data generally suggest similar conclusions about these three key processes(75,76), 

although process parameterization differs slightly between the models (Figure 1) and they 

sometimes offer divergent accounts of other constructs (e.g., variability in memory evidence:

(77)).

Several considerations are relevant when using these models. First, researchers should 

seek to ensure that the behavioral tasks analyzed respect SSM assumptions (e.g., number 

of processing stages, parameter invariance across time, and others detailed in:(65)). That 

said, recent work on complex paradigms has suggested that inferences from the SSMs 

often remain robust despite violations of certain assumptions(79,80). Second, parameters 

that measure processes of interest must be able to be accurately estimated from empirical 

data(81). Small numbers of trials and greater model complexity (i.e., more parameters) 

impede parameter estimation, which may force investigators to select more parsimonious 

models. For example, several specialized SSMs have been proposed to explain processing on 

inhibition (e.g., Stroop) tasks(70,72), but parameters for these complex models are difficult 

to estimate at trial numbers common in empirical studies(82). Therefore, an alternate 

approach (e.g.,(25,30)) is to fit a standard DDM to these tasks under the assumption that 

measurement of the main processes of interest will be robust despite some misspecification 

in the simpler model.
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The use of SSMs to describe and differentiate cognitive mechanisms has several benefits. 

First, SSMs posit detailed mechanistic accounts that explain how underlying cognitive 

operations produce observed patterns of behavior. Thus, they make specific, quantitative 

predictions about behavioral data (e.g., skew of response time distributions, slow vs. 

fast errors) that are generally well-supported in a substantial literature(73,74,83). Second, 

mechanisms posited in these models have clear links to neurophysiological processes. 

Neural firing patterns recorded in primates across multiple brain regions during decision 

making display properties consistent with evidence accumulation (62,84–86), and these 

patterns have recently been quantitatively linked to SSM parameters in joint neural and 

behavioral models(87,88). Hence, SSMs display clear evidence of biological plausibility, 

providing an important bridge between neurophysiology and human behavioral research. 

Third, SSMs allow selective measurement of latent cognitive mechanisms. Standard metrics 

derived from laboratory tasks, such as response time (RT) and accuracy, are influenced 

by confounding factors such as subjects’ preferences to prioritize speed versus accuracy. 

However, SSMs can recover precise estimates of critical parameters irrespective of subjects’ 

strategies(65). A recent simulation study suggests that SSMs’ ability to measure latent 

processes selectively (e.g., indexing cognitive efficiency independent of speed/accuracy 

preferences) boosts statistical power(89). Finally, as detailed below, SSMs are beginning to 

provide novel insights into the structure of individual differences in cognition across the 

spectrum of health and psychopathology.

3. Efficiency of Evidence Accumulation as a Foundational Individual Difference 
Dimension

A burgeoning individual differences literature (reviewed in detail by:(90,91)) has begun to 

demonstrate SSMs’ utility for characterizing fundamental mechanisms of cognition. This 

work has primarily focused on the DDM’s “drift rate” parameter, which indexes efficiency 

of evidence accumulation (EEA), or the rate at which an individual gathers relevant 

evidence from the environment to make accurate choices in the context of background noise. 

Simulated DDM data in Figure 2 illustrate the behavioral consequences of variation in EEA; 

lower drift rates lead to lower accuracy and greater RT variability, primarily by increasing 

the positive skew of RT distributions(92).

Observed EEA for an individual on a given cognitive task is likely the product of multiple 

processes (Figure 3). Although task-specific mechanisms (e.g., color identification on the 

Stroop) and state factors (e.g., motivation(94–97)) may play key roles, a growing body 

of findings suggests that a large portion of the variance in EEA is explained by a domain-

general, trait-like factor. EEA estimates from choice tasks across different cognitive domains 

show strong correlations with one another, allowing the formation of a domain-general 

latent variable(98–103), and recent work demonstrates that this general factor remains 

present even after explicitly accounting for domain-specific variance in EEA(79). EEA 

estimates are test-retest reliable under ideal measurement conditions (e.g., 200-400 trials:

(104)), and work using latent state-trait modeling across an eight-month interval found that 

state-related variance in EEA measures was statistically indistinguishable from zero, while 

trait-related variance was close to that found for intelligence tests (44% on average)(98). 

As EEA measured via relatively simple choice tasks correlates strongly with EEA on more 
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complex paradigms and predicts better working memory ability and intelligence(79,99–

103,105–107), trait EEA may be a critical determinant of individual differences in 

higher-order cognitive abilities. Taken together, this body of work indicates that EEA 

is a psychometrically robust cognitive individual-difference dimension that appears to be 

foundational to the performance of a wide variety of tasks. Importantly, the fact that trait 

EEA is derived from a formal, mechanistic theory of the data-generating process across 

cognitive measures contrasts with constructs in the fractionation paradigm, which are not 

linked to a generally-applicable, mechanistic theory.

4. Reduced EEA as a Transdiagnostic Neurocognitive Risk Factor for Psychopathology

The behavioral signatures of reduced EEA—variable RTs and less accurate responding

—have long been documented in the task performance of individuals with diverse 

psychiatric diagnoses(97,108–112). Yet SSMs have only recently been applied in the 

context of clinical research. Because RT variability has been of longstanding interest in 

ADHD(97), SSMs have been most extensively used to study this disorder. As reviewed 

by others(97,113,114), and supported by subsequent work(106,115–119), individuals with 

ADHD consistently display reduced EEA in SSM analyses, and meta-analytic effect 

size estimates for comparisons with healthy participants are in the moderate to large 

range (d=0.75(114);g=0.63(97)). What is arguably most striking about these effects is the 

breadth of domains in which EEA reductions are observed, including: simple perceptual 

decision making(107,116,120), sustained attention(114,119,121), inhibition(122–125), 

pattern learning(118,126), and interval timing(117). Furthermore, stimulant medication 

treatments for ADHD have been found to improve EEA in both children with the 

disorder(94) and healthy adults(127), suggesting EEA could partially mediate treatment 

effects. In the latter study(127), stimulants enhanced EEA similarly in an incongruent task 

condition (thought to engage executive control) and a congruent task condition (where 

control is thought to be unengaged). Taken together with the pattern of cross-task effects 

observed in ADHD, this finding suggests that both ADHD-related deficits and treatment-

related improvements in EEA are domain-general, spanning diverse tasks and conditions 

with varying levels of complexity and executive demands.

Beyond ADHD, reduced EEA has been documented in schizophrenia(128,129), 

depression(130), and individuals at risk for frequent substance use(131). Extending these 

findings, our recent work has provided evidence that EEA is a transdiagnostic risk 

factor for psychopathology(132). In a large sample drawn from the UCLA Consortium 

for Neuropsychiatric Phenomics(133) we found that a latent EEA factor derived from 

multiple tasks was substantially reduced in ADHD, schizophrenia, and bipolar disorder 

relative to healthy participants (d=0.51,1.12, and 0.40 respectively), and displayed a 

negative correlation with the overall severity of individuals’ cross-disorder psychopathology 

symptoms (r=.20). As this study made the simplifying assumption, discussed above, that the 

standard DDM can provide adequate measures of EEA on inhibition tasks, replication of 

these results using more complex modeling procedures is warranted.

We now present a hypothesis that seeks to build on this growing array of observations: 

We posit that lower trait EEA conveys broad risk for psychopathology, and that EEA 
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can therefore account for a substantial proportion of performance decrements on tests of 

neurocognitive abilities that are observed across psychiatric disorders. Moreover, we propose 

that reductions in EEA similarly impair performance across tasks of varying levels of 

complexity, rather than selectively impacting “executive” tasks. These claims are rendered 

plausible by the research reviewed above documenting that: 1) trait EEA displays clear 

validity as a task-general cognitive individual difference dimension; 2) EEA explains a 

large portion of the variance in higher-order cognitive functioning; 3) EEA is impaired 

across multiple psychopathologies; 4) EEA impairments are present across a wide range of 

cognitive paradigms; and 5) individuals with psychiatric diagnoses linked to neurocognitive 

decrements, such as ADHD and schizophrenia, have long been found to display such 

decrements across both complex “executive” tasks and simple choice RT paradigms.

Although we view this evidence as compelling, we note that direct tests of our hypothesis, 

which have yet to be completed, would require several features. First, these tests would 

require that large and demographically diverse samples of individuals with and without 

psychiatric diagnoses complete batteries of tasks that can be used to accurately estimate 

SSM parameters. Second, as precise measurement of trait EEA requires latent variables 

informed by performance in multiple domains(79,91), tasks would need to span cognitive 

processing modalities (e.g., verbal, numeric) and the executive/non-executive continuum. 

Such data would allow the derivation of latent trait EEA metrics and assessments of EEA’s 

relations with an array of disorders and psychopathology symptoms.

We also note three important qualifications to our claims. First, the task-generality of trait 

EEA does not imply that the computational processes involved the execution of tasks 

from diverse cognitive domains are identical. Rather, the psychometric work reviewed 

above indicates that trait EEA is a primary factor driving individual differences (and 

therefore, we suspect, clinical differences) in task performance. Although different tasks 

require cognitive operations involving distinct types of evidence (Figure 3), the fact that 

SSMs provide a highly generalizable account of processing across tasks suggests that 

task-general mechanisms involved in accumulation of multiple types of evidence could 

plausibly drive individual differences in EEA. Indeed, estimates of task-specific variance 

in EEA from state-trait models are strikingly low (≤17%)(98). Second, we do not claim 

that trait EEA is itself determined by a single underlying process. As we outline below, 

current evidence suggests EEA is likely influenced by an array of biological and contextual 

factors. EEA may thus serve as a “watershed node”(134) in a complex matrix of causation. 

Watersheds are shaped by multitudinous converging water channels, but once formed, they 

are subsequently relatively unitary drivers of downstream effects. Similarly, we propose that 

EEA has multifactorial determinants, but serves as a relatively unitary driver of cognitive 

deficits and clinical symptoms. Third, although we posit that EEA is a prominent contributor 

to psychopathology-related deficits on tests of cognitive abilities, it is almost certainly the 

case that a much broader array of factors, beyond EEA and other influences on cognitive 

test performance, contribute to psychopathology symptoms. Unlike EEA, other contributors 

to psychopathology are likely difficult to capture on laboratory cognitive tasks and may be 

better-measured with alternative methods (e.g., questionnaires, biomarkers).
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The overall framework we propose is outlined and contrasted with the conventional 

fractionation framework in Figure 4. We now examine its broader implications.

5 Implications of an EEA-Based Computational Framework for Clinical Neuroscience

A focus on complex executive tasks may be misplaced.—The preoccupation of 

psychiatric cognitive neuroscience with response inhibition and other “executive” constructs 

is understandable. There are clearly clinically-important individual differences in the ability 

to resist cravings for an addictive substance or to regulate tendencies to mind wander during 

a boring lecture. As tasks such as the Stroop were designed to selectively isolate top-down 

control, it makes sense that these tasks are seen as key elements of research into regulatory 

problems in psychopathology. However, the evidence reviewed above suggests that these 

tasks are not, in fact, selectively isolating executive processes.

The alternative possibility we put forward is that aberrant performance on complex executive 

tasks in psychopathology largely reflects task-general reductions in EEA. If this view 

is correct, it follows that the field’s focus on executive functions, and the experimental 

paradigms thought to measure them, is overly narrow. To better understand the ability to 

attend to a lecture or resist cravings, it may be more fruitful to investigate the clinical 

correlates and neural basis of task-general impairments in EEA. At the level of study 

design, cross-domain batteries of relatively simple cognitive tasks that are optimized for 

computational modeling (e.g., perceptual choice) may be as good as, or preferable to, 

complex tasks that attempt to experimentally isolate regulatory processes.

Subtraction in cognitive and neuroimaging measures is counterproductive.—
EEA’s potential role in task-general deficits similarly calls into doubt the use of subtraction 

methods that attempt to isolate individual differences in specific neurocognitive processes 

(e.g., contrasting behavior or neural activation in conditions that do and do not require 

inhibition). If EEA is the primary driver of individual differences in performance across task 

conditions, subtraction likely obscures, rather than enhances, measurement of the clinically-

relevant process.

Recent findings support this notion. In a large non-clinical sample(30), we found that 

subtraction-based metrics show negligible relations across tasks and do not predict self-

report indices of self-regulation(135). Nonetheless, EEA estimates across these same 

tasks, and across executive/non-executive conditions (again obtained under the simplifying 

assumption that the standard DDM can adequately index EEA from inhibition paradigms), 

formed a coherent latent factor that was related to self-regulation (r=.18)(135). Similarly, 

in a neuroimaging study of the go/no-go task(136), EEA estimated from trials that 

require inhibition (“no-go”) was strongly correlated (r=.73) with EEA on trials that 

do not (“go”), suggesting that performance across conditions was largely determined 

by a single dimension(136). At the neural level, activation from the commonly-used 

neuroimaging contrast that subtracts activity during “go” trials from activity during correct 

“no-go” trials displayed little evidence of relationships with performance metrics (including 

EEA), questioning the utility of subtraction for neural measures(136). Hence, clinical 
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neuroscientists may be better off focusing on commonalties across cognitive task conditions 

than on differences between them.

Findings of disorder-specific deficits in neurocognitive test data may be 
elusive.—A related implication is that efforts to use neurocognitive test data to identify 

deficits in specific cognitive functions that differentiate disorders (e.g., inhibition in 

ADHD) may face significant challenges. Indeed, our hypothesis that EEA is a primary 

driver of individual differences in performance across commonly-used tasks provides an 

explanation for the already well-acknowledged failure of such tasks to characterize selective 

deficits for many disorders(3,15,43–49). Although some may view this conclusion as 

discouraging, we believe it fits with an emerging view of psychopathology that emphasizes 

transdiagnostic individual difference dimensions (e.g., Research Domain Criteria and 

Hierarchical Taxonomy of Psychopathology)(17,137), where positions on multiple such 

dimensions characterize disorders. Specifically, it is likely that EEA, as measured on 

neurocognitive tasks, is one of many relevant transdiagnostic dimensions, and must be 

combined with indices of constructs derived from other measurement domains (e.g., 

socioemotional, biological) to better characterize variation in, and multifactorial causes of, 

psychopathology.

EEA can provide a window into the basis of neurocognitive deficits in 
psychopathology.—A shift in clinical research focus towards EEA is likely to produce 

novel mechanistic insights and facilitate translation across behavioral, systems, and 

neurophysiological levels of analysis. As outlined above, a major advantage of using 

SSMs to guide research is that the evidence accumulation processes they posit are not 

only biologically-plausible, but well-supported by extant neurophysiological research in 

non-human primates(62,84–87,138). Corresponding neural signatures of these processes 

in humans have also been well-characterized with electroencephalogram (EEG)(139–141) 

and functional magnetic resonance imaging (fMRI)(142–145). Although these signatures 

are distributed throughout multiple cortical areas, there is converging evidence that the 

frontoparietal network (FPN) and anterior insula play especially important roles(146).

Research on the neural basis of trait EEA is sparser. A handful of studies using disparate 

methodologies have linked between-individual differences in EEA to parietal activation 

during decision making(147), salience network responses to errors(136), and greater 

structural and functional connectivity in FPN(148). However, these studies are limited 

by their measurement of EEA with individual tasks, rather than with the recommended 

cross-domain latent factors(91). Findings that EEA is enhanced by catecholamine 

agonists(94,127,149) indicate EEA may be related to the integrity of dopamine or 

norepinephrine systems. Incentives also alter EEA(94–96), suggesting that stable traits 

related to motivational processes (e.g., cognitive effort discounting(150)) could impact how 

individuals react to these state-related factors during cognitive performance. We do not 

offer a comprehensive hypothesis about the etiology of individual and clinical differences 

in EEA because we believe doing so would be premature. However, strong evidence for 

the existence of a task-general trait EEA factor suggests that broad neurobiological and/or 

contextual (e.g., poverty) influences could impact cognitive performance though EEA.
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The study of individual differences in EEA could usher in a new paradigm for understanding 

cognitive abnormalities in psychopathology. Rather than attempting to fractionate putative 

disorder-specific deficits, this paradigm would instead focus on how EEA is determined 

by neurophysiological processes, neurotransmitter systems, brain networks, and contextual 

factors such as motivation, stress and social adversity. Doing so would move the study of 

these influences on disordered cognition into a more mechanistic computational framework.

Conclusion

This review assessed the emerging literature on the application of mathematical process 

models to the study of individual and clinical differences in neurocognition. We argue 

that this literature presents a compelling case that trait EEA, a foundational individual 

difference dimension formally defined in computational models, is likely a primary driver 

of observed deficits on tests of neurocognitive abilities across clinical disorders. Adopting 

an EEA-focused research approach has the potential to transition clinical neuroscience away 

from measures that have poor psychometric properties and constructs that are biologically 

amorphous. In contrast, EEA is a precisely defined construct that has clear links to 

psychopathology and is well-positioned to yield richer connections with neurobiology.
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Figure 1. 
Schematics of the (a) linear ballistic accumulator (LBA) and (b) diffusion decision model 
(DDM), which are commonly applied sequential sampling models in the accumulator-type 
class and random-walk class, respectively. In both illustrations, the models describe a task 
in which an individual must decide whether a presented arrow is pointing to the left or 
the right, similar to the “go” choice task from common stop signal paradigms (e.g.,(78)). 
The LBA assumes that accumulators for the correct choice (“right” in green) and incorrect 
choice (“left” in red) start at a level drawn from a uniform distribution between 0 and 
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parameter A and proceed to gather evidence at linear and deterministic rates over time as 
they race towards an upper response threshold, set at parameter b. The rates of evidence 
accumulation on individual trials, represented by the light-green and light-red traces, are 
drawn from normal distributions with a mean of v (represented by the green, vright, and red, 
vleft, arrows) and a standard deviation of sv. The DDM instead assumes a single decision 
variable that represents the relative amount of evidence for each of the two possible choices 
(e.g., evidence for “right” vs. “left”; these models are typically applied to two-choice 
decisions). This variable begins at parameter z and drifts over time between boundaries 
for each possible response, set at 0 (for “left”) and parameter a (for “right”). The drift 
process on individual trials, represented by the light blue traces, is stochastic and moves 
toward the boundary for the correct choice at an average rate of v (represented by the blue 
arrow, vright-left). Efficiency of evidence accumulation (EEA), defined as the rate at which 
an individual is able to gather relevant evidence from the environment to make accurate 
choices, can be measured in the LBA by subtracting the average accumulation rate for the 
incorrect choice (vleft) from that of the correct choice (vright). EEA is also measured by the 
DDM’s single average drift rate parameter (vright-left). Individuals’ level of response caution 
(i.e., speed/accuracy trade-off) can be indexed by parameters that represent the distance 
evidence accumulators must travel to trigger a response in both the LBA (parameter b) and 
DDM (parameter a). Both models also include parameters for time taken up by perceptual 
and motor processes peripheral to the decision: t0 and Ter, respectively.
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Figure 2. 
Simulated data that illustrate the behavioral manifestations of differences in efficiency of 
evidence accumulation (EEA). Response time (RT) data from 10k trials were simulated 
with the diffusion decision model (DDM) implemented in the R package rtdists(93) while 
varying drift rate (v = 2, 1, .5) and holding other DDM parameters constant (a = 1, z 

= .5, Ter = .300). Blue histograms represent simulated correct RTs while red histograms 
represent simulated error RTs. As EEA (v) decreases, accuracy rates are reduced and both 
the mean and standard deviation (SD) of RT increase. However, analysis of RTs with the ex-
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Gaussian distribution, a statistical model that allows Gaussian and exponential components 
of RT distributions to be indexed separately, reveals that the mean (μ) and Gaussian 
variability (σ) stay relatively constant, while exponential RT variability (τ; positive skew) 
substantially increases at lower levels of EEA. Therefore, as demonstrated in previous large-
scale simulation studies(92), EEA primarily impacts RT distributions ’ level of exponential 
RT variability, with larger τ estimates (i.e., greater levels of positive skew) providing a 
behavioral hallmark for reduced EEA.
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Figure 3. 
Hypothesized determinants of efficiency of evidence accumulation (EEA) manifested on 

specific cognitive tasks for a given individual.
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Figure 4: 
Diagrams contrasting the general assumptions of two different approaches to studying 

neurocognitive contributions to psychopathology: the dominant fractionation paradigm (top) 

and the alternative EEA-based paradigm we highlight in the current review (bottom).
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