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Abstract

Glioblastoma is an aggressive cancer of the brain and spine. While analysis of glioblastoma ‘omics 

data has somewhat improved our understanding of the disease, it has not led to direct improvement 

in patient survival. Cancer survival is often characterized by differences in gene expression, but 

the mechanisms that drive these differences are generally unknown. We therefore set out to 

model the regulatory mechanisms associated with glioblastoma survival. We inferred individual 

patient gene regulatory networks using data from two different expression platforms from The 

Cancer Genome Atlas. We performed comparative network analysis between patients with long- 

and short-term survival. Seven pathways were identified as associated with survival, all of them 

involved in immune signaling; differential regulation of PD1 signaling was validated to correspond 

with outcome in an independent dataset from the German Glioma Network. In this pathway, 

transcriptional repression of genes for which treatment options are available was lost in short-term 

survivors; this was independent of mutational burden and only weakly associated with T-cell 

infiltration. Collectively, these results provide a new way to stratify glioblastoma patients that uses 

network features as biomarkers to predict survival. They also identify new potential therapeutic 

interventions, underscoring the value of analyzing gene regulatory networks in individual cancer 

patients.

Introduction

Microarrays and next generation sequencing technologies have been broadly applied to the 

study of cancer. Large collaborative projects, such as The Cancer Genome Atlas (TCGA), 
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have explored the ‘omics landscape for many different cancer types. Although this has 

somewhat improved our understanding of the biology underlying the development and 

progression of cancer(1), it has only led to direct improvement of patient survival for 

a limited subset of cancer types. For most cancers, genomic signatures associated with 

survival are very complex, making it difficult to point to direct targets for treatment.

An example is glioblastoma multiforme, an aggressive cancer of the brain and spine. With 

a median overall survival of only 15–17 months, glioblastoma has a particularly poor 

prognosis. Multiple gene signatures have been identified that correlate with glioblastoma 

survival (see for example(2–6)), but comparison of these signatures finds very few 

shared genes or pathways, making interpretation of the results difficult at best. Although 

unsupervised clustering of gene expression analysis has identified glioblastoma subtypes 

that differ somewhat in patient survival(7), and integrative analysis with mutational profiles 

has shed some light on what could drive these subtypes(8), the causative regulatory 

mechanisms that distinguish these subtypes are not fully understood. We believe that, by 

modeling the regulatory mechanisms that mediate gene expression patterns associated with 

patient subtypes and survival, we will be better able to explain what influences disease 

progression, and may identify therapeutic interventions that advance precision medicine 

treatments for glioblastoma patients.

Gene regulatory mechanisms can be modeled using gene regulatory network reconstruction 

approaches. An example of such an approach is PANDA (Passing Attributes between 

Networks for Data Assimilation)(9,10). PANDA relies on message passing(11) to infer 

regulatory processes by seeking consistency between transcription factor protein-protein 

interaction, DNA motif binding, and gene expression data. PANDA has been key to 

understand tissue-specific gene regulation(12), identify regulatory differences between cell 

lines and their tissues-of-origin(13), and to identify regulatory changes that may drive cancer 

subtypes(14). One drawback, however, of estimating regulatory networks using PANDA or 

other methods is that network reconstruction relies upon combining information from large, 

typically diverse study populations to estimate one “aggregate” network representing that 

dataset.

To reconstruct regulatory networks for each sample in a dataset, we developed LIONESS, 

or Linear Interpolation to Obtain Network Estimates for Single Samples(15). LIONESS 

assumes that the edges estimated in an “aggregate” network model are a linear combination 

of edges specific to each of the input samples. This allows estimation of individual sample 

edge scores using a linear equation. What this means is that, instead of only reconstructing 

one single network representing glioblastoma, we can “extract” distinct, reproducible 

networks for each individual patient from this aggregate network model. This allows us to 

associate individual networks and network properties with clinical endpoints, such as patient 

survival and response to therapy, and is therefore an exciting advance in network inference 

with potential applications in precision medicine. We have used this method in a number of 

applications including modeling 8,279 sample-specific gene regulatory networks to discover 

sex-biased gene regulation across 29 tissues(16) and modeling regulatory networks for more 

than 1000 colon cancer patients to find sex-linked regulatory mechanisms associated with 

response to chemotherapy(17).
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In the study presented here, we applied PANDA and LIONESS to model gene regulatory 

networks for individual primary glioblastoma patients from The Cancer Genome Atlas 

(TCGA). We performed a comparative network analysis to identify regulatory differences 

between patients with long- and short-term survival (Figure 1). We validated our results in 

an independent dataset of primary glioblastomas from the German Glioma Network. This 

integrative gene regulatory network approach allowed us to identify disrupted regulation 

of PD1 pathway genes as associated with glioblastoma survival. Specifically, we found 

that transcriptional repression of genes involved in PD1 signaling is lower in short-term 

survivors. This is independent of PD1 gene methylation status, and mutation burden, and 

weakly associated with immune infiltrate, and therefore suggests a new mechanism of 

heterogeneity in glioblastoma prognosis.

Materials and Methods

Gene expression data pre-processing

We downloaded primary glioblastoma gene expression data from TCGA using 

RTCGAToolbox(18) as previously described(19). This included Affymetrix HG-U133 

microarray data for 525 patients and Affymetrix Human Exon 1.0 ST microarray data for 

431 patients. We refer to these datasets as “discovery dataset 1” and “discovery dataset 2” in 

the rest of this manuscript.

We performed batch correction on each dataset independently, using ComBat(20). Some 

TCGA batch numbers only contained one glioblastoma sample (two batch numbers in 

discovery dataset 1 and one in discovery dataset 2) and thus for those samples, batch 

correction was not possible. We grouped these samples together with those batches that 

were most similar in their expression profiles, based on Pearson similarity. We visualized the 

distribution of expression levels in each sample in density plots and removed three outlier 

samples from discovery dataset 1, resulting in a dataset that included 522 patients. We then 

used the quantile normalization in Bioconductor package “preprocessCore” to normalize 

each dataset independently(21).

We used data from the German Glioma Network(22) to for independent validation of our 

findings from TCGA; we refer to the German Glioma Network dataset as the “validation 

dataset.” These data consist of untreated, primary glioblastomas profiled on Affymetrix HG­

U133 Plus 2.0 microarrays and are available in the Gene Expression Omnibus (GEO) with 

identifier GSE53733(22) (download date: April 15, 2017). We downloaded the normalized 

expression data from the “Series Matrix File.” Follow-up information was available in the 

form of three groups—long-term (survival >36 months, n=23), intermediate (between 12–36 

months, n=31), and short-term (<12 months, n=16) survival.

Finally, we used data from Kwon et al.(23) to compare primary (n=25) with recurrent 

(n=18) glioblastomas. These data were profiled on Illumina HumanHT-12 V4.0 expression 

beadchips and are available in GEO with identifier GSE62153. We used Bioconductor 

package “GEOquery” to download the normalized expression data (download date: June 19, 

2021).
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Curation of clinical data and selection of patient groups

For detailed information on how we curated the clinical data from TCGA, we refer to our 

previous publication(24). In short, we used RTCGAToolbox(18) to download the data, and 

curated these by combining data from all available Firehose versions consecutively as to 

retain all clinical information, with the most up-to-date information for data present across 

different Firehose versions.

We used a survival threshold of 1.7 years (620 days) to define long-term and short-term 

survival. We estimated this threshold by taking the third quartile of the last day to follow­

up available in discovery dataset 1 to ensure a meaningful (e.g. not too short) threshold 

while maintaining relatively balanced sample groups. This threshold also falls in between 

thresholds previously used to define survival groups (Supplemental Table 1). It divided the 

patient population of discovery dataset 1 into a group of 127 relatively long-term survivors 

who survived for at least 1.7 years, 336 short-term survivors who deceased within 1.7 years, 

and 59 patients for whom not enough follow-up data was available (“censored” patients). 

We excluded the latter group from our analyses. Similarly, the group of patients in discovery 

dataset 2 was divided into 116 long-term, 275 short-term, and 40 censored patients. We note 

that, for the significant pathways identified in the comparison of networks for these survival 

groups (see below), we repeated the analysis for a wide range of survival thresholds—all 

thresholds that resulted in a minimum group size of ten patients—to ensure the robustness of 

our results.

Modeling single-sample networks

We used the MATLAB version of the PANDA network reconstruction algorithm (available 

in the netZoo repository https://github.com/netZoo/netZooM) to estimate aggregate gene 

regulatory networks. PANDA incorporates regulatory information from three types of data: 

gene expression data (see above), protein-protein interaction data, and a “prior” network 

based on a transcription factor motif scan to their putative target genes, which is used to 

initialize the algorithm.

To build the motif prior, we used a set of 695 transcription factor motifs from the 

Catalogue of Inferred Sequence Binding Preferences (CIS-BP)(25), which we had selected 

previously(12). We scanned these motifs to promoters as described previously(26). After 

intersecting the prior to only include genes and transcription factors with expression data 

(see above) and at least one significant promoter hit, this process resulted in an initial map of 

potential regulatory interactions involving 650 transcription factors targeting 10,701 genes.

We estimated an initial protein-protein interaction (PPI) network between all transcription 

factors (TFs) in our motif prior using interaction scores from StringDb v10(27), as described 

in Sonawane et al.(12). PPI interaction scores were divided by 1,000 to have them range 

[0,1] and self-interactions were set equal to one.

For each dataset, we built an aggregate network using PANDA and then used the LIONESS 

equation in MATLAB to extract networks for individual samples.
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Community structure comparison

To perform a comparative analysis of regulatory network community structures between 

the two patient groups, we averaged the single-sample networks in each of the groups. We 

filtered these networks for canonical edges (prior edges representing putative transcription 

factor DNA binding) and then performed community structure analysis using the bipartite 

community structure detection algorithm in CONDOR(28). As CONDOR requires positive 

edge weights, we transformed the network edges as in Sonawane et al.(12) using the 

following equation, before applying CONDOR:

W ij
t = ln eW ij

t
+ 1

where W ij
t  is the edge weight calculated by PANDA between a transcription factor (i) and 

gene (j) in a particular network (t).

We used ALPACA(29)—a method that uses message passing and modularity optimization 

to identify structural changes in complex networks—to compare the community structure of 

the long-term survival network with that of the short-term network set as a baseline, and 

vice versa. We reported differential communities that included a minimum of 10 nodes. To 

identify enrichment in Gene Ontology terms, we used communities that included at least 50 

genes. We compared the top 50 genes based on their ALPACA scores with the background 

of all genes in the network model, using the “classical” Fisher’s exact test from R package 

“topGO.” We corrected p-values for multiple testing using the Benjamini and Hochberg 

approach and reported those GO terms with FDR<0.25 and gene set size <50 as significantly 

enriched.

LIMMA analysis

For each tumor sample, we calculated gene targeting scores by taking the sum of all 

edge weights pointing to a gene (this is the same as a weighted gene “degree”). This 

measure is representative of the amount of regulation a gene receives from the entire set 

of TFs available in our network models(17). We performed a Bayesian statistical analysis 

using LIMMA(30) comparing gene targeting scores in long-term survivors with those in 

short-term survivors, correcting for the patient’s age at diagnosis of the primary tumor, 

their sex, and whether they were treated with neo-adjuvant therapy or not. We repeated this 

analysis on network edge weights, so that we could visualize edges connecting to genes in 

the PD1 signaling pathway.

We note that we also evaluated other relevant clinical features in glioblastoma, including 

1p19q co-deletion, IDH1/2 (IDH) status, and MGMT promoter methylation status. 1p19q 

co-deletion status (available for 96% of patients) was, as expected in this primary cohort, 

only deleted in a small fraction (0.4%) of patients. We ran linear models correcting for 

MGMT and IDH status, and reported the results when correcting for IDH status (available 

for 79% of patients) as well. As MGMT status was only available for 53% of patients, we 

did not correct for this variable.
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For the analysis in the validation dataset of primary tumors, we compared the long-term 

group with the short-term group as defined in Reifenberger et al.(22). We used the dataset 

from Kwon et al.(23) to perform an additional validation, comparing recurrences with 

primary tumors.

Pre-ranked Gene Set Enrichment Analysis

We performed pre-ranked Gene Set Enrichment Analysis (GSEA)(31) on the t-statistics 

from the LIMMA analysis to identify Reactome gene sets enriched for differentially 

targeted genes. We defined gene sets with FDR<0.05 and absolute GSEA Enrichment Score 

(ES)>0.5 to be significantly differentially targeted. We evaluated gene sets that had less than 

50 genes, so as to exclude some of the more general pathways.

Cellular composition analysis

We used xCell(32) to estimate cell compositions in each tumor sample in each of the three 

datasets. xCell is a novel gene signature-based method that integrates the advantages of 

gene set enrichment with deconvolution approaches to infer 64 immune and stromal cell 

types. The scores calculated by xCell approximate cell type fractions, and adjust for overlap 

between closely related cell types. Finally, the method calculates p-values for the null 

hypothesis that a cell type is not in the mixture and thereby allows for filtering out cell types 

that are likely not present in the sample. We applied the xCell pipeline to each of the datasets 

and used the default threshold of 0.2 to filter out cell types not present in the datasets.

We used CIBERSORTx(33) as a second deconvolution approach to validate the findings 

obtained with xCell. We used the median values of expression for the single cell RNA­

Seq data provided by the Allen Institute for Brain Science, available at https://portal.brain­

map.org/atlases-and-data/rnaseq/human-m1-10x as reference for the human brain (M1–10X, 

127 cell types)(34). We used the CIBERSORTx “impute cell fractions” module with 

default parameters (relative mode, no batch correction, no quantile normalization, and no 

permutations for significance analysis)(33). We then compared the identified cell fraction 

compositions between the two survival groups using the Wilcoxon Rank Sum Test.

P-values from xCell and CIBERSORTx were corrected for multiple testing using the 

Benjamini and Hochberg method(35).

Association with mutation load

We downloaded and pre-processed glioblastoma mutation data as previously described 

in Kuijjer et al.(24). We selected data corresponding to patients that we used in our 

network analysis (n=232). We calculated patient-specific tumor mutation scores based on 

all available genes (n=26,076) using SAMBAR (https://github.com/kuijjerlab/SAMBAR and 

Kuijjer et al.(24)), which corrects the number of somatic mutations per gene based on the 

gene length and then sums these scores to obtain a patient-specific tumor mutation burden 

score. We calculated PD1 pathway targeting scores by dividing the sum of the PD1 gene 

targeting scores in each sample by the number of PD1 pathway genes available in our 

dataset (n=13). We then correlated the patient mutation scores with these PD1 pathway 

targeting scores using Spearman correlation. In addition, we assessed the association 
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between PD1 pathway targeting scores and mutation scores in individual Reactome 

pathways, across patients. As for most pathways only a subset of patients had non-zero 

mutation scores, we used Pearson correlation (which can handle ties) to calculate these 

pathway-specific scores.

Association with methylation data

We downloaded TCGA methylation beta value data for glioblastoma samples from the GDC 

Data Portal on June 9, 2019 (https://portal.gdc.cancer.gov/repository). We selected only 

primary tumor samples used in our network analysis, which included 246 samples obtained 

from the Illumina Infinium HumanMethylation27 (27K) BeadChip array and 93 samples 

from the Illumina Infinium HumanMethylation450 (450K) BeadChip array. We subsetted to 

probes for genes in the PD1 pathway, which included 19 probes on the 27K platform, and 

274 probes on the 450K platform. We performed quantile normalization on the methylation 

beta values, followed by a Bayesian statistical analysis using LIMMA as described above. 

For each platform, we compared the normalized beta values between short-term and long­

term survivors, adjusting for age, sex, and whether the patient was treated with neo-adjuvant 

therapy or not. We adjusted the p-values using the Benjamini and Hochberg method(35).

Validation in protein abundance data

We downloaded protein abundance data for glioblastoma samples from TCGA using 

Bioconductor package “RTCGA.RPPA” (accessed April 13, 2018)(36). We subsetted these 

data to primary tumors only and to samples corresponding to patients that were available in 

our network analysis (n=233). We selected PD1 pathway proteins in the RPPA data based 

on whether they corresponded to PD1 pathway genes from the Reactome signature (18 

genes in total). We identified 3/208 proteins as components of the PD1 pathway: Lck, p62­

LCK-ligand, and PDCD4. We compared protein abundance of these three proteins between 

the two survival groups using a t-test, and corrected for the FDR using the Benjamini and 

Hochberg method(35).

Data and code availability

The input data, clinical information, code to reproduce all individual patient networks, and 

the entire collection of reconstructed networks used in this study are available on https://

grand.networkmedicine.org/cancers/GBM_cancer/. Code to reproduce the results and figures 

is available at http://netbooks.networkmedicine.org/ under “Case studies—Gene regulatory 

network analysis in Glioblastoma.”

Results

Data features

We investigated the regulatory processes that drive survival differences in glioblastoma by 

performing network analysis in two discovery datasets followed by a validation in two 

independent datasets (Figure 1). For the discovery datasets, we analyzed microarray data 

of primary glioblastoma tumor samples from TCGA, which were profiled on two different 

platforms—Affymetrix HG-U133 arrays (“discovery dataset 1”) and Affymetrix Human 

Exon 1.0 ST arrays (“discovery dataset 2”). We removed potential outlier samples based on 
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gene expression densities and retained 522 and 431 samples, respectively, for the primary 

analysis. These included 424 samples obtained from the same patients. Thus, by assessing 

reproducibility of our network models in these two discovery datasets, we could identify 

whether the network models are robust across platforms.

For the independent validation dataset of primary tumors, we downloaded normalized 

microarray data from the German Glioma Network(22) from GEO, which were profiled 

on Affymetrix HG-U133 Plus 2.0 arrays. This validation dataset included 70 primary, 

untreated glioblastoma samples. Patient clinical features for the discovery dataset are 

summarized in Table 1. For this validation dataset, no clinicopathological features except 

for survival information were available. In addition, we performed a comparison of primary 

and recurrent glioblastomas profiled on Illumina HumanHT-12 V4.0 expression beadchips. 

This second validation dataset included a total of 43 samples(23).

To identify regulatory gene network differences associated with survival, we divided the 

patient population into two groups (see Materials and Methods). The first group had overall 

survival of more than 1.7 years (127 and 116 patients for discovery datasets 1 and 2, 

respectively) while the second group died within 1.7 years of initial diagnosis (336 and 275 

patients, respectively); patients who were alive, but for whom we did not have follow-up 

data >1.7 years were excluded from the analysis (59 and 40 patients, respectively). The 

number of long-term and short-term survivors in each dataset were well matched, and we 

controlled the downstream analysis of the discovery data for potential differences between 

the two outcome groups for age, sex, and neoadjuvant treatment status. We note that we also 

evaluated correction for IDH status, as well as multiple survival thresholds (see Materials 

and methods and below).

Patient-specific glioblastoma networks

In previous studies, we found gene regulatory network analysis identified altered phenotype­

relevant biological processes that were not observed using other analytical methods. 

Specifically, we found that transcription factors often demonstrate altered regulatory roles 

through changes in their targeting patterns that are independent of their own mRNA 

expression levels(12,13,17), highlighting the importance of integrative frameworks that 

include information on putative transcription factor-DNA binding sites to model regulatory 

mechanisms. Therefore, we performed a gene regulatory network analysis of glioblastoma 

using the PANDA and LIONESS integrative network modeling framework (Figure 1), 

reconstructing regulatory networks for each individual in our discovery populations and 

independently for the validation sets.

PANDA uses a message passing algorithm to seek consistency between evidence provided 

by multiple datasets. PANDA starts with a transcription factor to target gene prior network 

that is based on a motif scan mapping transcription factor binding sites to the promoter 

of their putative target genes. The method then integrates this prior network of putative 

interactions with protein-protein interactions between transcription factors and with target 

gene expression data. It does this through identifying overlaps in targeting patterns in 

the three input networks, rather than through estimating correlations between transcription 

factors or between transcription factors and their target genes (as we previously showed 
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in Sonawane et al.(12), expression levels of important regulatory factors are not always 

correlated with their targets). The resulting gene regulatory network consists of weighted 

edges between each transcription factor target gene pair. These edge weights reflect the 

strength of the inferred regulatory relationship.

We initiated PANDA with transcription factor binding sites from the Catalog of 

Inferred Sequence Binding Preferences (CISBP(25)), protein-protein interaction data from 

StringDb(27), and expression data from either the discovery or the validation datasets to 

model aggregate gene regulatory networks based on all samples. We then used LIONESS 

to estimate each individual patient-specific regulatory network. These individual patient 

networks allow us to associate network properties with clinical information.

Immune system network modules are associated with glioblastoma survival

As a baseline for our individual patient network analysis, we first compared the robustness 

of the condition-specific networks modeled on the two discovery datasets. We calculated 

network similarity using Pearson correlation and found that the networks were highly 

reproducible, with Pearson R=0.94, p<2.2e-16 (see Supplemental Figure 1). We next 

evaluated whether there were global network structural differences between the long-term 

and short-term survivors. To do this, we merged the individual patient networks of 

each discovery dataset into two condition-specific networks by, for all edges, taking the 

average of the edge weight across the patient group. For each discovery dataset, this 

resulted in one condition-specific network representing individuals with long-term survival 

and one representing individuals with short-term survival. We then used CONDOR(28), 

a community detection algorithm specifically designed to detect modules in bipartite 

networks, and applied ALPACA(29) to extract differential network modules that distinguish 

the long-term from the short-term survival network and vice versa. ALPACA calculates 

a “differential modularity” score that compares the density of modules in the “perturbed” 

network to the expected density of modules in the “baseline” network.

ALPACA found 14 differential modules in the long-term versus short-term comparison 

in discovery dataset 1 and 17 differential modules in discovery dataset 2. We performed 

GO term analysis on the top 50 genes with highest differential modularity scores in these 

modules (as described in Padi et al.(29)), and identified two modules that had significant 

over-representation of GO terms in each of the discovery datasets. In total, we identified 

over-representation of 19 GO terms (see Figure 2A). The three GO terms with the highest 

enrichment scores were significant in both discovery datasets. These terms included “innate 

immune response in mucosa,” “mucosal immune response,” and “organ or tissue specific 

immune response.” This result suggests that the regulatory network in glioblastoma changes 

its topology when the disease becomes more aggressive and that this rewiring involves genes 

with a role in immune response.

In addition to analyzing global differences in network module structure, we pulled out 

the transcription factors and target genes with the greatest contributions to the observed 

differences in network topology. We averaged the differential modularity scores from 

ALPACA across the networks modeled on the two discovery datasets. To extract the top 

differential nodes, we transformed these scores to a log scale. We then calculated the median 
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and interquartile range (IQR) for transcription factors and target genes separately, as these 

are bipartite networks with different targeting properties—transcription factors are fewer in 

number and generally regulate a large number of genes, while there are more target genes 

than transcription factors—therefore, in- and out-degree values cannot be directly compared 

(see Figure 2B for their distribution).

We identified four transcription factors for which differential modularity deviated more than 

1.5×IQR from the median (Figure 2B). The top transcription factor was BRCA1, which 

plays an important role in DNA damage repair, and is affected in many cancer types(37). 

Other transcription factors included ZBTB33, CREB3L1, and CTCF. ZBTB33 can promote 

histone deacetylation and the formation of repressive chromatin and plays a role in the 

Wnt signaling pathway. CREB3L1 is required to protect astrocytes from endoplasmatic 

reticulum-induced stress(38), and is activated in response to virus infection(39). CTCF can 

bind to a large number of sites in the human genome and is known to regulate important 

cellular processes, both in neuronal development and in the immune system(40).

For twelve target genes, differential modularity scores deviated with more than 3×IQR 

from the median (Figure 2B). These include cancer-associated genes such as PPP2R3C, a 

serine/threonine phosphatase involved in PI3K/Akt signaling and B cell survival, and DSN1, 

encoding a kinetochore protein. Genes known to be expressed in the brain (e.g. TACR2, 

TRPV4, and HSPBAP1) were also among the top target genes, as well as genes that may act 

as transcription factors (RBPJL and TOX4).

As ALPACA is not symmetric, we also contrasted short-term with long-term community 

structures and found similar results, with immune signaling pathways significantly enriched 

in differential communities in both datasets (see Supplemental Figure 2A for enriched GO 

terms, Supplemental Figure 2B for the distribution of ALPACA scores).

Regulation of PD1 pathway genes is associated with glioblastoma survival

After having analyzed the structural differences between condition-specific networks, we set 

out to analyze networks for each individual patient. We hypothesized that these individual 

patient network models, parameterized by the “weights” assigned to transcription factor/

target gene interactions (“edges”) we estimate, are predictive of clinical outcome. The basis 

for this hypothesis is that the edge weights provide an estimate of which gene regulatory 

programs are active in each individual.

We estimated whether alteration of the inferred regulatory networks was predictive of patient 

survival. For each gene in each sample, we calculated a “gene targeting score” equal to 

the sum of edge weights in the regulatory model. We used Bayesian statistical analysis 

(LIMMA) to test for significant associations of the gene targeting scores with survival. 

We corrected this analysis for patient age, sex, and neo-adjuvant treatment status. We used 

gene set enrichment analysis (GSEA(31) using Reactome(41)signatures from MSigDb(42)) 

on the moderated t-statistic from the LIMMA analysis to identify pathways significantly 

differentially targeted between good and poor survivors (FDR<0.05). We performed this 

analysis on both discovery datasets.
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We identified 54 and 46 pathways (FDR<0.05, absolute Enrichment Score (ES) >0.5, gene 

set size <50) in discovery dataset 1 and 2, respectively. Seven pathways were significant 

in both datasets and each of these seven pathways had a role in immune function (Figure 

3), confirming our findings from the ALPACA comparison. We note that we also repeated 

the analysis with correction for IDH status (available for 79% of patients) in addition to the 

covariates mentioned above. All seven pathways identified in the analysis without correction 

for IDH status remained significant after correcting for IDH status.

To validate these results, we repeated our network analysis pipeline on an independent 

validation dataset from the German Glioma Network. Even though the sample size of this 

validation dataset was considerably lower than those in the discovery datasets, we identified 

one of the seven pathways as significantly enriched (FDR=0.017), with the same direction of 

enrichment (ES=−0.67)—the PD1 signaling pathway.

Finally, to ensure that our results were stable across multiple survival thresholds, we 

repeated the comparative network analysis in the two discovery datasets across multiple 

survival thresholds, which we ranged from zero to the maximum follow-up, with intervals of 

0.1 years, keeping comparisons that had group sizes of at least ten patients. We found that 

the PD1 signaling pathway was stable across a wide range of thresholds (see Supplemental 

Figure 3A for discovery dataset 1 and B for discovery dataset 2).

Loss of transcriptional repression of PD1 signaling in patients with short-term survival

We next visualized the gene regulatory network around the PD1 signaling pathway and 

found that genes belonging to this pathway are overexpressed in the short-term survival 

group, but that their expression levels are repressed in the group of patients with better 

survival (Figure 4). This repression of PD1 signaling genes is lost in patients with the worst 

survival profiles. In total, we found 105 transcription factors to be involved in differential 

targeting of the PD1 signaling pathway, indicating that the regulatory network rewiring 

involved in glioblastoma survival is complex. In addition, several transcription factors were 

involved in differential regulation of multiple PD1 target genes (these are indicated with 

a larger font size in the figure). Examples of such transcription factors are GSX2, ZIC2, 

HMGA1, GATA4, ZKSCAN1, and SMARCC1.

GSX2 and ZIC2 are involved in brain development(43,44). GSX2 is a class II Homeobox 

gene that is found primarily in the brain and is involved in brain development and neuronal 

differentiation. It was previously reported as part of a three-gene signature that can predict 

outcome in low-grade glioma(43). HMGA1 can promote cell growth in glioma cells(45). 

Overexpression of this transcription factor was shown to correlate with proliferation, 

invasion, and angiogenesis in glioblastoma(46). Hypermethylation of the GATA4 promoter 

has been identified in glioblastoma and several other cancer types(47). ZKSCAN1 and 

SMARCC1 have not yet been identified in glioblastoma, but play a role in other cancer 

types. ZKSCAN1 was shown to be involved in cell proliferation, migration, and invasion 

in hepatocellular carcinoma(48), while SMARCC1 has been associated with colorectal 

cancer survival(49). These transcription factors are involved in metastasis and invasion, 

brain development, cell proliferation, and cancer. They could be potentially targeted to 

improve survival or to boost PD-1/PD-L1 inhibition in glioblastoma.
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Loss of transcriptional repression of PD1 signaling in recurrent compared to primary 
tumors

To determine whether PD1 signaling regulation is associated with tumor aggressiveness and 

progression in general, we modeled networks on a second independent validation set, which 

included recurrent and primary glioblastomas. We repeated our analysis pipeline, comparing 

networks modeled on recurrent with networks modeled on primary tumors. A total of four 

pathways were significantly differentially regulated, of which the PD1 signaling was the top 

ranked pathway (ES=−0.72, FDR=0.046). This indicates that PD1 signaling repression is 

lower in recurrent tumors compared to primary tumors, and thus strengthens our results that 

loss of repression of the pathway is associated with tumor progression.

PD1 targeting scores weakly associate with CD8 positive naive T-cell fractions

Because a recent study had shown that differences in co-expression, which are used as 

input in PANDA, may be caused by different cellular compositions in bulk tissues(50), we 

tested whether there were differences in immune cell composition in samples from the two 

patient groups. To do this, we used xCell(32) to calculate the cell type composition in each 

sample. We then performed a t-test to determine whether our sample groups were enriched 

for specific cell types. We identified significant enrichment for CD8 positive naive T-cells 

in long-term survivors in the two discovery datasets (FDR<0.1), as well as CD4 positive 

memory T-cells in discovery dataset 2 (see Supplemental Figure 4A for discovery dataset 1, 

B for discovery dataset 2, and C for the validation dataset). However, while we identified 

a nominal significance (p<0.05) for CD8 positive naive T-cells in the validation dataset as 

well, this was not significant after correcting for multiple testing.

We did not observe significant differences in other cell types, nor in the total immune scores 

(Supplemental Figure 5A). We then correlated the total immune scores (the sum of xCell 

scores of all immune cell types) with the PD1 pathway targeting scores to determine if 

there was any other dependence between targeting scores and immune infiltrate, but did 

not observe any significant correlations in the discovery datasets (Supplemental Figure 5B). 

We also did not observe significant differences in correlation coefficients between the two 

survival groups.

Deconvoluting with CIBERSORTx(33), using single cell RNA-Seq from human brain as a 

baseline, did not identify significant differences (FDR<0.05) in cell types between the two 

survival groups in any of the cohorts, confirming the results obtained with xCell.

Together, these results indicate that while PD1 targeting scores may somewhat associate 

with infiltration of CD8 positive naive T-cells, they cannot solely be explained by the 

amount of immune infiltration in the tumor samples. The association between repression 

of PD1 signaling and survival is therefore not likely to be caused solely by differences in 

immune composition, but rather by regulatory differences in the cancer cells.

Differential regulation of PD1 signaling is independent of overall tumor mutation load

We next tested whether differential regulation of PD1 signaling was associated with tumor 

mutation burden. A higher mutation burden has been associated with a higher level of 
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neoantigen presentation that may facilitate immune recognition of cancer and thus activate 

an anti-tumor immune response. It has also been associated with better response to immune 

checkpoint inhibitors(51).

For this and the following analyses, we focused on comparison of PD1 targeting scores 

from discovery dataset 1. We downloaded and pre-processed mutation data for glioblastoma 

patients as described in Kuijjer et al.(24) and selected data for those patients we used in 

our network analysis (n=235). We calculated the somatic mutation burden in these tumors 

using the overall mutation rate scores obtained with SAMBAR—a mathematical approach 

that converts and de-sparsifies somatic mutations in genes into pathway mutation scores(24). 

We used Spearman correlation to compare PD1 pathway targeting with the overall mutation 

rates. We did not identify any significant association between mutation burden and targeting 

of PD1 signaling genes (Figure 5A, Spearman R=0.016, p=0.81 for the PD1 targeting score, 

range of Spearman R for individual genes [−0.14, 0.075]), indicating that regulation of PD1 

signaling is independent of mutation burden in glioblastoma.

PD1 pathway targeting weakly associates with mutations in cell cycle genes

To identify if there was an association between targeting of the PD1 pathway and mutations 

in specific biological pathways, we correlated PD1 pathway targeting scores with mutation 

scores of individual biological pathways from SAMBAR (see Materials and methods). We 

identified one pathway that significantly correlated (FDR<0.1) with PD1 targeting scores, 

although the correlation coefficient was rather low (Pearson R=0.26), indicating a weak 

association—the Sigma-Aldrich pathway “G1 and S Phases” (Figure 5B). This pathway 

consists of fifteen genes, including cyclin D1, cyclin dependent kinases and their inhibitors, 

E2F transcription factors, MDM2, and TP53. A high mutation score in this pathway 

associated with a high targeting of the PD1 pathway (repression). Non-canonical functions 

of cell cycle genes include regulating the immune system(52), and this could be a potential 

mechanism for this association. The top pathways with FDR<0.25 include two pathways 

associated with RAR/RXR and CTCF transcription factor activity, respectively, indicating 

that mutations in these pathways may influence targeting of PD1 signaling. While both 

RAR/RXR and CTCF are transcriptional regulators, the genes available in these pathways 

are targets of these transcription factors, and the pathways do not include the transcription 

factors themselves. It is yet unclear why mutational patterns in targets of these transcription 

factors show a trend in correlating with PD1 pathway targeting scores.

Validation of the PD1 signaling pathway in other ‘omics data types

Finally, we analyzed differential regulation of PD1 signaling in the context of other ‘omics 

data types, including methylation and protein-abundance data.

First, we downloaded methylation data from glioblastoma samples from TCGA, and 

subsetted these to samples from the same patients we used in our network analysis. Data 

from two methylation arrays were available—Illumina Infinium Human Methylation 450K 

BeadChips (available for 93 patients in our cohort), which included 274 probes associated 

with PD1 genes, and Illumina Infinium HumanMethylation27 BeadChips (available for 246 

patients in our cohort), including 19 probes associated with these genes. We performed 
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LIMMA analyses to determine whether any of these probes were differentially methylated 

between the long- and short-term survival groups. We did not identify any significant 

differentially methylated probes, indicating that the repression of PD1 pathway genes in 

the long-term survival group is not driven by methylation, but directly by TF/target gene 

interactions.

To validate protein abundance levels of PD1 signaling genes, we downloaded Reverse Phase 

Protein Array (RPPA) data from glioblastoma samples from TCGA, and subsetted these to 

samples from the same patients we used in our network analysis (n=233). We evaluated 

differential abundance of the three PD1 signaling proteins for which abundance data was 

available between the long-term and short-term survivors and identified one protein with 

significant differential abundance: p62-Lck-ligand (translated by the SQSTM gene). This 

protein had lower abundance in patients with long term survival (FDR=0.0058, Figure 

6), further strengthening the involvement of the PD1 signaling pathway in glioblastoma 

survival.

Discussion

Transcriptomic analysis has previously identified numerous gene sets as potentially 

associated with survival in glioblastoma. However, many of the published prognostic 

signatures are not reproducible. Therefore, we hypothesized that alternative mechanisms 

may explain the heterogeneity in glioblastoma survival. Most notably, previous studies 

have not reported alterations in PD1 pathway expression to be associated with survival. 

Using an integrative network approach to model gene regulation in individual tumors, 

we found the regulation of PD1 signaling to be repressed in primary glioblastomas of 

patients who exhibited relatively long-term survival, loss of this repression in patients with 

worse outcome, and loss of repression of the pathway in recurrent compared to primary 

tumors. This signature of PD1 pathway repression was independent of total tumor mutation 

burden and methylation, and only weakly associated with immune cell infiltrate, suggesting 

that repression of the PD1 signaling pathway is an independent prognostic signature in 

glioblastoma that could potentially be used as a biomarker to predict survival.

PD1 signaling pathway plays an inhibitory regulatory role not only during T-cell exhaustion 

leading to suppression of T-cell responses, but also during naive-to-effector CD8 T-cell 

differentiation(53,54). Consistent with this biological role of the PD1 pathway and the 

association of immune infiltration of tumors, particularly lymphocytes, with better prognosis 

across cancers(55,56), we found a nominally significant higher abundance of CD8 positive 

naive T-cells in long-term survivors compared to short-term survivors. However, there 

was no significant correlation between CD8 positive naive T-cells abundance levels and 

PD1 targeting scores, indicating that immune infiltration does not completely explain the 

association between repression of PD1 signaling and better survival. Our results thus 

indicate that PD1 pathway regulatory differences occur in cancer cells, or in a combination 

of cancer and immune cells.

Immunotherapy, and in specific immune checkpoint inhibitors and PD-1/PD-L1 inhibitors 

have transformed the field of cancer treatment and have been shown effective in different 
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cancer types. While such inhibitors have already been used in a clinical setting in 

glioblastoma, it is still unknown if PD1 blockade gives clinical benefit in the disease, 

in part because glioblastoma is a highly heterogeneous disease(57). As we have shown 

here, patient-specific regulatory network modeling can help determine whether the pathway 

is likely to be transcriptionally active in the tumor, and thus may indicate whether it 

can potentially be targeted. Thus, tumor-specific regulatory networks could be used as a 

potentially new way to stratify glioblastoma patients.

Large-scale genome-wide network models as measured here with the PANDA and 

LIONESS approaches could—in addition to their potential to identify biomarkers—also 

highlight new avenues for treatment. For example, specific transcription factors that drive 

activation of the PD1 pathway could potentially be targeted in the short-term survival group. 

While transcription factors have historically been viewed as undruggable, recent advances 

have made it possible to target them and this is an emerging field in cancer research(58). 

Many of the transcription factors that we found to differentially regulate multiple PD1 

pathway genes have previously been associated with metastasis, migration, and survival in 

other cancer types, such as GSX2, ZIC2, HMGA1, and GATA4. This makes them promising 

targets for treatment that may help revert the PD1 signature towards its repressive state.

Regulatory network rewiring—such as that of the PD1 pathway which we observed in 

this study—can be sometimes inferred from subtle changes in gene expression, including 

patient-specific changes in different genes that affect the same biological pathway. 

Importantly, regulatory network changes do not necessarily derive from differences in 

the expression levels of transcription factors themselves, as we previously found in an 

analysis of gene regulatory networks across 38 tissues(12). Instead, tissue-specific gene 

expression is regulated by transcription factors that change their targeting patterns to activate 

tissue-specific regulatory roles. Differences in these targeting patterns can be caused by a 

multitude of mechanisms, including the residency time of the transcription factor on the 

DNA, the transcription factor’s protein abundance levels as well as the abundance of other 

regulatory factors in the cell(59), or epigenetic and post-transcriptional regulation(60,61). 

These mechanisms are likely to drive regulatory heterogeneity in cancer in the same way as 

they drive tissue-specificity. We would therefore like to stress the importance of system-wide 

network modeling in cancer to better understand drivers of heterogeneity in cancer.

In summary, our network analysis uncovered patterns of transcriptional regulation that 

differentiate long- and short-term glioblastoma survivors and identified differences in 

regulatory processes involved in immune regulation that can potentially be targeted in the 

clinic. These results underscore the importance of analyzing gene regulatory networks in 

addition to exploring differential gene expression, and illustrate how alterations of network 

structure may be predictive of patient survival and identify possible regulatory targets 

for therapeutic intervention. Most importantly, the comparative network analysis approach 

outlined here can be used to investigate the molecular features that drive prognosis in other 

cancers and complex diseases and thus has the potential to expand the use of individualized 

network medicine in disease study and management.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Statement of Significance

Genome-wide network modeling of individual glioblastomas identifies dysregulation of 

PD1 signaling in patients with poor prognosis, indicating this approach can be used to 

understand how gene regulation influences cancer progression.
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Figure 1. 
Schematic overview of the study. Left box: overview of the approach used to reconstruct 

individual patient networks with PANDA and LIONESS by integrating information on 

protein-protein interactions (PPI) between transcription factors (TF), prior information on 

TF-DNA motif binding, and gene expression data from two platforms using data from 

TCGA (n=522 and 431 patients). Right box: overview of the differential regulation analysis.
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Figure 2. 
Differential network topology between long- and short-term survivors. A) Differential 

network modules significantly enriched for overrepresentation of Gene Ontology terms. 

Modules are shown for both discovery datasets (D1 and D2). Two modules were significant 

in D1 and three in D2 (indicated with M1–M3). The color in the heatmap indicates 

the enrichment of genes in the module as observed/expected value (Obs/Exp), with 

purple representing enriched modules in discovery dataset 1 and green enriched modules 

in discovery dataset 2. B) “Beeswarm” plot visualizing the distribution of average log 

differential modularity scores from ALPACA, for transcription factors (TF) and genes 

(Gene). Higher scores mean higher differential modularity. TFs and genes with significant 

differential modularity between the two survival groups are labeled.
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Figure 3. 
Bubble plot representation of the seven pathways that were significantly differentially 

regulated between long- and short-term survivors in both datasets from TCGA. For each 

pathway, two bubbles are shown—one for each dataset—representing the Enrichment Score 

(ES) on the x-axis, the -logFDR (color), and the number of genes represented in the pathway 

(bubble size).
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Figure 4. 
Network representation of the PD1 signaling pathway in discovery dataset 1. Node size 

corresponds to the number of edges connected in the graph; line-width of edges corresponds 

to their significance in differential regulation. Gene targeting scores (or “degrees”) are 

shown with a circle surrounding the node. Red: higher expression/targeting in short-term 

survivors, blue: higher expression/targeting in the long-term survivors.
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Figure 5. 
Association of PD1 pathway targeting with mutation data. A) Smooth scatterplot comparing 

PD1 targeting scores with mutation load. B) Results from the association of PD1 pathway 

scores with mutation scores in individual pathways. The three most significant pathways 

are labeled. Purple dots indicate pathways with positive correlation, yellow dots those with 

negative correlation.
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Figure 6. 
Validation analysis in RPPA data. p62-Lck-ligand protein abundance is significantly higher 

in short-term survivors compared to long-term survivors (FDR=0.0058).
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Table 1.

Clinical features for patients available in the two discovery datasets from TCGA. T-test was performed for 

age and year of diagnosis. For other clinical features, Fisher’s exact test was performed, excluding unreported 

values. Surv.: survival.

Discovery dataset 1 Discovery dataset 2

Long-term surv. Short-term surv. P-value Long-term surv. Short-term surv. P-value

Number of patients 127 336 – 116 275 –

Sex

 Female 55 122 0.198 49 96 0.172

 Male 72 214 67 179

Age 49.2 ± 14.7 60.7 ± 13.2 4.34e-13 49.7 ± 14.5 60.0 ± 13.7 4.55e-10

Year of diagnosis 2003 ± 4.4 2004 ± 5.1 0.162 2003 ± 4.2 2003 ± 4.9 0.797

Race

 Asian 5 4 0.178 5 4 0.200

 Black 8 17 8 14

 White 113 298 102 241

 Not reported 1 17 1 16

Ethnicity

 Hispanic or latino 2 8 0.731 1 7 0.443

 Not hispanic or latino 111 276 105 234

 Not reported 14 52 10 34

Neoadjuvant therapy

 Yes 68 160 0.250 64 137 0.375

 No 57 172 51 134

 Not reported 2 4 1 4
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