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Abstract

Background: Randomized controlled trials (RCTs) play a central role in evidence-based 

healthcare. However, the clinical and policy implications of implementing RCTs in clinical 

practice are difficult to predict as the studied population is often different from the target 

population where results are being applied. This study illustrates the concepts of generalizability 
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and transportability, demonstrating their utility in interpreting results from the National Lung 

Screening Trial (NLST).

Methods: Using inverse-odds weighting, we demonstrate how generalizability and 

transportability techniques can be used to extrapolate treatment effect from (i) a subset of NLST to 

the entire NLST population and from (ii) the entire NLST to different target populations.

Results: Our generalizability analysis revealed that lung cancer mortality reduction by LDCT 

screening across the entire NLST (16% [95% CI: 4–24]) could have been estimated using a 

smaller subset of NLST participants. Using transportability analysis, we showed that populations 

with a higher prevalence of females and current smokers had a greater reduction in lung cancer 

mortality with LDCT screening (e.g., 27% [95% CI: 11–37] for the population with 80% females 

and 80% current smokers) than those with lower prevalence of females and current smokers.

Conclusions: This article illustrates how generalizability and transportability methods extend 

estimation of RCTs’ utility beyond trial participants, to external populations of interest including 

those that more closely mirror real-world populations.

Impact: Generalizability and transportability approaches can be used to quantify treatment effects 

for populations of interest, which may be used to design future trials or adjust lung cancer 

screening eligibility criteria.

Introduction

Randomized controlled trials (RCTs) are the de facto approach to assessing the efficacy of 

interventions. As of July 1st, 2021, over 382,000 research studies have been registered on 

ClinicalTrials.gov (1), highlighting the large number of studies that have been conducted or 

are currently underway. Nevertheless, the translation of this knowledge to clinical practice 

is often problematic. External validity (i.e., generalizing the study findings to an external 

population) is a longstanding challenge in utilizing RCT results. Study participants are 

often different from the target populations of non-participants who may or may not have 

been eligible for the RCTs. Currently, clinical guidelines are often based on systematic 

reviews or meta-analyses of RCTs conducted in populations that do not necessarily mirror 

such target populations. Approaches are needed to extrapolate the findings of RCTs, 

generalizing them to other populations of interest, informing clinical, policy, and public 

health interventions for that population (2,3). Furthermore, although stratification of RCT 

results by participant characteristics (covariates) allows us to estimate the causal effect 

within a defined subpopulation (e.g., all female or male participants), this analysis does not 

estimate the causal effects when the population characteristics are varied (e.g., increasing the 

proportion of female participants). Thus, more flexible analysis methods are needed.

Whereas careful attention has been given to RCT internal validity (i.e., obtaining the 

unbiased causal effect for the study participants), methods for drawing inferences related 

to the generalizability and transportability of trial results have been under-utilized in 

health science research (4,5). Generalizability and transportability are concepts that have 

recently received renewed interest in causal inference literature (6–9). Techniques exist for 

extrapolating results from RCT participants to a target population, given knowledge about 

the characteristics of a population for which an intervention is being considered (8–13). 
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Generalizability is considered when the target population completely subsumes the study 

participants (e.g., the study participants are people in California, and the target population 

is the entire United States population) (Figure 1A). Transportability is applicable when the 

target population partially includes or does not include the study participants (e.g., the study 

participants are people in the United States, and the target population includes people in 

the Western hemisphere [partial inclusion] or people in Europe [no inclusion]) (Figure 1B). 

Given RCTs’ role in formulating clinical guidelines, informing evidence-based physician 

decision making, and contributing to health policy management, understanding how these 

approaches can be used to interpret RCT results for different populations is imperative.

To ground our discussion, we demonstrate how these concepts are applied to a large, 

multicenter trial that evaluated lung cancer screening efficacy using low-dose computed 

tomography (LDCT). The National Lung Screening Trial (NLST) was the first randomized 

clinical trial to demonstrate a reduction in lung cancer mortality after three annual screens 

with LDCT of the chest relative to chest x-ray (CXR) (14). These findings, complemented 

by a comparative simulation study of different eligibility criteria and screening intervals, 

informed lung cancer screening recommendations made by the United States Preventive 

Services Task Force (USPSTF) (15,16). Recently, the primary outcome of the NLST has 

been further supported by additional large RCTs conducted in Europe, the Nederlands–

Leuvens Longkanker Screenings Onderzoek (NELSON) trial (17) and the Multicentric 

Italian Lung Detection (MILD) trial with ten years of follow-up (18). More recently, 

the German Lung cancer Screening Intervention (LUSI) also showed beneficial effects of 

regular LDCT screening on reduction in lung cancer mortality, particularly among females 

(19). However, several other RCTs reported no significant lung cancer mortality benefit (20–

23). While these trials studied distinct populations from the NLST, NELSON, and MILD 

trials, they also have smaller sample sizes or shorter follow-up periods. Recognizing the 

substantial resources required to conduct such trials, the ability to generalize findings from 

the NLST cohort (whether a subset of, or the entire population) to a target population would 

be of great public benefit. Through the examples of generalizability and transportability 

formula, we demonstrate the utility of such techniques to extend RCT results to other 

populations of interest without conducting additional trials.

Methods

Data Sources and Study Population

The NLST was conducted at 33 sites as a collaborative effort of (i) a contract called the 

Lung Screening Study (LSS), sponsored by the National Cancer Institute (NCI) Division 

of Cancer Prevention, and (ii) a grant to the American College of Radiology Imaging 

Network (ACRIN) sponsored by the NCI Division of Cancer Treatment and Diagnosis, 

Cancer Imaging Program (24). A total of 53,452 participants were enrolled from August 

2002 to April 2004. In total, 26,722 individuals were randomized to LDCT screening and 

26,730 to CXR screening. Eligibility criteria included current or former smokers aged 55 

to 74 years, a history of cigarette smoking of at least 30 pack-years, and among former 

smokers, no more than 15 years since quit (14,24,25).
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Given a previous NLST report of the difference in the lung cancer mortality risk ratio 

(RR) by sex (male, n=31,530 [59%], RR=0.92; female, n=21,922 [41%], RR=0.73) (26), we 

selected 23 screening centers having female prevalence ≥40% (the threshold which is close 

to the overall prevalence of females in the entire NLST population) as our trial sample to 

estimate the effect of screening on lung cancer mortality. We then defined the remainning 

subset of the NLST (i.e., 10 centers having female prevalence <40%) as target population 

that is assumed, for illustration purposes, to be NLST-eligible non-participants.

Measurements

Demographic characteristics including age (years), sex (male or female), race (Asian, Black, 

American Indian or Alaska Native, Native Hawaiian or Other Pacific Islander, or White), 

ethnicity (Hispanic, Non-Hispanic), education status (less than college, college or higher, 

others), marital status (single, married, widowed, or divorced), and smoking status (current 

or former smokers) were self-reported at randomization. Body mass index (BMI) was 

calculated as weight (kilograms) divided by height (meters) squared. Mortality data were 

ascertained by annual questionnaires and searches on the National Death Index. Participants 

were followed for up to 8.2 years.

Statistical Analyses

Using generalizability and transportability formula, we extended the results from our trial 

sample (N=29,848) to the entire participants in the NLST (N=53,452; Figure 1C) and the 

target population (N=23,604; Figure 1D), respectively, without knowing their outcomes. 

Table 1 summarizes assumptions necessary to conduct generalizability and transportability 

analysis, also called identifiability conditions. For example, due to the nature of RCT, the 

intervention group and control group were exchangeable (i.e., no confounders between the 

intervention and the outcome), and the probability of being in the intervention group was 

not zero in any stratum of covariates. Other assumptions were not testable but expected to 

hold in our example of ideal settings within the NLST data. We employed an inverse-odds 

weighting approach to control for participants’ pre-intervention demographic characteristics 

(age, sex, race/ethnicity, education, marital status, smoking, and BMI) and the recruitment 

arm of the NLST (i.e., whether the center was part of LSS or ACRIN). In this approach, 

we emulate the target population from the sample of trial participants using the weights 

calculated by an inverse of odds of being in the trial sample instead of the target population 

(6,7,27);

[Probability   of   being   in   tℎe   target   population   given   covariates
Probability   of   being   in   tℎe   trial   sample   given   covariates ] ×

[ Probability   of   being   in   tℎe   trial   sample
Probability   of   being   in   tℎe   target   population ]

As an additional analysis, we re-categorized the NLST participants into two different groups 

defined by the recruitment arm of NLST (i.e., ACRIN and LSS). We then generalized 

the results of the participants from ACRIN centers to the entire NLST population and 

transported the results to the participants from LSS centers.
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Lastly, we assessed changes in the estimated effect derived from the entire NSLT population 

to the hypothesized target populations by varying the distribution of sex and smoking 

status. We compared our analysis with previously reported RR of lung cancer mortality 

in these sample populations: current smokers, n=25,760 [48%], RR=0.81; former smokers, 

n=27,692 [52%], RR=0.91 (26). For all experiments, 95% CIs were estimated by repeating 

the analyses on 200 bootstrapped samples. All analyses were conducted using R 4.0.3.

Results

Table 2 presents participant characteristics for the entire NLST and two study populations: 

a subset of centers where the distribution of female participants is ≥ 40% (called the “trial 

sample”), and an example target population where the distribution of female participants is 

< 40% (called the “target population”). Compared with the target population (centers with 

<40% female participants), participants among the trial sample were more likely to be single 

or divorced/widowed, current smokers, and from centers enrolled through ACRIN.

Generalizing the result from one subpopulation to the entire NLST population

Table 3 summarizes our analysis of generalizing results from the trial sample to the 

entire NLST population. Among 29,848 participants in the trial sample, during the median 

(interquartile range) follow-up of 6.6 (6.2–6.9) years, 579 died of lung cancer. The rates 

of death from lung cancer in the LDCT group versus the CXR group were 274 deaths and 

334 deaths per 100,000 person-years, respectively. The relative reduction in the rate of lung 

cancer mortality with LDCT screening in the trial sample was 18% (95% CI: 6 to 29).

Across the entire NLST population of 53,452 participants during the median (interquartile 

range) follow-up of 6.7 (6.2–7.0) years, 1,021 deaths from lung cancer were observed. 

The rates of death from lung cancer in the LDCT arm and CXR arm were 273 deaths 

and 324 deaths per 100,000 person-years, respectively. Based on the observed outcome 

data across the entire NLST population, the relative reduction in the rate of lung cancer 

mortality with LDCT screening was 16% (95% CI, 5 to 24). The generalized effect (i.e., 

the effect calculated by applying the generalizability formula across the trial sample without 

knowing the outcome across the entire NLST population) of LDCT screening on lung cancer 

mortality across the entire NLST population was 16% (95% CI: 1 to 28). This analysis 

demonstrates the successful application of the inverse-odds weighting approach to estimate 

the causal effect on the target population from only a subset of the NLST.

Transporting the result from one subpopulation of the NLST to another

Among 23,604 participants in the target population, during the median (interquartile range) 

follow-up of 6.7 (6.3–7.1) years, 442 deaths from lung cancer were observed. The rates of 

death from lung cancer in the LDCT arm and CXR arm were 272 deaths and 309 deaths per 

100,000 person-years, respectively. Based on the observed outcome data across the target 

population, the relative reduction in the rate of lung cancer mortality with LDCT screening 

was 10% (95% CI, −9 to 28). The transported effect (i.e., the effect calculated by applying 

the transportability formula across the trial sample without knowing the outcome across the 
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target population) of LDCT screening on lung cancer mortality across this target population 

was 11% (95% CI: −8 to 29).

Generalizing and transporting the result from ACRIN to the entire NLST and LSS 
populations

Among 18,840 participants in ACRIN centers, the relative reduction in the rate of lung 

cancer mortality with LDCT screening was 23% (95% CI, 7 to 36). The generalized effect 

of LDCT screening on lung cancer mortality among the entire NLST population was 21% 

(95% CI: 2 to 35) which was toward the observed effect (16% [95% CI: 5 to 24]) among 

the entire NLST participants (Supplementary Table S1). The transported effect of LDCT 

screening on lung cancer mortality among participants in LSS centers was 20% (95% CI: −2 

to 34), which was larger than the observed effect among 34,612 participants in LSS centers 

(11% [95% CI: −4 to 25]), and the 95% CI of both estimates included the null.

Extending the trial result to a range of target populations

As shown in Figure 2, the hypothesized target populations with a higher prevalence of 

females and current smokers showed a greater reduction in lung cancer mortality with 

LDCT screening than the hypothesized populations with a lower prevalence of females and 

current smokers. For example, the relative reduction was 27% (95% CI: 11 to 37) for the 

population with 80% females and 80% current smokers, while the relative reduction was 

11% (95% CI: −4 to 23) for the population with 20% females and 20% current smokers.

Discussion

This paper illustrates the application of generalizability and transportability analysis to 

extend the results obtained from an RCT to an external target population using data from 

the NLST. This approach provides the estimated effect of the intervention (in this case, 

LDCT screening) on the outcome (lung cancer mortality) with not only high internal 

validity (due to RCT study design) but also high external validity (due to the application 

of generalizability and transportability techniques). Even well-designed, adequately powered 

conventional RCTs do not necessarily provide the potential impact of the intervention if 

the target population differs from the trial sample. When all variables that modify the 

effect of the intervention and differentiate the trial sample from the target population are 

observed, the generalizability and transportability formulae allow us to obtain externally 

valid estimates in the target population by controlling for differences in the distribution of 

such variables between the two populations.

Our work builds on a growing foundation of literature related to generalizability and 

transportability (4–13,28–31). Despite the theoretical advancement of the methodology in 

statistics and epidemiology, it has not yet been sufficiently demonstrated in the clinical 

literature, so we aimed to not only introduce these concepts to physicians and biomedical 

researchers but also to provide a practical demonstration. In our example, we found that 

both estimates for the target population (10 centers with the female prevalence of <40%) 

and the entire NLST calculated from the trial sample (23 centers with the female prevalence 

of ≥40%) using the generalizability and transportability formulae were nearly identical 
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to the observed estimates in each population, respectively. Moreover, we showed that 

the transportability formula allowed us to transport the estimated effects in the NLST 

to hypothesized external populations varying the distribution of sex and smoking status. 

Through these examples, we observed a higher mortality reduction in a population with a 

higher prevalence of females when screened using LDCT, which is consistent with a recent 

result at 10 years of follow-up from the NELSON trial (males [n=13,195], rate ratio=0.76 

[95% CI, 0.61 to 0.94]; females [n=2,594], rate ratio=0.67 [95% CI, 0.38 to 1.14]) while 

the heterogeneity by sex was not statistically significant (17). Notably, while we illustrate 

this principle using only two variables, results can be transported to any target population 

by varying the distribution of multiple covariates using a single transportability formula. 

These examples reinforce that extending the results from an RCT to the appropriate target 

population can provide clinicians and decision-makers novel insights about the population 

that would benefit from the intervention.

Defining the target population is essential to make meaningful generalizations of RCT 

results (3,32–34). When the trial sample is a random subset of the target population, we can 

often generalize study results to the target population without additional analysis. However, 

there is rarely an ideal setting in which the RCT-eligible population is an exact random 

subsample of the entire population of interest. Furthermore, researchers and practitioners 

must consider the extent to which trial results can be applied when the target population 

consists of individuals who were RCT-eligible but did not participate (e.g., the nearest 

study site was too far away) or who were not eligible but could have benefitted from the 

intervention under study (e.g., the individual fell short of the minimum smoking pack-year 

history) (2). Even when the trial sample is a random subset of the target population, 

transportability can be used to estimate the treatment effect over time if the distribution 

of the trial participants’ characteristics changes. For example, results from the NLST 

(conducted during 2002–2009) may not be directly interpreted in the same population in 

2020, given the declining number of current smokers over the last decade (35).

Several limitations of this approach are noted. The presence of unmeasured variables could 

modify the effect of interest when the distribution of such variables is different between 

the trial sample and the target population. Although our main example was an ideal 

setting for illustration purposes, our additional example of ACRIN and LSS showed some 

gaps between observed treatment effects and generalized or transported effects, indicating 

that some key variables were not included in our generalizability and transportability 

formula. The assumption of this conditional exchangeability over study participation (i.e., 

enumerating a comprehensive set of variables that modify the effect of treatment as related 

to the sampling of the original study population) is even more challenging when attempting 

to extrapolate the results to general populations. Sensitivity analysis could provide ranges 

of the transported effect in the target population, assuming the distribution of variables that 

modify the effect in the trial sample but were not measured in the target population (36). A 

statistical approach of modeling the outcome by inserting the interaction term between the 

intervention and the covariates may be helpful. Still, we cannot rule out the possibility 

of interaction even when the interaction term’s obtained coefficient is not statistically 

significant. In this context, a conservative approach may include a broader set of variables in 

the transportability formula with the assumption that they may modify the treatment effect 
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(36). Recently, several approaches including tree-based methods have been developed to 

detect heterogeneous treatment effects by a complex set of covariates and predict treatment 

effects at finely categorized subgroups (37,38). The combination of these methods with 

generalizability and transportability would further increase the utility of RCT results towards 

both population-based and individualized clinical decision making.

The generalizability and transportability formulae need to be properly specified. Several 

techniques have been developed to detect model misspecification (27,39). In addition, 

to avoid the violation of the positivity assumption (i.e., a non-zero probability of trial 

participation for each individual in the target population), the target population should meet 

the study inclusion and exclusion criteria of the original trials, particularly for variables that 

could modify the treatment effect. Here, the results from the NLST may not be transported 

to the population of never smokers because the RCT included only current or former 

smokers. Therefore, the external validity of the trial must be carefully considered when 

designing the study. Given the variability of CT screening across guidelines and trials (14–

17), we also need to carefully consider the type and methods of screening when extending 

and interpreting the intervention effects. Lastly, we utilize individual-level data from the 

NLST to show that our formula works using existing RCT data. Access to individual-level 

data on baseline covariates for both trial and target populations is crucial for correctly 

specifying generalizability and transportability formulae. Given such data, we can determine 

the expected treatment effect on the target population of interest. The ability to flexibly 

estimate effect size across a wide number of covariates can help readers understand the 

implications of RCT results in a range of external populations and have broader implications 

beyond lung cancer screening. For example, the recent SARS-CoV-2 outbreak underscored 

the need for rapid recruitment and execution of clinical trial studies on potential vaccines. 

Generalizability and transportability may be used to estimate these vaccines’ treatment effect 

on patient groups who may not have been well-represented in these trials.

In healthcare literature, RCTs have been considered the de facto standard clinical to provide 

evidence to inform clinical guidelines. However, estimates obtained from an RCT are 

insufficient to estimate the benefits of interventions in real-world settings if the population 

of interest differs from the trial sample. The concepts and applications of generalizability 

and transportability help us to minimize this longstanding limitation of RCTs. Although 

these quantitative techniques have well-documented assumptions, they are particularly 

informative when clinical trials are not feasible or ethical, allowing us to transport the 

results of an RCT to an external population of interest. Such information is critical for 

academic society to build clinical guidelines targeting a specific population that has a 

different distribution of baseline characteristics from the trial sample. Moreover, even if 

these approaches do not entirely overcome the barriers that limit external validity of existing 

RCTs, they allow researchers to efficiently and effectively define the study population 

of future trials by knowing which populations would receive the greatest benefit from 

an intervention. Including generalizability and transportability analysis as part of RCT 

reporting would maximize the utility of the RCT, informs the quality of future trials, and 

translates experimental data into rational clinical guidelines.
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Refer to Web version on PubMed Central for supplementary material.

Funding/Support:

K. Inoue was supported by the NIH/NIDDK grant F99 DK126119 and Honjo International Scholarship. A.A.T. Bui 
and W. Hsu were supported by the National Institutes of Health (NIH)/NIBIB grant R01 EB0276502, NIH/NCI 
grant R01 CA226079, and NSF grant #1722516. This article does not necessarily represent the views and policies 
of the NIH. Study sponsors were not involved in study design, data interpretation, writing, or the decision to submit 
the article for publication.

Role of the Funder/Sponsor:

The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation 
of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for 
publication.

References

1. ClinicalTrials.gov [Internet]. [cited 2021 July 1]. Available from: https://clinicaltrials.gov/

2. Frieden TR. Evidence for Health Decision Making — Beyond Randomized, Controlled Trials. New 
England Journal of Medicine. Massachusetts Medical Society; 2017;377:465–75.

3. Rothwell PM. External validity of randomised controlled trials: “To whom do the results of this trial 
apply?” The Lancet. Elsevier; 2005;365:82–93.

4. Cole SR, Stuart EA. Generalizing Evidence From Randomized Clinical Trials to Target Populations. 
Am J Epidemiol. 2010;172:107–15. [PubMed: 20547574] 

5. Hernán MA, VanderWeele TJ. Compound Treatments and Transportability of Causal Inference. 
Epidemiology. 2011;22:368–77. [PubMed: 21399502] 

6. Westreich D, Edwards JK, Lesko CR, Stuart E, Cole SR. Transportability of Trial Results Using 
Inverse Odds of Sampling Weights. Am J Epidemiol. 2017;186:1010–4. [PubMed: 28535275] 

7. Lesko CR, Buchanan AL, Westreich D, Edwards JK, Hudgens MG, Cole SR. Generalizing Study 
Results: A Potential Outcomes Perspective. Epidemiology. 2017;28:553–61. [PubMed: 28346267] 

8. Bareinboim E, Pearl J. Causal inference and the data-fusion problem. PNAS. National Academy of 
Sciences; 2016;113:7345–52.

9. Bareinboim E, Pearl J. A General Algorithm for Deciding Transportability of Experimental 
Results. Journal of Causal Inference [Internet]. 2013 [cited 2020 Jun 16];1. Available from: 
https://www.degruyter.com/view/j/jci.2013.1.issue-1/jci-2012-0004/jci-2012-0004.xml [PubMed: 
25379365] 

10. Stuart EA, Cole SR, Bradshaw CP, Leaf PJ. The use of propensity scores to assess the 
generalizability of results from randomized trials. J R Stat Soc Ser A Stat Soc. 2001;174:369–86.

11. Pearl J. Generalizing Experimental Findings. Journal of Causal Inference. 2015;3:259–66.

12. Bareinboim E, Pearl J. Transportability of Causal Effects: Completeness Results: [Internet]. Fort 
Belvoir, VA: Defense Technical Information Center; 2012 1. Available from: http://www.dtic.mil/
docs/citations/ADA557446

13. Bareinboim E, Tian J, Pearl J. Recovering from Selection Bias in Causal and Statistical Inference. 
AAAI. 2014;2410–6.

14. Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening. New England 
Journal of Medicine. Massachusetts Medical Society; 2011;365:395–409.

15. de Koning HJ, Meza R, Plevritis SK, ten Haaf K, Munshi VN, Jeon J, et al. Benefits and harms of 
computed tomography lung cancer screening strategies: a comparative modeling study for the U.S. 
Preventive Services Task Force. Ann Intern Med. 2014;160:311–20. [PubMed: 24379002] 

16. Moyer VA. Screening for Lung Cancer: U.S. Preventive Services Task Force Recommendation 
Statement. Annals of Internal Medicine. American College of Physicians; 2014;160:330–8.

Inoue et al. Page 9

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://ClinicalTrials.gov
https://clinicaltrials.gov/
https://www.degruyter.com/view/j/jci.2013.1.issue-1/jci-2012-0004/jci-2012-0004.xml
http://www.dtic.mil/docs/citations/ADA557446
http://www.dtic.mil/docs/citations/ADA557446


17. de Koning HJ, van der Aalst CM, de Jong PA, Scholten ET, Nackaerts K, Heuvelmans MA, et al. 
Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial. New England 
Journal of Medicine. Massachusetts Medical Society; 2020;382:503–13.

18. Pastorino U, Silva M, Sestini S, Sabia F, Boeri M, Cantarutti A, et al. Prolonged lung cancer 
screening reduced 10-year mortality in the MILD trial: new confirmation of lung cancer screening 
efficacy. Annals of Oncology: Official Journal of the European Society for Medical Oncology. 
2019;30:1162–9. [PubMed: 30937431] 

19. Becker N, Motsch E, Trotter A, Heussel CP, Dienemann H, Schnabel PA, et al. Lung cancer 
mortality reduction by LDCT screening-Results from the randomized German LUSI trial. Int J 
Cancer. 2020;146:1503–13. [PubMed: 31162856] 

20. Infante M, Cavuto S, Lutman FR, Passera E, Chiarenza M, Chiesa G, et al. Long-Term Follow-
up Results of the DANTE Trial, a Randomized Study of Lung Cancer Screening with Spiral 
Computed Tomography. Am J Respir Crit Care Med. 2015;191:1166–75. [PubMed: 25760561] 

21. Wille MMW, Dirksen A, Ashraf H, Saghir Z, Bach KS, Brodersen J, et al. Results of the 
Randomized Danish Lung Cancer Screening Trial with Focus on High-Risk Profiling. Am J Respir 
Crit Care Med. 2016;193:542–51. [PubMed: 26485620] 

22. Paci E, Puliti D, Lopes Pegna A, Carrozzi L, Picozzi G, Falaschi F, et al. Mortality, survival and 
incidence rates in the ITALUNG randomised lung cancer screening trial. Thorax. 2017;72:825–31. 
[PubMed: 28377492] 

23. Doroudi M, Pinsky PF, Marcus PM. Lung Cancer Mortality in the Lung Screening Study 
Feasibility Trial. JNCI cancer spectrum. 2018;2:pky042. [PubMed: 31360863] 

24. National Lung Screening Trial Research Team, Aberle DR, Berg CD, Black WC, Church TR, 
Fagerstrom RM, et al. The National Lung Screening Trial: overview and study design. Radiology. 
2011;258:243–53. [PubMed: 21045183] 

25. Results of Initial Low-Dose Computed Tomographic Screening for Lung Cancer. New England 
Journal of Medicine. Massachusetts Medical Society; 2013;368:1980–91.

26. Pinsky PF, Church TR, Izmirlian G, Kramer BS. The National Lung Screening Trial: 
Results Stratified by Demographics, Smoking History and Lung Cancer Histology. Cancer. 
2013;119:3976–83. [PubMed: 24037918] 

27. Dahabreh IJ, Robertson SE, Steingrimsson JA, Stuart EA, Hernán MA. Extending inferences 
from a randomized trial to a new target population. Statistics in Medicine. 2020;39:1999–2014. 
[PubMed: 32253789] 

28. Hartman E, Grieve R, Ramsahai R, Sekhon JS. From sample average treatment effect to population 
average treatment effect on the treated: combining experimental with observational studies to 
estimate population treatment effects. Journal of the Royal Statistical Society Series A (Statistics 
in Society). [Wiley, Royal Statistical Society]; 2015;178:757–78.

29. Rudolph KE, van der Laan MJ. Robust estimation of encouragement-design intervention effects 
transported across sites. J R Stat Soc Series B Stat Methodol. 2017;79:1509–25. [PubMed: 
29375249] 

30. Buchanan AL, Hudgens MG, Cole SR, Mollan KR, Sax PE, Daar ES, et al. Generalizing Evidence 
from Randomized Trials using Inverse Probability of Sampling Weights. J R Stat Soc Ser A Stat 
Soc. 2018;181:1193–209.

31. Dahabreh IJ, Robertson SE, Tchetgen EJ, Stuart EA, Hernán MA. Generalizing causal inferences 
from individuals in randomized trials to all trial-eligible individuals. Biometrics. 2019;75:685–94. 
[PubMed: 30488513] 

32. Rothman KJ, Gallacher JEJ, Hatch EE. Why representativeness should be avoided. Int J Epidemiol. 
2013;42:1012–4. [PubMed: 24062287] 

33. Rothwell PM. Commentary: External validity of results of randomized trials: disentangling a 
complex concept. Int J Epidemiol. 2010;39:94–6. [PubMed: 19776246] 

34. Greenhouse JB, Kaizar EE, Kelleher K, Seltman H, Gardner W. Generalizing from clinical 
trial data: a case study. The risk of suicidality among pediatric antidepressant users. Stat Med. 
2008;27:1801–13. [PubMed: 18381709] 

Inoue et al. Page 10

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



35. CDC. Current Cigarette Smoking Among Adults in the United States [Internet]. Centers for 
Disease Control and Prevention. 2019 [cited 2020 Sep 20]. Available from: https://www.cdc.gov/
tobacco/data_statistics/fact_sheets/adult_data/cig_smoking/index.htm

36. Nguyen TQ, Ackerman B, Schmid I, Cole SR, Stuart EA. Sensitivity analyses for effect modifiers 
not observed in the target population when generalizing treatment effects from a randomized 
controlled trial: Assumptions, models, effect scales, data scenarios, and implementation details. 
PLOS ONE. Public Library of Science; 2018;13:e0208795.

37. Wager S, Athey S. Estimation and Inference of Heterogeneous Treatment Effects using Random 
Forests. Journal of the American Statistical Association. Taylor & Francis; 2018;113:1228–42.

38. Kent DM, van Klaveren D, Paulus JK, D’Agostino R, Goodman S, Hayward R, et al. The 
Predictive Approaches to Treatment effect Heterogeneity (PATH) Statement: Explanation and 
Elaboration. Ann Intern Med. 2020;172:W1–25.

39. Robins JM, Rotnitzky A, Zhao LP. Estimation of Regression Coefficients When Some Regressors 
Are Not Always Observed. Journal of the American Statistical Association. [American Statistical 
Association, Taylor & Francis, Ltd.]; 1994;89:846–66.

Inoue et al. Page 11

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.cdc.gov/tobacco/data_statistics/fact_sheets/adult_data/cig_smoking/index.htm
https://www.cdc.gov/tobacco/data_statistics/fact_sheets/adult_data/cig_smoking/index.htm


Figure 1. 
Concepts of generalizability and transportability

Diagrams illustrating (A) generalizability and (B) transportability (the target population may 

or may not include any RCT-eligible individuals). In our example using the National Lung 

Screening Trial (NLST), (C) generalizability applies when we consider participants from 23 

centers with females ≥40% as the trial sample and those from the entire NLST as the target 

population (i.e., the study participant population is a subset of the target population). (D) 

Transportability applies when we consider participants from 23 centers with females ≥40% 

as the trial sample and those from the other ten centers with females <40% as the target 

population (i.e., the study participant population is external to the target population).
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Figure 2. 
Transported effect of lung screening by low-dose CT on lung cancer-related mortality 

varying the distribution of sex and smoking status in the National Lung Screening Trial 

(NLST).
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Table 1:

Conditions for identifying causal quantities for generalizability and transportability.

Key identifiability 
conditions

Meaning Example illustrations using the NLST

i) Conditional 
exchangeability over 
study participation, S
(S-admissibility)

The participants enrolled in the trial sample 
are exchangeable with individuals in the target 
population conditional on some pre-intervention 
or background variables; i.e., the mean potential 
outcome conditional on these variables is 
independent of RCT participation.

The participants enrolled in the trial sample of our example 
illustration (23 centers with female ≥40%) are exchangeable 
with those in the target population (10 centers with female 
<40%) or with the entire NLST conditional on sex, age, 
race/ethnicity, education, marital status, smoking, body mass 
index, and the recruitment arm of NLST (LSS or ACRIN).

ii) Conditional 
exchangeability over 
intervention in the study 
participant population

The participants in the intervention group are 
exchangeable with the participants in the control 
group conditional on some pre-intervention or 
background variables.

The participants in the LDCT screening group are 
exchangeable with the participants in the radiography group, 
which is expected to hold by randomization in the NLST.

iii) Positivity of 
RCT participation and 
intervention assignment

a) There is a non-zero probability of trial 
participation in any stratum defined by 
covariates that are needed to ensure conditional 

exchangeability.
a

b) There is a non-zero probability of 
intervention assignment in any stratum defined by 
covariates that are needed to ensure conditional 

exchangeability.
a

a) The probability of being in the trial sample is not 
zero in any stratum defined by age, sex, race/ethnicity, 
education, marital status, smoking, body mass index, and 
the recruitment arm of NLST.
b) The probability of being in the LDCT screening group 
is not zero, which is expected to hold by randomization of 
intervention assignment in the NLST.

iv) Consistency The potential outcome under a specified 
intervention for any individual who received that 
intervention is equal to the individual’s observed 
outcome.

The potential outcome under LDCT screening for any 
individual who received that screening is equal to the 
individual’s observed outcome.

v) No interference One individual’s intervention does not affect 

another individual’s outcome.
b

One participant’s lung screening using LDCT does not 
influence other participants’ lung cancer mortality.

vi) No measurement 
error

Each variable used in the analyses is correctly 
measured.

All variables in the NLST are correctly measured.

vii) Correct model 
specification

The models used in the analyses are statistically 
correctly specified.

The logistic regression model used to determine whether the 
participant is in the trial sample and the Cox proportional 
hazard model used to predict lung cancer mortality were 
correctly specified.

NLST, National Lung Screening Trial; LSS, Lung Screening Study; ACRIN, American College of Radiology Imaging Network; LDCT, low-dose 
computed tomography.

a
For transportability, the probability is considered for the superpopulation that gave rise to the trial sample.

b
Or the pattern of interference is the same between the trial sample and the target population
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Table 2.

Demographic characteristics of participants in the two study populations of the National Lung Screening Trial 

(NLST) determined by the center’s distribution of sex. 
a

Characteristics
Total NLST
33 Centers
(N=53,452)

Trial sample:
23 Centers with female ≥40% 

(N=29,848)

Target population: 10 Centers with 
female <40% (N=23,604) P-value 

b

Age at randomization 61.4 ± 5.0 61.4 ± 5.0 61.5 ± 5.0 0.01

Sex <0.001

 Male 59.0 55.8 63.0

 Female 41.0 44.2 37.0

Ethnic group 0.47

 Hispanic 1.8 1.7 1.8

 Non-Hispanic 97.5 97.7 97.3

 Others or missing 0.7 0.6 0.9

Education status 0.79

 Less than college 43.8 43.8 43.7

 College or higher 53.9 53.7 54.2

 Others or missing 2.3 2.5 2.1

Marital Status <0.001

 Single 4.7 4.9 4.2

 Married 66.6 65.3 68.2

 Widowed/Divorced 28.1 29.0 27.1

 Missing 0.6 0.7 0.5

Smoking status 0.001

 Current 48.2 48.9 47.4

 Former 51.8 51.1 52.6

BMI (kg/m2) 0.74

 <25 28.6 28.8 28.5

 25 to <30 42.6 42.5 42.8

 ≥30 28.1 28.1 28.1

 Missing 0.7 0.7 0.7

Study <0.001

 LSS 64.8 46.1 88.4

 ACRIN 35.2 53.9 11.6

NLST, National Lung Screening Trial; LSS, Lung Screening Study; ACRIN, American College of Radiology Imaging Network; BMI, body mass 
index.

a
Data are presented as a percentage or mean ± standard deviation otherwise indicated

b
P-value for the difference between the trial sample and target population was calculated by t-test for age and chi-square test for other categorical 

variables
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Table 3.

Effect of lung screening by low-dose computed tomography on lung cancer-related mortality in the two study 

populations of the National Lung Screening Trial (NLST) determined by the center’s distribution of sex.

Cohort Estimated effect
(Hazard ratio [95% CI])

Generalized/transported effect (Hazard ratio [95% CI]) from 
the estimated effect in the trial sample using inverse-odds 

weighting approach 
a, b

Trial sample: 23 Centers with female 
≥40% 0.82 (0.71 to 0.94) -

Target population: 10 Centers with 
female <40% 0.90 (0.72 to 1.09) 0.89 (0.71 to 1.08)

Total NLST 0.84 (0.76 to 0.95) 0.84 (0.72 to 0.99)

NLST, National Lung Screening Trial; LSS, Lung Screening Study; ACRIN, American College of Radiology Imaging Network; CI, confidence 
interval.

a
Robust 95% CIs were estimated by repeating the analyses on 200 bootstrapped samples.

b
The estimated effect in the original cohort was transported/generalized to the target cohort controlling for age, sex, race/ethnicity, education, 

marital status, smoking, BMI, and the recruitment arm of NLST (LSS or ACRIN).
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