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SUMMARY

Cognitive functions are subserved by rhythmic neuronal synchronization across widely distributed 

brain areas. In 105 area pairs, we investigated functional connectivity (FC) through coherence, 

power correlation and Granger causality (GC) in the theta, beta, high-beta and gamma rhythms. 

Between rhythms, spatial FC patterns were largely independent. Thus, the rhythms defined distinct 

interaction networks. Importantly, networks of coherence and GC were not explained by the 

spatial distributions of the rhythms’ strengths. Those networks, particularly the GC networks, 
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contained clear modules, with typically one dominant rhythm per module. To understand how this 

distinctiveness and modularity arises on a common anatomical backbone, we correlated, across 

91 area pairs, the metrics of functional interaction with those of anatomical projection strength. 

Anatomy was primarily related to coherence and GC, with largest effect sizes for GC. The 

correlation differed markedly between rhythms, being less pronounced for the beta and strongest 

for the gamma rhythm.

eTOC blurb

The brain is much more than the sum of its parts, because those parts interact in complex 

networks. Vezoli et al. show that at least four distinct interaction networks coexist, mediated by 

neuronal synchronization of four brain rhythms. These rhythm-defined networks are differentially 

dependent on the strengths of anatomical projections.

Keywords

Functional connectivity; Granger Causality; Coherence; Power correlation; Large-scale cortical 
networks; Feedforward; Feedback; Bottom-up; Top-down; Hierarchical processing

INTRODUCTION

Cognitive functions emerge in distributed neuronal networks through local and interareal 

neuronal interactions, constituting a complex interaction network. A full account of 

this interaction network will be fundamental for understanding brain function. Neuronal 

interaction networks depend on structural neuronal connectivity networks, and central 

insights have been obtained from anatomy. Anatomical tract tracing based on tracer 

injections in animals has revealed that connection strengths decrease exponentially with 

distance and are highly structured with characteristic motifs (Ercsey-Ravasz et al., 2013; 

Horvát et al., 2016; Theodoni et al., 2020). While anatomical connectivity (AC) is necessary 

for neuronal interaction, it is not identical to it. A given anatomical projection may or may 

not be used for neuronal interactions at a given moment, and it may be used for neuronal 

interactions of different kinds, e.g. mediating activation, suppression or modulation. While 

AC is typically measured with regard to monosynaptic connections, interareal neuronal 

interactions can extend to di- and polysynaptic interactions. While much of anatomical 

tract-tracing, including data used here, is focused on cortico-cortical connections, neuronal 

interactions may also use sub-cortical pathways (Guillery and Sherman, 2002).

Interareal neuronal interactions are subserved by neuronal entrainment and synchronization 

(Bosman et al., 2012; Brovelli et al., 2004; Gregoriou et al., 2009; Grothe et al., 2012; 

Lobier et al., 2018; Siegel et al., 2008). Interareal neuronal synchronization can be assessed 

by local field potential (LFP) coherence, and entrainment can be assessed by LFP Granger 

Causality (GC). Both coherence and GC can be determined per frequency, resulting 

in coherence or GC spectra. Also, neuronal interactions can lead to correlated power 

fluctuations, which can be assessed by power correlation spectra. Intriguingly, neuronal 

rhythms in different frequency bands mediate different types of interareal interactions: We 

showed previously that among 8 macaque visual areas, interareal GC is stronger in the 
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bottom-up direction for theta and gamma, and stronger in the top-down direction for beta 

(Bastos et al., 2015b). This raises the possibility that different rhythms define distinct 

interaction networks, including coherence and GC networks, as also suggested by previous 

analyses of power correlations in human subjects (Brookes et al., 2011; de Pasquale et al., 

2010; de Pasquale et al., 2012; Hipp et al., 2012; Hipp and Siegel, 2015). Our previous 

analysis only took into account the GC asymmetry between bottom-up and top-down 

directions, per area pair, thereby accounting for only a very small component of the total GC 

variability. We related these GC asymmetries to differences in the laminar pattern between 

anatomical bottom-up and top-down projections, per area pair, again accounting for merely 

a tiny part of the total variability in anatomical projections. Anatomical projection strengths 

show a much larger variance, in fact over five orders of magnitude, across different area 

pairs (Markov et al., 2014a). Here, we establish the full variability in interareal power 

correlation, coherence and GC across all pairs of simultaneously recorded sites and brain 

areas, which we directly relate to the full variability in interareal anatomical projection 

strength across those area pairs.

We use a unique high-resolution micro-electrocorticography (mECoG) dataset providing 

simultaneous LFP signals from 218 recording sites distributed across 15 areas, in two 

awake macaques. The complete 218×218 matrices of power correlation, coherence and GC 

revealed the respective interaction networks to consist of clearly defined modules, and that 

the coherence and GC networks are independent of the underlying power distributions. 

Intriguingly, those interaction networks agree partly for some pairs of frequency bands, 

while differing markedly between others, as observed in human subjects (Williams et 

al., 2021). This is remarkable given that all rhythms operate on the same anatomical 

backbone, suggesting that they are differentially affected by AC. To understand this 

better, we analyzed the mutual dependence between on the one hand interareal power 

correlation, coherence or GC, and on the other hand the strength of the corresponding 

anatomical projections. Anatomical projection strength was assessed by retrograde tracer 

injections and quantification of labeled neurons in many cortical areas. Across area pairs, 

the resulting cortico-cortical projection strengths predicted power correlation less than 

coherence, and were most predictive of GC. Importantly, anatomical projection strengths 

predicted coherence and GC much better in the gamma band than in the beta band, with 

intermediate values for the high-beta band. Finally, as we had previously found that beta is 

stronger in the top-down and gamma stronger in the bottom-up direction, we reanalyzed the 

correlation between anatomical projection and functional interaction strength, independently 

for the two directions. This showed that variability in beta-based interactions was more 

related to projections in the top-down direction, and gamma-based interactions to projections 

in the bottom-up direction. Altogether these findings provide a fuller account of cortical 

interaction networks defined by brain rhythms, and reveal a previously unsuspected richer 

landscape.
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Results

Interareal functional connectivity (FC) occurs in four characteristic frequency bands

We investigated neuronal activity in large-scale brain networks in two macaque monkeys 

performing a selective visual attention task (Fig.1A, see Methods). We focused on the 

task period with sustained visual stimulation and attention. Attention conditions were 

pooled to increase sensitivity, except where explicitly noted. Chronically implanted subdural 

mECoG-grids with 252 electrodes allowed simultaneous recording from 218 local bipolar 

derivations, referred to as (recording) sites, distributed over large parts of the left hemisphere 

(Fig. 1B for the combined sites of both monkeys; Fig.S1A for the sites per monkey), 

and covering 15 cortical areas. We computed the following frequency-resolved functional 

connectivity (FC) metrics between all possible site pairs: 1) Coherence, i.e. a metric of 

interareal synchronization, 2) Power correlation, i.e. the Spearman rank correlation between 

fluctuations in band-limited power, and 3) Granger causality (GC), i.e. a metric of directed 

interareal influence (see Methods). Coherence and power correlation are undirected metrics, 

whereas GC is a directed metric that allows calculation of influences in both directions. For 

analyses at the level of site pairs, we used all possible site combinations, i.e. per monkey 

≈23000 coherence or power-correlation spectra, and ≈46000 GC spectra (after exclusion of 

site pairs with spectra indicative of artifactual coupling, which amounted to 1.7% of all site 

pairs in Monkey 1 and 1.1% in Monkey 2; see Methods). The 15 simultaneously recorded 

cortical areas allowed for the analysis of FC for 105 area pairs. Each area was recorded from 

several sites (see Methods), such that each interareal interaction was assessed by several 

interareal site pairs. The spectra of site pairs belonging to a given area pair were averaged 

for all analyses at the level of area pairs.

Figure 1B shows example coherence and GC spectra for several pairs of cortical areas. 

These spectra show distinct peaks, which are specific for the respective pair of brain areas. 

Across all 105 area pairs, average FC spectra showed peaks for four characteristic brain 

rhythms, with some individual differences across the two monkeys (Fig. 1C for coherence; 

Fig. S1B for power correlation and GC): The theta rhythm (3 ±2Hz in Monkey1 and 4 ±3Hz 

in Monkey2; peak ±full width at half maximum), the beta rhythm (18 ±5Hz in Monkey1 

and 15 ±5Hz in Monkey2), the high-beta rhythm (34 ±5Hz in Monkey1 and 32 ±4Hz 

in Monkey2) and the gamma rhythm (75 ±8Hz in Monkey1 and 62 ±8Hz in Monkey2) 

(Fig.1B-C and S1B). All further analyses focus on these four rhythms. For analyses at the 

four corresponding frequency bands, FC values were averaged over the frequency bins in the 

monkey-specific frequency bands, and subsequently averaged over monkeys. For analyses of 

full spectra, the FC spectra were aligned to the four monkey-specific peak frequencies, and 

subsequently averaged over monkeys.

Different rhythms define distinct FC networks

For each band, we calculated all FC metrics for all pairs of recording sites. The resulting FC 

matrices for Monkey 1 are shown in Fig. 2A,C; The same analysis for Monkey 2 is shown 

in Fig. S2A,C; The individual matrices cannot be directly averaged over animals, because 

the numbers of recording sites per area differ between monkeys (see Methods). The four 

frequency bands showed distinct interaction networks. We defined distinctiveness D=1-R2, 
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with R2 being the coefficient of determination (squared Pearson correlation coefficient) 

across all site pairs, between matrices of one FC type (concatenated over the two animals), 

separately for all combinations of frequency bands (Fig. 2E). As an example, GC networks 

were least distinct between beta and high-beta, with D=0.29, and most distinct between 

beta and gamma, with D=0.75. As it is known that FC metrics in different frequency bands 

tend to jointly decrease with distance (Leopold et al., 2003; Nelson and Pouget, 2012), we 

partialized the calculation of R2 for distance, which increased all D values. Hence for GC 

networks, D between beta and high-beta increased to 0.74, and D between beta and gamma 

increased to 1. Note that D was overall much lower for power correlation than for coherence 

or GC.

The almost complete distinctiveness, after distance-partialization, between FC networks for 

some frequency-band combinations is remarkable given that all networks emerge on the 

same AC network. If the shared AC network does not account for the distinct interaction 

networks, these interaction networks might be accounted for by different distributions of 

power across recording sites, for the different frequency bands. We calculated the same 

distinctiveness metric between FC and the co-occurrence of power, concretely e.g. between 

the gamma-GC matrix and the matrix of the products of average gamma power values of 

the corresponding site pairs (specifically log10( powersite1 × powersite2)), again either with or 

without partializing for cortical distance (Fig. 2F). Staying with the example of the gamma 

GC network, distinctiveness was 1, both with and without partialization for distance. We 

considered that GC might be particularly related to power in the sending-area sites, and 

therefore also calculated D between e.g. the gamma-GC matrix and the matrix of average 

gamma power values of the corresponding sending-area sites (specifically log10(power), Fig. 

2G). This left D values essentially unchanged at 1 (with and without partialization). Thus, 

band-specific FC networks, as assessed e.g. by gamma and beta GC, are highly distinct and 

contain structure beyond power distributions. Note that D values were overall much lower 

for power correlation than for coherence or GC.

Note that the GC matrices (Fig. 2C) list both the sending areas (on the y-axis) and 

the receiving areas (on the x-axis) according to their hierarchical level. In this manner, 

differences between GC in the bottom-up versus top-down direction described previously 

(Bastos et al., 2015b) can be appreciated by appropriately comparing the upper and lower 

triangular GC matrices (for the 8 visual areas investigated in Bastos et al., i.e. V1, V2, 8L, 

V4, TEO, DP, 8M, 7A). This illustrates that these bottom-up versus top-down differences 

account for only a small fraction of the full GC variability that we investigate here.

Visual inspection of the FC matrices suggested that band-specific interaction networks 

might form distinct modules. We therefore performed a modularity analysis that rearranges 

connectivity matrices so that highly connected sites (“nodes”) are contained in the same 

module (see Methods for details; (Rubinov and Sporns, 2010)). The resulting partitioning is 

referred to as community structure. To obtain one consensus community structure over the 

four frequency bands, we combined e.g. the GC matrices for the four bands in the same way 

as previous studies combined connectivity matrices over participants. For the example of GC 

in Monkey 1 (Fig. 2D), this revealed that module 1 was dominated by gamma, module 2 

by high-beta, and module 3 by beta, with relatively strong links between modules 2 and 3, 
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and weak links between both of these modules and module 1. The modularity analysis for 

Monkey 2 is shown in Fig. S2, and shows an overall similar pattern for GC. To characterize 

overall modularity, we calculated the modularity index. Networks with high modularity 

index show strong intramodule and weak inter-module connectivity. Modularity indices are 

reported in Fig. 2 and Fig. S2, on the margins of the corresponding (triangular) matrices. 

Modularity indices were much lower for power correlation than for coherence or GC.

To investigate whether band-specific FC networks have meaningful brain-topographical 

patterns, we calculated, for each site pair, a metric that is referred to as “strength”. 

Coherence strength of a recording site is the average coherence of that site with all other 

sites (excluding sites within a 2 mm radius to avoid residual volume conduction effects). 

Power-correlation strength is defined accordingly. For GC, we defined GC-outflow strength 

of a site as the average GC of that site to all other sites, and GC-inflow strength as the 

average GC to that site from all other sites. Averaging collapses the FC matrices onto their 

margins, and visualizes topographical distributions as strength maps (Fig. 3, averaged over 

monkeys, see Methods). Strength maps, for most combinations of FC type and frequency 

band, showed contiguous clusters with the tendency to respect sulcal anatomy, i.e. most 

strength maps showed clear and meaningful topographies.

We also demonstrate that weak long-distance FC deviates significantly from randomized 

inter-site FC (Fig. S3A; see Methods). Significant interareal FC covers long distances 

(>20mm) for all frequencies; FC at gamma extends up to 50 mm, FC at beta, theta and 

high-beta beyond 60 mm.

FC network topographies correlate with AC

We next investigated whether these FC patterns could be partly explained by known patterns 

of AC. We previously showed that GC asymmetries are related to the feedforward/feedback 

character of the respective anatomical projections (Bastos et al., 2015b), as quantified by 

the supragranular labelled neuron (SLN) percentage value (Barone et al., 2000; Markov et 

al., 2014b). In the present study, we address another fundamental aspect of an anatomical 

projection, namely its strength, which is captured by the fraction of labeled neurons (FLN) 

(Vezoli et al., 2004). After injection of a retrograde tracer into area A, retrogradely labeled 

neurons are counted across the brain, e.g. in area B. The FLN of the projection from B 

to A is the number of labeled neurons found in B divided by the total number of neurons 

found across the brain. In this way, FLN reflects the fraction of neurons projecting to A that 

originates in B. While the majority of projections to a given cortical area arises from within 

the area itself (~80%), we are concerned here with projections arising from other areas and 

so estimate the extrinsic fraction of labeled neurons (FLNe) (Markov et al., 2011).

We were interested in how interareal FC, assessed by coherence, power correlation and 

GC, relates to interareal AC, assessed by FLNe. We used a dataset based on 28 retrograde 

tracer injections across 14 cortical areas (Fig. 4A). These 14 areas were identical to the 

15 areas recorded electrophysiologically, except that they did not include area TPt. The 14 

areas resulted in a 14X14 matrix of 182 FLNe values (Fig. 4C). Note that this is a directed 

matrix of AC, in which FLNe from area A to area B is quantified independently of the 

FLNe in the reverse direction. Thus, the following analyses relate the full FLNe matrix 
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(Fig. 4C) to the corresponding part of the full GC matrix. By contrast, the matrices of 

coherence and power correlation assess overall FC irrespective of direction. To relate them 

to AC strength, we first averaged FLNe over the two directions, giving a triangular matrix 

with 91 entries (Fig. 4B). Spectra were first averaged over all site pairs of a given area pair 

(Fig.S3C-D), and subsequently over the two animals (Fig. S4). Hence, we first determined 

the peak frequencies per monkey and per rhythm (theta, beta, high-beta, gamma), and 

expressed frequencies relative to the per-monkey peak frequencies. This suggested that 

overall, coherence and GC increased with increasing FLNe (Fig. S4A). For this analysis, we 

excluded FLNe values based on less than 10 labeled neurons (Fig. S4A), to assure reliability 

of FLNe estimation (Markov et al., 2014a). The pattern held, when we included those FLNe 

values (Fig. S4B), or when we replaced them by estimates from a model fitted to neuron 

counts from the non-zero FLNe values (Fig. S4C, see Methods).

FLNe-FC correlations differ across FC types and frequencies

To quantify the observed patterns, we performed linear regression analysis between 

log10(FC) and log10(FLNe), separately for all combinations of FC type (coherence, power 

correlation and GC) and frequency band (theta, beta, high-beta, gamma) (Fig. 5). For each 

combination, there was a significantly positive correlation (P < 4.17E−03 after Bonferroni 

correction for multiple comparisons), but with a wide range of correlation strengths (Fig. 

5A). FLNe was least predictive for FC at beta, with explained variance (R2-values) for beta 

power correlation or beta GC of 0.14. FLNe was most predictive of theta (R2=0.47) and 

high-beta coherence (R2=0.39), and gamma GC (R2=0.42).

To capture the size of the FLNe effect on FC, we used a regression analysis (Fig. 5B). 

We performed a simple linear regression with the dependent variable log10(FC) and the 

independent variable log10(FLNe). We then used the linear fit to calculate the expected 

FC at the minimal FLNe value, i.e. FC(min(FLNe)), and at the maximal FLNe value, i.e. 

FC(max(FLNe)). The ratio FC(max(FLNe)) / FC(min(FLNe)) was used as the FLNe-related 

FC change (Fig. 5B,C). This metric is related to the regression slope, but normalizes for 

differences in FC across frequencies that are not due to FLNe. We derived error estimates by 

100 bootstrap replications over trials (Fig. 5B,C) (Efron and Tibshirani, 1994).

This analysis revealed that the three types of FC showed different degrees of dependency 

with FLNe: Power correlation was least FLNe-dependent, coherence was intermediate, and 

GC was by far the most strongly FLNe-dependent. The spectrum for power correlation did 

not show any clear peaks (even when scaled independently). The spectrum for coherence 

showed peaks for high-beta and gamma, and a local trough for beta, while that for GC 

showed a small peak in the theta range, and substantial peaks for high-beta and gamma, and 

again a local trough for beta. These results suggest that the dependence of coherence and GC 

on AC has a characteristic spectral pattern: At the individual peak frequencies for gamma 

and high-beta (and partly also for theta), this dependence is stronger than at neighboring 

frequencies; by contrast, at the individual peak frequencies for beta, this dependence is 

weaker than at neighboring frequencies.

FC is both stimulation and task dependent, which is likely to dynamically influence its 

dependence on AC. Therefore, we obtained this spectrum for GC separately for the pre
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stimulus Baseline period, and for the two attention conditions during the Post-cue period 

(Fig.S5A). During the Baseline, the spectrum showed much less of a gamma peak and 

higher values for beta. With attention, values tended to be reduced for theta and high-beta 

and enhanced for gamma.

FC-FLNe correlations are not explained by distance, yet FC predicts FLNe

FLNe declines exponentially with interareal distance, a phenomenon referred to as the 

exponential-distance rule, EDR, characterized by the exponential decay rate, λ (see (Ercsey

Ravasz et al., 2013)). The EDR held for the subset of areas investigated here (Fig. S5B), 

with λ=0.202/mm for distance through white matter, consistent with previous reports 

(Ercsey-Ravasz et al., 2013). Importantly, the EDR holds for the present FC data (Fig. S5B, 

all bands averaged for simplicity), but with exponential decay rates that were substantially 

lower (0.01-0.08/mm; values per band and FC type reported in Table S1) (Fischer et al., 

2018; Leopold et al., 2003; Nelson and Pouget, 2012). Fig. S5B shows linear relationships 

between log10(FLNe) or log10(FC) and distance, which is equivalent to an exponential decay 

of FLNe or FC with distance. Furthermore, Fig. 5A shows linear relationships between 

log10(FC) and log10(FLNe). Hence, for further regression analyses, we will use log10(FC), 

log10(FLNe), and the non-log-transformed distance.

The joint dependence of FC and FLNe on distance might explain the observed correlation 

between FLNe and FC. Note that this would not explain the observed frequency dependence 

of the FLNe-FC correlation. Nevertheless, we investigated the extent the FLNe-FC relation 

is explained by distance by performing a multiple linear regression (MR) with the dependent 

variable being log10(FLNe), and the independent variables being log10(FC) for theta, beta, 

high-beta and gamma, and additionally the distance (as distance metric, we use distance 

on the cortical surface (Fig. 6) or distance through the white matter (Fig. S6), both giving 

similar results (Table S2)). Note this analysis also informs us about whether FLNe can 

be partly predicted by FC metrics. Figure S6E shows that FC alone (without distance 

information) is strongly predictive of FLNe, with explained variance (R2 full-model) ranging 

from 0.48 for GC to 0.56 for coherence (Table S2). This is interesting, because FLNe can 

currently not be obtained for the human brain, as it requires active retrograde transport of 

tracer injected into the living brain (Donahue et al., 2016). By contrast, FC and in particular 

GC can be obtained for the human brain, and GC has already been shown to relate to the 

anatomical SLN metric (Michalareas et al., 2016).

The MR analysis revealed that all FC metrics were significantly predictive of FLNe for 

some frequency bands, and importantly, that this was the case when distance was included as 

an independent variable (Fig. 6A). Specifically, power correlation was significantly FLNe

predictive in the beta and gamma bands. Coherence and GC were FLNe-predictive in the 

gamma band. Note that those FC metrics predicted FLNe so accurately that the contribution 

of distance was not significant. Fig. 6A shows results obtained for distance measured on the 

cortical surface. When distance was measured through white matter, this explained slightly 

more FLNe variance, but overall, the pattern of results was highly similar (Fig. S6).

To further investigate the differential FLNe-predictive power of the FC metrics in the 

different bands and of distance, we performed the following analysis. We first determined 
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R2 values for the full MR models, separately for power correlation, coherence and GC 

(Fig. 6B). We repeated this analysis after excluding either one of the frequency bands 

or distance as an independent variable, i.e. we calculated R2-values for reduced models. 

Figure 6C shows the R2 difference between the full and the reduced model (similar to 

a stepwise linear regression approach); the x-axis lists the independent variable that had 

been removed, such that the corresponding y-axis values reflect the improvement in R2 

value when this variable is included. For all FC metrics, removal of distance reduced R2 

values by only relatively small amounts, less than the removal of most of the individual 

band-wise FC metrics. As above, distance through white matter had a larger effect, but 

overall, the pattern of results was highly similar (Fig. S6C). Also, complete removal of 

distance as independent variable left the overall pattern of results qualitatively unchanged, 

and as expected, regression coefficients for FC increased (Fig. S6D-F).

Note that these analyses revealed that all log10(FC) metrics were linearly related to distance 

(Fig.S5B), leading to a multi-collinearity among the independent variables. We performed 

several analyses to control for this (Fig. S5C-D, Fig. S7C-E, Table S2 and see Methods 

for details). We also used simpler MR models, each with the dependent variable being 

log10(FLNe), and each with the independent variables being distance and the log10(FC) 

of merely one frequency band (Fig. S8). Most of these models found a significant effect 

of distance. For power correlation, only gamma was significantly FLNe-predictive. For 

coherence and GC, all frequency bands except beta were significantly FLNe-predictive.

FLNe-FC relations depend on corresponding SLN values

The analyses so far suggest that FLNe partly determines FC values, with a specific spectral 

pattern. We had previously found that one aspect of FC, namely GC between two areas, 

is related to another aspect of AC, namely the feedforward/feedback characteristics of the 

corresponding connections captured by the SLN metric. When retrograde tracer is injected 

in area A, and the labeled cells are counted in area B, separately for the supragranular 

(Nsupra) and infragranular (Ninfra) compartments of B, then the SLN of the A-to-B 

projection is

Nsupra ∕ (Nsupra + Ninfra) .

The larger the SLN metric, the more the corresponding projection is of feedforward type. 

Projections with SLN>0.5 are considered feedforward, and projections with SLN<0.5 

feedback. We previously found that if the SLN indicates that area B is higher in the 

hierarchy than area A, then theta- and gamma-band GC is stronger in the A-to-B 

(feedforward) than B-to-A (feedback) direction, whereas beta-band GC is stronger in the 

B-to-A (feedback) than A-to-B (feedforward) direction. Here we investigate whether this 

SLN-GC relationship influences the above described dependence of GC on FLNe.

To investigate this, we first selected two groups of projections, namely strongly feedforward 

projections, with SLN>0.7, and strongly feedback projections, with SLN<0.3. Within those 

two groups, we calculated the FLNe-related GC change for all frequencies (i.e. as in Fig. 

5C, but split for SLN). For feedforward projections, the change spectrum showed peaks 
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at theta and gamma, separated by a relative trough around beta (Fig. 7A, green line). For 

feedback projections, the change spectrum showed the strongest peak at high-beta, and a 

smaller one at gamma (Fig. 7A, black line). Figure 7B shows the corresponding scatter plots 

at the peak frequencies of each rhythm. For gamma GC, FLNe explained 48% (R2-value) 

of the variance in the feedforward, and 37% in the feedback direction, whereas for beta 

GC, FLNe explained 15% in the feedback direction, and none in the feedforward direction 

(0.0001%, n.s.). The absence of a significant relation between FLNe and beta GC in the 

feedforward direction is also reflected in the beta-band trough (Fig. 7A, in green). We next 

determined the asymmetry index of the FLNe-related changes by taking the difference of 

the feedforward- minus the feedback-related spectrum and dividing by their sum (Fig. 7A, 

inset). This asymmetry index showed particularly pronounced negative values for beta and 

positive values for gamma, with much smaller effects for theta and high-beta. In order to test 

whether this result depended on the particular SLN cutoff (0.7/0.3), we repeated the same 

analysis for various cutoffs, and found that the observed effects generally showed a gradual 

dependence on SLN values (Fig. 7C).

When we perform this analysis separately for the two attention conditions in the Post
cue period, we find that attention strengthens particularly the relation between FLNe of 

feedforward connections and feedforward GC in the gamma band (Fig.S7A). By contrast, 

this relation is essentially lost during the Baseline, when gamma is weak (Fig.S7B).

Mapping frequency-specific FC networks onto the anatomical core-periphery structure

We established that FC is related to both the strength (FLNe) and the feedforward character 

(SLN) of anatomical projections. The analysis of anatomical projections has integrated those 

two metrics demonstrating that areas can be arranged in a bow-tie structure: some areas are 

in the knot (the core) and others in the two fans (peripheries) of the bow-tie (Markov et 

al., 2013). Areas inside the core are densely interconnected and with strong (high FLNe) 

connections, whereas areas in the fans are connected less densely with areas in the core and 

with weaker connections to those areas. We found FC strength in the gamma frequency-band 

to dominate in the left fan areas of the bow-tie structure (Fig. 8A), i.e. areas sending 

predominantly feedforward projections to the core. FC strength at other frequencies was 

more evenly distributed among core and periphery (Fig. 8B-D). Overall, FC strength was the 

strongest in the high-beta frequency-band for the core and in the beta frequency-band for 

right-fan areas of the bow-tie structure (Fig. 8C) i.e. areas sending predominantly feedback 

projections to the core.

Discussion

In summary, we report and make available, for each of four rhythms, the full pattern 

of ≈23000 coherence and power-correlation values and ≈46000 GC values, among 218 

recording sites distributed over 105 pairs of cortical areas in two awake, task-performing 

macaque monkeys. We find that the rhythms define distinct interaction networks that are 

largely independent of the spatial distribution of power, particularly for coherence and GC. 

Modularity analyses revealed that beta, high-beta and gamma GC are largely contained 

in separate modules, with relatively strong links between the beta and high-beta modules, 
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and relatively weak links between beta and gamma modules. The coexistence of distinct 

rhythm-specific functional interaction networks on a fixed anatomical backbone partially 

reflects differential dependence of the rhythmic interactions on cortico-cortical anatomical 

projections. Projection strength, assessed by FLNe, was predictive of all FC types in all 

frequency bands, but with marked differences: Weakest for power correlation, intermediate 

for coherence and strongest for GC; and weakest for beta and much stronger for high

beta and gamma. This suggests that high-beta and particularly gamma-based interactions 

prominently depend on direct cortico-cortical projections. The relative independence of 

beta FC from AC might be due to the known geometry of feedback projections (Markov 

et al., 2014b), and/or to a more prominent dependence on pathways involving subcortical 

structures (Guillery and Sherman, 2002); it might make beta an ideal candidate to quickly 

establish new FC structures based on learning and top-down cognition, including prediction 

(Miller et al., 2018). Intriguingly, FC in the different frequency bands jointly predicted about 

half of the FLNe variability across projections. In a multiple linear regression, this rendered 

the previously reported strong influence of distance insignificant. As FC and AC values for 

this study have been obtained in separate animals, the prediction of AC by FC in a given 

individual is likely even higher. This suggests that FC metrics could provide estimates for 

AC in humans, with relevance for science and medicine (Becker and Hervais-Adelman, 

2020; Smith et al., 2015). Finally, GC in the gamma band showed a much stronger relation 

to FLNe in the feedforward than in the feedback direction, and conversely, GC in the beta 

band showed no significant relation to feedforward, but a sizeable relation to feedback 

FLNe.

This latter set of results is likely related to our previous finding that, for a given pair of 

areas in visual cortex, beta GC is stronger in the feedback than feedforward direction, 

whereas theta and gamma GC are stronger in the feedforward than feedback direction 

(Bastos et al., 2015b). Across area pairs, interareal GC asymmetries were linearly related 

to the corresponding interareal hierarchical separation, as quantified by the anatomical 

SLN metric. SLN quantifies, for a given anatomical projection, the extent to which it 

originates from supragranular neurons. The more a projection is feedforward (feedback), i.e. 

the more hierarchical levels it bridges in the feedforward (feedback) direction, the closer 

its SLN is to 1 (to 0). SLN is normalized for the total number of parent neurons of the 

projection, and is independent of projection strength. By contrast, FLNe quantifies, for 

a given anatomical projection, how many neurons it comprises, normalized by the total 

number of labeled neurons (see below for more discussion on this). FLNe does not take 

the laminar distribution of the parent neurons into account, and it is thereby independent of 

the projection’s feedforward/feedback character. In fact, FLNe and SLN have an inverted-U 

shaped relation: The strongest projections, with the largest FLNe, are between areas on 

similar hierarchical levels, with SLN close to 0.5 (Markov et al., 2013). Across interareal 

projections, FLNe ranges over five orders of magnitude. Here, we have related this large 

range of FLNe values to corresponding values in coherence, power correlation and GC, 

across an edge-complete 14×14 matrix including both visual and non-visual areas.

The calculation of FLNe involves a normalization: When area B is the area injected with 

retrograde tracer, the FLNe from area A to area B is the number of labeled neurons in 

A, normalized by the total number of retrogradely labeled neurons outside B. Therefore, 
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FLNe can be considered as a strength metric of the A-to-B projection relative to all 

other projections to B. Given this normalization of FLNe, one could consider to similarly 

normalize GC from A to B by the total GC inflow to B from all recorded areas. We 

performed this GC normalization and repeated the MR analysis of Fig. 6A and C. Overall 

this increased effects for beta while reduceing effects for gamma, although effects still 

remained much weaker for beta than gamma, and the latter at similar levels as high-beta 

(and no frequency band reaching significance). Importantly, distance still had relatively 

minor effects. Note that this GC normalization is dependent on the specific areas recorded 

by our ECoG, which constitutes only a subset of areas and therefore cannot strictly be 

compared to the normalization of FLNe. Note also that GC from A to B is anyhow 

normalized by the power in B. Power in B can be considered a metric of the total, interareal 

and local, synaptic input to B (Pesaran et al., 2018). Thus, GC already entails a similar 

normalization as FLNe.

The relation of FLNe with FC metrics was weakest for power correlation, intermediate 

for coherence, and strongest for GC. The fact that GC is strongly related to FLNe might 

partly reflect the fact that GC assesses the strength of the directed interareal influence, just 

as FLNe assesses the strength of the directed interareal projection. Anatomical projections 

are always directed, from the area containing the parent neurons to the area containing 

the synaptic contacts. Thus, there is a natural correspondence between FLNe and GC. 

Intriguingly, GC is also particularly interesting for utilizing the observed prediction of AC 

by FC in humans. FC metrics based on non-invasively recorded signals from the human 

brain are challenging to interpret, because those signals reflect mixtures of many brain 

sources (Palva et al., 2018; Schoffelen and Gross, 2009). As signal mixing is essentially 

instantaneous, it is explicitly rejected in the calculation of GC, which estimates causal, 

i.e. time-delayed, interactions (Michalareas et al., 2016). The investigation of neuronal 

synchronization in the human brain is of utmost importance, which has motivated the 

development of very advanced methods (Farahibozorg et al., 2018; Wang et al., 2018), some 

of which capitalize on the exclusion of instantaneous interactions (Colclough et al., 2015; 

Hipp et al., 2012; Nolte et al., 2004; Pascual-Marqui et al., 2017; Stam et al., 2007; Vinck et 

al., 2011).

These and related approaches in human participants link higher-order cognitive functions, 

including attention and working memory, to brain-wide networks synchronized at different 

frequency bands (Gross et al., 2004; Gross et al., 2002; Hipp et al., 2011; Kujala et al., 

2007; Lobier et al., 2018; Rouhinen et al., 2020; Siegel et al., 2008). Intrinsic brain networks 

in addition to task-related networks have been investigated with source-projected MEG 

and have revealed well-characterized resting-state networks through power correlation at 

different frequency-bands (Brookes et al., 2011; de Pasquale et al., 2010; de Pasquale et al., 

2012; Hipp et al., 2012; Hipp and Siegel, 2015). Source-projected human MEG has revealed 

intriguing relations between brain rhythms and anatomy. Source-projected MEG resting 

state recordings from 187 participants revealed dominant peak frequencies across the cortex 

in the theta to alpha-band range, decreasing along the posterior-anterior axis and negatively 

correlated to cortical thickness, a proxy of cortical hierarchical level (Mahjoory et al., 2020). 

Source-projected MEG data from participants performing an attention task on visual stimuli 

showed stimulus-induced occipital gamma-band activity with peak frequencies that had a 
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positive correlation, across 123 participants, with the local cortical thickness (van Pelt et 

al., 2018). Of particular relevance to the present study, source-projected MEG demonstrated 

that across 26 participants attentional top-down effects on alpha and gamma power in 

occipital cortex have a positive correlation to frontoparietal structural connectivity measured 

with high angular resolution diffusion imaging magnetic resonance (Marshall et al., 2015). 

Furthermore, alpha-band synchronization between superior-occipital cortex and the parietal 

lobule is modulated by attention, and its hemispheric asymmetry across 28 participants is 

predicted by the asymmetry in frontoparietal structural connectivity (D'Andrea et al., 2019).

Some of these studies capitalized on inter-individual variability by performing correlation 

across many participants. By contrast, the typical approach in awake non-human primate 

research, due to economical constraints and ethical considerations, has been limited to 2 

or so animals per study. This low N precludes cross-subject correlations and generally 

cross-subject statistical approaches, and it also limits inferences to the investigated sample, 

as in the present study (Fries and Maris, 2021). At the same time, chronic large-scale 

electrophysiological recordings in non-human primates provide coverage of many areas, 

though not as wide as MEG, with excellent spatial resolution and signal-to-noise ratio. 

This revealed that during a selective attention task, top-down GC from area 7A to V1 

enhanced bottom-up GC from V1 to V4, and most strongly so when the top-down GC 

targeted the precise site from which the bottom-up GC originated (Richter et al., 2017). 

This result in combination with the finding that occipito-parietal attention effects depend on 

frontoparietal structural connectivity (D'Andrea et al., 2019; Marshall et al., 2015), known 

to convey top-down influences, allows interesting predictions: The strength of top-down 

anatomical projections, assessed with FLNe, might predict the strength of attention effects 

at the top-down targets, assessed with mECoG. This is beyond the current study, but a 

fascinating topic for the future.

AC studies have shown that in non-human primates, the large range of cortical projection 

strengths, coupled with the EDR, results in the cortex being spatially embedded (Ercsey

Ravasz et al., 2013), so that the spatial pattern of long-distance connections is a defining 

feature of the cortical network (Horvát et al., 2016). Spatial embedding has been reported 

in human and mouse indicating that it is a general characteristic of the cortex (Gămănuţ et 

al., 2018; Horvát et al., 2016; Perinelli et al., 2019; Roberts et al., 2016; Rubinov et al., 

2015). This leads to a high heterogeneity that is expressed structurally in a pronounced core

periphery organization (Markov et al., 2013). The present findings suggest that functional 

connectivity based on entrainment and synchronization shows a similarly high degree of 

heterogeneity, which is expressed in the modular organization found in the present study. 

Exploration of this functional heterogeneity promises to be a highly fruitful avenue for 

future research.

STAR Methods

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources should be directed to and 

will be fulfilled by the Lead Contact, Pascal Fries (pascal.fries@esi-frankfurt.de).
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Materials Availability—This study did not generate new unique reagents.

Data and Code Availability

• Data presented in the main and supplementary figures is available at https://

doi.org/10.5281/zenodo.5511890.

• Code used for this study is freely available, and the respective references are 

reported below.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All procedures were approved by the animal ethics committee of Radboud University 

(Nijmegen, The Netherlands). Data from two adult male Rhesus monkeys (Macaca mulatta) 

were used in this study.

METHOD DETAILS

Visual Attention Task—Stimuli and behavior were controlled by the software CORTEX 

(NIMH). After touching a bar, the acquisition of fixation, and a pre-stimulus Baseline period 
of 0.8 s, two isoluminant and isoeccentric stimuli (drifting sinusoidal gratings, diameter: 3 

degrees, spatial frequency: ~1 cycles/degree; drift velocity: ~1 degree/s; resulting temporal 

frequency: ~1 cycle/s; contrast: 100%) were presented on a CRT monitor (120 Hz refresh 

rate non-interlaced). In each trial, the light grating stripes of one stimulus were slightly 

tinted yellow, the stripes of the other stimulus were slightly tinted blue, assigned randomly 

(Figure 1A). After a variable Pre-cue period (1-1.5 s in Monkey 1, 0.8-1.3 s in Monkey 

2), the color of the fixation point changed to blue or yellow, indicating the stimulus with 

the corresponding color to be the behaviorally relevant one. Either one of the stimuli, 

irrespective of being cued or not, could change at a random time between stimulus onset and 

4.5 s after cue onset. The period between cue onset and stimulus change is referred to as the 

Post-cue period. The stimulus change consisted of the stimulus’ stripes undergoing a gentle 

bend, lasting 0.15 s. A trial was considered correct and the monkey was rewarded when 

the bar was released within 0.15-0.5 s of the change in the cued stimulus. No reward but a 

timeout was given when monkeys released the bar in response to equally likely changes of 

the non-cued stimulus. In Monkeys 1 and 2, 94% and 84% of bar releases, respectively, were 

correct reports of changes in the relevant stimulus. Trials were terminated without reward 

when the monkey released the bar outside the response window, or when it broke fixation 

(fixation window: 0.85 degree radius in Monkey 1, 1 degree radius in Monkey 2). Trials 

with attention directed to the stimulus in the visual hemifield contralateral to the recorded 

hemisphere are referred to as Attended, trials with attention ispilateral as Unattended. The 

analyses presented here pooled trials from those two attention conditions, unless otherwise 

specified, and they used only trials with correct behavioral report. The analyses used the 

period in the trial, during which stimuli were presented, and the monkey paid attention to 

one of them, i.e. the Post-cue period. The exception are Fig. S5A and Fig. S7A,B, which 

also used the Baseline period preceding stimulus onset (Bastos et al., 2015b). In total, the 

analyses used 9 sessions from Monkey 1 and 14 sessions from Monkey 2.
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Neurophysiological Recordings—Neuronal signals were recorded from the left 

hemisphere in two male rhesus monkeys using subdural ECoG grids consisting of 252 

electrodes (1 mm diameter), which were spaced 2-3 mm apart. Two nearly identical 

copies of the ECoG grid were used in the two animals. Signals were amplified by eight 

32-channel Plexon headstage amplifiers (Plexon, USA), against a silver wire implanted 

epidurally over the right occipital cortex (common recording reference). Signals were then 

high-pass (low-pass) filtered at 0.159Hz (8kHz) and digitized at approximately 32 kHz with 

a Digital Lynx acquisition system (Neuralynx, USA). Local Field Potentials were obtained 

by low-pass filtering at 250 Hz and down sampling to 1 kHz. Offline, the signals were 

re-referenced to remove the common recording reference through local bipolar derivations, 

i.e. sample-by-sample differences, between neighboring electrodes. Note that this procedure 

also allows rejection of headstage specific noise and greater signal localization (Richter 

et al., 2019). Bipolar derivations were obtained for all pairs of immediately neighboring 

electrodes on the same lane of the ECoG grid, which were also recorded through the same 

headstage (Bastos et al., 2015b). We refer to bipolar derivations as “(recording) sites”. The 

spatial position of each site was defined to be the midpoint between the two constituting 

electrodes. In both monkeys, the 252 electrodes resulted in 218 recordings sites. Site pairs 

with spectra indicative of artifactual coupling (broadband FC outliers, identified by visual 

inspection) were excluded from all analyses of all FC types: In monkey 1, this applied to 

392 out of a total of 23.653 coherence and power correlation spectra (1.7 %), and 784 

out of a total of 47.306 GC spectra (1.7%); In monkey 2, this applied to 269 out of a 

total of 23.653 coherence and power correlation spectra (1.1 %), and 538 out of a total of 

47.306 GC spectra (1.1%). Power line artifacts at 50 Hz and its harmonics up to the Nyquist 

frequency, as well as screen refresh-rate artefacts (120Hz) were estimated and subtracted 

from the data using a Discrete Fourier Transform. In order to minimize volume conduction 

effects, we excluded site pairs with an inter-site distance (along the dural surface) of less 

than 4 mm from the calculation of interareal averages. Note that this corresponds to the 

diameter of an anatomical macrocolumn: Anatomical tract-tracing studies have shown that 

95% of intrinsic connections are located within a distance of 1.9 mm centered on the 

injection site (Markov et al., 2011). Note that values of power correlation were very similar 

and highly correlated to values of orthogonalized power correlation (Fig. S1C), used to 

exclude spurious coupling due to volume conduction (Hipp et al., 2012). Orthogonalized 

power correlation was computed with the FieldTrip function ft_connectivity_powcorr_ortho, 

excluding zero-lag contribution on a trial-by-trial basis.

Data Analysis—All analyses were performed in MATLAB (MathWorks) using FieldTrip 

(www.fieldtriptoolbox.org) (Oostenveld et al., 2011) and custom scripts. Except otherwise 

noted, analyses used data recorded during the Post-cue period (as defined above, in the 

description of the visual attention task; see also Fig. 1A). The first 0.3 s after cue onset were 

discarded to minimize cue-related transients. The remaining data until the first change of 

one of the stimuli (either target or distractor) were segmented into non-overlapping epochs 

of 1 s length. The exception to this are the analyses presented in Fig. S5A and Fig. S7A,B. 

These analyses include data from the Baseline period, which was merely 0.8 s long, and, 

after discarding 0.3 s of post-fixation transients, left merely 0.5 s of approximately stationary 

signals. To ease comparison, the Post-cue data shown in Fig. S5A and Fig. S7A,B were 
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also segmented into non-overlapping 0.5 s epochs (again after discarding 0.3 s of cue-related 

transients). In total, this led to the following numbers of epochs and the following amounts 

of time. For the PostCue, we used 1565 (2067) epochs of 1sec, i.e. the total duration of 

data was 1565 s (2067 s) for Monkey 1 (Monkey 2). For the Baseline, we used 4239 (4396) 

epochs of 0.5 s, i.e. the total duration of data was 2119.5 s (2198 s) for Monkey 1 (Monkey 

2). For the split Attention conditions, we used 1510 and 1358 (2540 and 2542) epochs of 0.5 

s i.e. the total duration of data was 755 and 679 s (1270 and 1271 s), respectively, for the 

Attended and the Unattended conditions in Monkey 1 (Monkey 2).

Data epochs of 1 s length were multitapered using three Slepian tapers (Mitra and 

Pesaran, 1999) and Fourier-transformed (using the FieldTrip function “ft_freq_analysis” 

with the configuration option “mtmfft”), resulting in a spectral resolution of 1 Hz and a 

spectral smoothing of ±1.5 Hz. Data epochs of 0.5 s length were multitapered using three 

Slepian tapers, zero-padded to 1 s, and Fourier-transformed (same FieldTrip approach), 

resulting in an interpolated spectral resolution of 1 Hz and a spectral smoothing of ±3 

Hz. The Fourier transforms were the basis for calculating the FC spectra, i.e. coherence 

spectra (Baker et al., 1997), spectra of power correlation across epochs (Bruns et al., 

2000) and the GC spectra. These FC spectra were first calculated per monkey, across all 

epochs of a given condition (Post-cue, Attended, Unattended, Baseline), and subsequently 

averaged over the two monkeys. Note that power correlation has frequently been calculated 

across partly overlapping windows, whereas we calculated power correlation across the non

overlapping epochs described above. GC spectra were estimated through non-parametric 

spectral matrix factorization of the cross-spectral density matrices, eliminating the need of 

explicit autoregressive data modeling with its inherent assumptions (Dhamala et al., 2008). 

For visualization only, FC spectra were smoothed with a frequency-dependent boxcar with a 

width of ±1% of the respective center frequency.

We defined theta, beta, high-beta and gamma frequency bands, separately for each monkey, 

for each FC type, and for each task period (Baseline and Post-cue). The respective analyses 

used frequency bands that were specific per monkey, per FC type and per task period, yet 

averaged over site pairs and area pairs as detailed in the following. Per monkey, and per FC 

type, we first averaged FC spectra over all site pairs of a given area pair, separately for the 

105 area pairs. To the resulting spectra, we applied an algorithm that blindly detected peaks 

and their corresponding peak frequencies (PFs) and full widths at half maximum (FWHM). 

PFs and FWHMs were similar for a given monkey across FC types. Yet, the two monkeys 

showed individual values, as expected from previous work (Rohenkohl et al., 2018; van Pelt 

et al., 2018). We report here PF and FWHM values averaged over area pairs and FC types, 

separately per monkey. Note that some area pairs showed spectra that lacked some of the 

peaks, and correspondingly did not contribute to the definition of the corresponding rhythms 

frequency band. For the Post-cue period, the theta rhythm was at 3 ±2Hz (PF ± FWHM) 

in Monkey1, and 4 ±3Hz in Monkey2; the beta rhythm was at 18 ±5Hz in Monkey1 and 

15 ±5Hz in Monkey2; the high-beta rhythm was at 34 ±5Hz in Monkey1 and 32 ±4Hz in 

Monkey2; and the gamma rhythm was at 75 ±8Hz in Monkey1 and 62 ±8Hz in Monkey2 

(Fig.1B-C and S4A). In both monkeys, the theta, beta, high-beta and gamma band peaks 

were the only peaks detected. The same approach was applied for the Baseline period, and 

gave nearly identical results, even though only few site pairs showed a gamma peak during 
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the Baseline. Analyses of FC in these four frequency bands averaged the respective FC 

metric over the frequency bins in the respective band.

Part of the same raw LFP data have been used in previous studies (Bastos et al., 2015a; 

Brunet et al., 2014; Richter et al., 2017; Rohenkohl et al., 2018; Spyropoulos et al., 2018). 

In particular, in one previous study, we used data from 8 visual areas, and focused our main 

analysis on the difference between bottom-up and top-down GC per area pair (Bastos et 

al., 2015b); this GC difference was related to the corresponding anatomical metric of the 

feedforward/feedback character of the projection, the SLN metric. The current study uses 

data from 15 brain areas, including visual and non-visual areas; it analyzes GC, coherence 

and power correlation and analyzes their full variability (not merely the area-wise GC 

difference) across all possible combinations of areas (and site pairs); this full FC variability 

is related to the corresponding anatomical metric of projection strengths, the FLNe metric.

Volume registration of individual ECoG grids—The anatomical MRI of each subject 

was spatially coregistered with the 3D positions of electrode locations using the FieldTrip 

toolbox (Oostenveld et al., 2011). These 3D positions were obtained by projecting the 2D 

positions (from high-resolution intraoperative photographs, using the sulci for alignment 

(Bastos et al., 2015b) onto each individual brain surface using the iso2mesh toolbox (Fang 

and Boas, 2009). Each individual anatomical MRI was coregistered, using linear and non

linear coregistration with FSL (Smith et al., 2004), to the F99 template brain containing 

anatomical atlases information (Van Essen, 2012) (Fig. S1). This enabled us to assign each 

site to the underlying cortical area as done in (Bastos et al., 2015b), but here for all the 15 

areas covered by ECoG grids (V1, V2, 8L, V4, TEO, DP, 8M, 7A, S1, TPt, 5, 7B, F1, F4 

and F2). This resulted in the following numbers of sites per area in Monkey 1: V1: 24, V2: 

9, V4: 17, DP: 10, TEO: 6, 8M: 6, 8L: 2, 7A: 7, S1: 20, 5: 13, TPt: 3, 7B, 20, F1: 23, F4: 

4, F2: 17; and the following numbers of sites per area in Monkey 2: V1: 48, V2: 12, V4: 

16, DP: 8, TEO: 3, 8M: 2, 8L: 3, 7A: 10, S1: 22, 5: 14, TPt: 2, 7B, 27, F1: 22, F4: 4, F2: 

15. Furthermore, each individual anatomical MRI was aligned and warped to the INIA19 

macaque brain template (Rohlfing et al., 2012), and the respective transformation matrix 

was then applied to a volume containing all ECoG electrode positions. This allowed us to 

combine the two ECoG grids on this template surface (Fig. 1B) to create FC strength maps 

(Fig. 2-3), after averaging overlapping parts of the two ECoG grids. Distances separating 

recording sites along the dural surface were determined with the fast-marching toolbox in 

MATLAB (MathWorks).

Retrograde tracing database—Acquisition and analysis of the anatomical data set 

has been reported in (Chaudhuri et al., 2015; Markov et al., 2014a; Molnár et al., 2020). 

Updates, atlases and additional information concerning the anatomical data set that was used 

for this work is available at www.core-nets.org. We used the fraction of labeled neurons 

(FLNe, defined in the Results section) to quantify AC strength. We used the proportion 

of supragranular labeled neurons (SLN, also defined in the Results section) to quantify 

the feedforward or feedback nature of an anatomical projection. Furthermore, we used 

interareal white-matter distances. For comparison of FC with AC, we selected areas and 

the corresponding site pairs of the ECoG grids, if they were also injected with retrograde 
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tracers. This resulted in a total of 14 areas, which were electrophysiologically recorded in 

two macaques, and injected with tracers in a separate cohort of 26 macaques. The list of 

selected areas is: V1, V2, 8L, V4, TEO, DP, 8M, 7A, S1, 5, 7B, F1, F4, F2.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical tests were based on the combined data from both animals with ECoGs, 

constituting a fixed-effect analysis that results in inferences limited to the investigated 

sample of two animals (Fries and Maris, 2021). To lend equal weight to each animal, data 

were first combined within each animal (across sites, site pairs, trials) and subsequently 

averaged over the two animals.

After definition of the four frequency bands per monkey, we tested which inter-areal 

site pairs showed significant FC, i.e. FC that reliably exceeded the bias level. This 

was done separately per FC type, i.e. power-correlation, coherence and GC. The bias 

level was estimated by randomly pairing epochs before FC calculation. For each of 

100 randomizations, the maximum over all site-pairs was placed into a randomization 

distribution and site pairs were considered significant, if their FC exceeded the 97.5th 

percentiles of the randomization distribution (corresponding to a two-sided test).

Wherever possible, data from both monkeys were combined. The combined results amount 

to a fixed-effect analysis, allowing an inference on our sample of two animals, as in most 

other neurophysiology studies. Results presented are averages over interareal pairs and over 

all epochs. 99.9% confidence intervals were estimated from a bootstrap procedure over 

epochs as described in (Efron and Tibshirani, 1994): One-hundred bootstrap estimates of the 

mean were calculated for each area pair and each monkey, before averaging over monkeys. 

Averaging over monkeys was done after peak-alignment for each of the four frequency 

bands of interest.

The correlation between log10(FC) and log10(FLNe) was then performed and relevant 

statistics extracted, i.e. rho, p-value and slope. We additionally extracted the FLNe-related 

FC change as the difference between FC values predicted (by linear regression) for minimal 

and maximal FLNe values. Due to the log10-transformation, the FLNe-related FC change 

reflects a fold change.

In order to investigate whether log10(FLNe) can be predicted by log10(FC) independently of 

distance, we performed a partial correlation in the form of a multiple linear regression (MR), 

according to the equation

log10(FLNe) = b1x1 + b2x2 + … + bnxn + bdd + c

, with xn being the log10(FC) for frequency band n, and d being the distance on the cortical 

surface (Fig. 6) or through the white matter (Fig. S6) (giving similar results, Table S2). The 

regression was calculated across area pairs, i.e. 182 area pairs for GC, and 91 area pairs for 

coherence and power correlation, as explained in the results section. FC values were first 

averaged for each area pair, over the corresponding site pairs, then over monkeys.
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Note that the decay rates reported in the results were calculated using the natural logarithm 

as described in (Ercsey-Ravasz et al., 2013).

By integrating distance into the regression model, we controlled for this potentially 

confounding variable and provide the partial correlation coefficients. However, in parallel to 

the expected bias reduction, the risk of data collinearity could in turn potentially reduce the 

precision of model estimates. Analyses revealed that all (log-transformed) FC metrics were 

linearly related to distance, leading to a multi-collinearity among the independent variables 

that may have affected the MR analysis. To investigate the severity of this, we performed 

several control analyses. First, we controlled for the nonviolation of the ordinary least square 

assumption and plotted the residuals of the MR as a function of the predicted FLNe values 

separately for each FC metric (Fig. S5C). This revealed no systematic relationships, i.e. 

no indication of relevant unobserved (hidden) variables. Second, we verified that variance 

inflation factors (VIFs) remained below critical levels, in particular for variables with 

significant model coefficients (Fig. S5D). The VIF for a given predictor variable indicates 

the degree to which collinearity potentially inflates the standard error of its coefficient 

estimates, thereby reducing statistical power and warranting caution in the interpretation for 

this predictor. VIFs start at 1 meaning no correlation between predictor variables and any 

other; values between 2.5 and 5 indicate moderate correlation but not warranting corrective 

measures; values above 5 indicate a critical level (Dodge, 2008; Everitt and Skrondal, 2008). 

However, it is also important to note that values below 10 indicate that multicollinearity 

does not pose a serious problem to the MR model (Forthofer et al., 2008). We determined 

VIFs, separately per FC metric and frequency band (Fig. S5D). These values were below 

the critical threshold for all combinations of FC metrics and frequency bands that had 

been found significantly predictive of FLNe in the previous analysis (Fig. S5D). Third, we 

performed an analysis of structural coefficients and general dominance (Fig.S7C-E). We 

computed squared structure coefficients (rs2), general dominance (GenDom) and relative 

importance weights (RIW), as well as direct and shared effects for each variable, including 

distance (Table S2, Fig. S7C-E). Importantly, even in the presence of correlation between 

variables, multicollinearity does not compromise the interpretation of MR coefficients 

provided this is done on grounds of outcome from analyses allowing assessment and control 

for collinearity, e.g. considering dominance or relative importance of partial regression 

coefficients. Hence, in addition to structure coefficients – measured already independently of 

collinearity and dividing each variable’s contribution to the multiple regression effect – we 

measured direct effects of predictors and shared effects between predictors through ‘unique’ 

and ‘common’ coefficients calculated from commonality analysis (CA, performed with y-hat 

package under R, https://www.R-project.org/). For each predictor, the squared structure 

coefficients (rs2) characterize the shared amount of variance with - or the individual 

contribution to - the multiple regression effect (R2), and therefore should be interpreted as 

the amount of explained effect rather than explained variance of the dependent variable. In 

case of multicollinearity, CA provides the very useful direct and shared coefficients of total 

explained variance (R2) to each subset of predictors from all possible subsets regression. 

It additionally allows identification of so-called ‘suppressor’ variables, through negative 

common coefficients, which estimate the amount of predictive power lost by other predictors 

when removing the considered variable(s) from the MR model. Direct or ‘Unique’ effects 
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are comparable to change in the multiple coefficient of determination from squared semi

partial correlation after inclusion of a variable at last position of a hierarchical regression. 

Formulas for direct and shared components of a predictor variable Xi from a model with n 

predictors are, respectively Ui=−(1-Xi)XjXk… Xn) and Ci=−(1-Xi)(1-Xj)(1-Xk)…(1-Xn). 

Other relative importance measures considered and reported in Table S1 are Effect Size 

(for adjusted R2), General Dominance weights (GenDom – average of overall conditional 

dominance weights i.e. additional contribution to multiple R2 computed in all possible 

predictors combination comparisons) and Relative Importance Weights (RIW – proportional 

contribution to multiple R2 after correcting correlation amongst predictors). Dominance 

analysis ranks predictors based on explained variance for all pairwise comparisons and 

minimizes the contribution of predictors in presence of collinearity. Thus, conclusions from 

GenDom and RIW should be consistent. Importantly, the sum of all weights equal the 

multiple R2 of the MR model for both.

Similar to the principle of stepwise MR, we calculated the individual variables’ contribution 

to the R2 of the full-model by comparing the latter to the R2 of the reduced model after 

removing this variable (Fig. 6C and S6C, F). We performed regression analyses for each 

of the 100 samples per predictor variable estimated from bootstrap over epochs, except for 

distance measures which do not change across trials.

Modularity analysis was performed using the latest version of the Brain Connectivity 

toolbox and the modularity, agreement and consensus functions (Rubinov and Sporns, 

2010). For each of the three FC metrics separately, we computed a consensus community 

structure using the agreement matrix obtained from the concatenated degenerate partitions 

across the four frequency bands. This allowed to compare FC distributions between 

frequency bands, over the same set of modules (Fig.2 and S2). Degenerate partitions 

were obtained for each frequency band and FC metric by varying the resolution parameter 

between 0.1-10 (the classical resolution parameter value being 1, smaller values detecting 

larger modules and higher values detecting smaller modules). The consensus partition was 

computed with a re-clustering resolution of 0.25 (proportion of resolution parameters, 

for which any two vertices were assigned to the same class, across all four frequency 

bands), reapplied 100 times on the agreement matrix. The modularity values (q) reported 

on the margins of the matrices in Fig.2 and S2 were obtained with the classical resolution 

parameter of 1.

All violin plots use bootstrap estimates over trials, their shape along the y-axis uses a kernel 

density estimate with a self-optimized bandwidth of the density kernel (https://github.com/

bastibe/Violinplot-Matlab/blob/master/violinplot.m).

Statistical significance for average FC strength maps (Fig. 3) was calculated by comparing 

experimentally obtained values for each site to values resulting from permutation of labels 

across sites i.e. the null model. This procedure was repeated 1000 times and corrected for 

multiple comparison, using a controlled false discovery rate of 20% with an alpha of 0.05 

(Korn et al., 2007). By doing so, we compared the topography of frequency-specific maps 

to those obtained from a random graph with the same number of nodes, the same number of 

edges, and the same weight distribution i.e. same values as the original FC values.
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Highlights

• Coherence, power-correlation and Granger causality among >200 sites across 

15 areas

• These interaction metrics peak at the theta, beta, high-beta and gamma 

rhythms

• The four rhythms define distinct interaction networks, largely independent of 

power

• The networks differentially depend on anatomy, strongly for gamma, weakly 

for beta
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Figure 1. Stimuli, attention task, recording site distribution, FC spectra and frequency bands.
(A) Two macaque monkeys were trained to release a lever when a change occurred to the 

target stimulus, i.e. the stimulus with the same color as the fixation dot, while maintaining 

fixation and ignoring changes to the distractor stimulus, i.e. the stimulus with a different 

color than the fixation dot. Correct performance was rewarded with liquid reward (blue 

droplets). Task delays for Monkey 1 and 2 are given in seconds.

(B) Pooled recording sites of both monkeys on the surface of the INIA19 template brain 

(see Fig. S1A for sites per monkey). Sites are colored according to the area color legend 

on the right, based on the Kennedy lab nomenclature (Markov et al., 2011). V1: Primary 

visual cortex; V2: Secondary visual cortex; 8L: Lateral part of area 8/FEF; V4: Fourth visual 

area; TEO: Temporal-occipital area; DP: Dorsal prelunate area; 7A and 7B: Parts A and B 

of parietal area 7; TPt: temporo-parietal area (posterior auditory association cortex); 5: area 

5; S1: Primary somatosensory cortex; 8M: Medial part of area 8/FEF; F1: corresponding 

to Primary motor cortex; F2: corresponding to the caudal part of dorsal premotor cortex; 

F4: corresponding to the caudal part ventral premotor cortex. Spectra show examples of 

interareal Coherence (in blue) and GC (green: feedforward; black: feedback, plain/dashed 
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lines point to the cortical area sending feedforward/feedback projections). Spectra show 

mean over all trials ±99.9% confidence intervals from bootstrap estimates over trials.

(C) Each line is the average coherence spectrum for a pair of cortical areas, in one of the 

monkeys (Monkey 1: left plot; Monkey 2: right plot). With 15 simultaneously recorded 

cortical areas, there are 105 area pairs, hence 105 average coherence spectra per plot. Each 

area has been recorded with several recording sites (see Methods). Therefore, each area pair 

corresponds to several interareal site pairs. The spectra of site pairs belonging to a given area 

pair were averaged for this plot. For each of the four frequency bands, the peak frequencies 

(PFs) and the corresponding full width at half maximum (FWHM) are given in the Results 

and Methods, and the FWHMs are indicated in this figure by the gray-shaded areas.

See also Figure S1.
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Figure 2. Brain rhythms define distinct interaction networks.
(A-D) Data from Monkey 1 (see Fig. S2 for Monkey 2). Note that color scales are 

logarithmic.

(A) The four matrices in this column show coherence (lower triangular matrix) and power 

correlation (upper triangular matrix) for the frequency bands listed to their left. Each matrix 

entry corresponds to the respective FC value of one pair of recording sites, calculated 

across all available Post-cue data epochs (see Methods), and averaged over the frequency 

bins in the respective frequency bands (see Results, Methods). Matrix entries with non

significant FC are masked in gray (non-parametric randomization test by shuffling data 

epochs, corrected for multiple comparisons across site pairs). The axes list the cortical 

areas, from which the sites have been recorded, with the areas ordered according to their 

hierarchical level (Chaudhuri et al., 2015). Area boundaries are indicated by gray lines on 

the matrices. Each area, and its corresponding recording sites, is given a color code. The 

sites will maintain these area-specific colors, when they are reordered in the modularity 

analysis shown in (B, D).

(B) Same FC values as in (A), but re-ordered according to modules obtained from a 

consensus modularity analysis (see Methods). Modules are separated by gray lines. The 
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modularity analysis was performed separately for coherence and power correlation (i.e. 

separately on those triangular matrices), and consensus was obtained over the four frequency 

bands. The color codes on the margin indicate per site the respective cortical area as 

introduced in (A); note that those color codes are separate for the upper and the lower 

triangular matrix.

(C) Similar to (A), but for GC. Note that GC is a directed metric, requiring the full matrix. 

Each matrix entry corresponds to the GC from a site in the cortical area listed on the y-axis 

to a site in the area listed on the x-axis.

(D) Similar to (B), but for GC. GC modularity analysis was performed on the full matrix, 

and consensus community structure was obtained over the four frequency bands.

(E-G) Data averaged over both monkeys.

(E) Distinctiveness (1-R2; see Results) between patterns of FC of a given type (as listed per 

row), for all combinations of frequency bands (listed per column). The patterns of FC are the 

triangular matrices shown in (A) for coherence and power correlation, and the full matrices 

shown in (C) for GC. Values in parentheses are the Distinctiveness after partialization for 

distance on the cortical surface.

(F) Distinctiveness (1-R2; see Results) between patterns of FC of a given type (as listed 

per row in (E)), and the pattern of the product of power at the respective sites (specifically

log10( powersite1 × powersite2)), and in the frequency bands listed per column. Values in 

parentheses are the Distinctiveness after partialization for distance on the cortical surface.

(G) Same as (F), but only for GC and replacing the product of power by the power at the 

sending site, i.e. the site from which the GC originates.

See also Figure S2.

Vezoli et al. Page 30

Neuron. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Topographies of FC strengths.
All panels show FC strength topographies averaged over both monkeys, with the FC type 

(coherence, power correlation, GC outflow, GC inflow) listed above the columns, and the 

frequency bands listed to the left of the rows. The strength metric, for a given FC type 

and frequency band, is defined per recording site, e.g. the coherence (or power-correlation) 

strength of a given site is the average coherence (or power correlation) of that site with all 

other sites; the GC outflow strength of a given site is the average GC directed from that site 

to all other sites; the GC inflow strength of a given site is the average GC directed to that 

site from all other sites. Strength topographies of the two monkeys have been coregistered 

to the same template brain and then averaged over monkeys. Gray masking indicates 

non-significant strength (comparison to a random graph with equal weight distribution; 

FDR-corrected for multiple comparisons over sites, see Methods). The template brain in the 

upper right of the figure shows the cortical area boundaries.

See also Figure S3.
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Figure 4. FLNe and FLNe-sorted FC spectra.
(A) Each colored dot indicates the injection site of a retrograde tracer, shown here on a 

template brain.

(B) FLNe values for all indicated pairs of areas, averaged over the projections in the 

respective two directions, e.g. V1-to-V4 and V4-to-V1.

(C) FLNe values for all indicated projections from the areas listed on the y-axis to the areas 

listed on the x-axis. Black matrix entries indicate projections for which less than 10 labelled 

neurons were counted (see also Fig. S4). Those entries were discarded for the average shown 

in (B).

(B, C) Note the logarithmic gray scale, which applies to both panels and spans six orders of 

magnitude.

See also Figure S4.
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Figure 5. FC and AC display frequency-dependent covariance.
(A) Scatterplots between the three FC types (indicated to the left of the rows) and FLNe. 

For coherence and power correlation, each dot corresponds to a pair of areas, for which 

the combined FLNe in both directions was based on more than 10 labeled neurons (N=60). 

For GC, each dot corresponds to an anatomical projection, for which the FLNe in the same 

direction as the corresponding GC was based on more than 10 labeled neurons (100). FC 

values were averaged over monkeys before correlation analysis. Note logarithmic scaling on 

x- and y-axes.

(B) With both axes in log10 units, subtraction of FC values between minimum and maximum 

AC values (left), can be interpreted as FLNe-related fold-change of FC (right).

(C) FLNe-related FC change as a function of FC frequency. Log10(FC) spectra (color coded, 

legend top-right) have been aligned to individual peak frequencies before averaging over 

monkeys and then correlated with log10(FLNe). Mean over all trials ±99.9% confidence 

intervals from bootstrap estimates over trials.

See also Figure S5.
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Figure 6. Multiple regression discloses distance as poor predictor of the structure-function 
relationship.
(A) Violin plots of model estimates (left column: t-statistic; right column: beta coefficients) 

for each of the five variables considered i.e. FC in the four frequency-bands and distance, 

separately per FC type (as indicated above each row).

(B) Total explained variance (R2) for the three models (color-legend, top-right). Mean 

±99.9% confidence intervals from bootstrap estimates over trials.

(C) Difference in total explained variance of the three models (same color code as in B) 

between the full- and the reduced-model, after removing the parameter listed on the x-axis. 

This estimates the contribution of each of the five parameters to the total explained variance.

See also Figure S6 and Figure S8.
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Figure 7. Anatomical influence on FC Strength depends on frequency and direction.
(A) Frequency-resolved spectra of the FLNe-related change in GC (same as red line in Fig. 

5C), plotted separately for feedforward (in green, SLN ≥ 0.7) and feedback connections (in 

black, SLN ≤ 0.3), extracted from linear regression shown in (B). Inset (top right) displays 

asymmetry index (see Results) for all frequency-bands. A positive (negative) asymmetry 

index indicates larger effect size in feedforward (feedback) direction.

(B) Same as Fig. 5A bottom row, but separately for feedforward (green) and feedback 

(black) connection, as defined for (A).

(C) Same as (A), but varying the selection threshold for feedforward (left) or feedback 

(right) connections. Left plot: Selecting more strongly feedforward projections, with higher 

SLN thresholds, resulted in lower FLNe-related GC changes for all frequency bands, except 

the gamma band, where this effect reversed. Right plot: Selecting more strongly feedback 

projections, with lower SLN thresholds, resulted in lower FLNe-related GC changes. Note 

different axes scales for feedforward and feedback. Inset (top right): Asymmetry index (see 
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Results) for varying threshold. Color code for varying SLN thresholds detailed in legend. 

Ordinate axes in (A) and (C) start from 1. All plots show mean over all trials ±99.9% 

confidence intervals from bootstrap estimates over trials.

See also Figure S7.
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Figure 8. FC strength displayed on the AC-derived core-periphery structure.
For cortical areas both recorded by the ECoG and used to build the core-periphery structure 

(highlighted areas) (Markov et al., 2013), the color code displays the respective area’s 

FC strength, separately per FC type (as indicated above the columns), and separately per 

frequency band (as indicated to the left of the rows). FC strength values were averaged over 

monkeys before normalization into the range 1-5 (color scale, bottom right), separately for 

each frequency-band.

See also Figure S3.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Tract tracing dataset Open Source www.core-nets.org

Anatomical MRI template Open Source https://www.nitrc.org/projects/inia19/

F99 template and atlases Open Source https://balsa.wustl.edu/

Experimental models: Organisms/strains

M. mulatta. German Primate Center https://www.dpz.eu

Software and algorithms

MATLAB MathWorks https://www.mathworks.com

FieldTrip Open Source www.fieldtriptoolbox.org

FSL Open Source https://fsl.fmrib.ox.ac.uk

iso2mesh Open Source http://iso2mesh.sourceforge.net

Brain Connectivity toolbox Open Source www.brain-connectivity-toolbox.net

R R Core Team, 2013 https://www.R-project.org/

CORTEX NIMH CORTEX RRID:SCR_006837

Plexon Plexon, USA https://plexon.com

Neuralynx Digital Lynx system Neuralynx, USA https://neuralynx.com

Neuron. Author manuscript; available in PMC 2022 December 01.

http://www.core-nets.org/
https://www.nitrc.org/projects/inia19/
https://balsa.wustl.edu/
https://www.dpz.eu
https://www.mathworks.com
http://www.fieldtriptoolbox.org
https://fsl.fmrib.ox.ac.uk
http://iso2mesh.sourceforge.net
http://www.brain-connectivity-toolbox.net
https://www.R-project.org/
https://plexon.com
https://neuralynx.com

	SUMMARY
	eTOC blurb
	INTRODUCTION
	Results
	Interareal functional connectivity (FC) occurs in four characteristic frequency bands
	Different rhythms define distinct FC networks
	FC network topographies correlate with AC
	FLNe-FC correlations differ across FC types and frequencies
	FC-FLNe correlations are not explained by distance, yet FC predicts FLNe
	FLNe-FC relations depend on corresponding SLN values
	Mapping frequency-specific FC networks onto the anatomical core-periphery structure

	Discussion
	STAR Methods
	RESOURCE AVAILABILITY
	Lead Contact
	Materials Availability
	Data and Code Availability

	EXPERIMENTAL MODEL AND SUBJECT DETAILS
	METHOD DETAILS
	Visual Attention Task
	Neurophysiological Recordings
	Data Analysis
	Volume registration of individual ECoG grids
	Retrograde tracing database

	QUANTIFICATION AND STATISTICAL ANALYSIS

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Figure 8.
	Table T1

