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Abstract

Risky behaviors, such as substance use and unprotected sex, are associated with various physical 

and mental health problems. Recent genome-wide association studies indicated that variation in 

the cell adhesion molecule 2 (CADM2) gene plays a role in risky behaviors and self-control. 

In this phenome-wide scan for risky behavior, it was tested if underlying common vulnerability 

could be (partly) explained by pleiotropic effects of this gene and how large the effects were. 

Single nucleotide polymorphism (SNP)-level and gene-level association tests within four samples 

(25 and Up, Spit for Science, Netherlands Twin Register, and UK Biobank and meta-analyses 

over all samples (combined sample of 362,018 participants) were conducted to test associations 

between CADM2, substance- and sex-related risk behaviors, and various measures related to self-

control. We found significant associations between the CADM2 gene, various risky behaviors, and 

different measures of self-control. The largest effect sizes were found for cannabis use, sensation 

seeking, and disinhibition. Effect sizes ranged from 0.01% to 0.26% for single top SNPs and 

from 0.07% to 3.02% for independent top SNPs together, with sufficient power observed only in 

the larger samples and meta-analyses. In the largest cohort, we found indications that risk-taking 

proneness mediated the association between CADM2 and latent factors for lifetime smoking 

and regular alcohol use. This study extends earlier findings that CADM2 plays a role in risky 

behaviors and self-control. It also provides insight into gene-level effect sizes and demonstrates 

the feasibility of testing mediation. These findings present a good starting point for investigating 

biological etiological pathways underlying risky behaviors.
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1 | INTRODUCTION

Risky behaviors, such as substance use (e.g., nicotine, alcohol, and cannabis) and 

unprotected sexual contact, are important factors contributing to physical and mental health 

problems.2 As a result, these risk factors for morbidity and mortality3 are included in the 

global Sustainable Development Goals, set up and agreed on by all member states of the 

United Nations in 2015 to ensure more healthy lives and promote quality of life worldwide.4 
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For instance, substance use contributes to approximately 12% of deaths worldwide,5 due 

to factors such as an increased risk of respiratory and vascular diseases, various forms of 

cancer, stroke, suicide, or overdose.6 Approximately 4% of the global burden of disease, as 

measured in disability-adjusted life years (DALYs),7 is attributable to alcohol and tobacco 

use and 0.8% to illicit drugs.5 Furthermore, risky sexual behavior (e.g., unprotected sexual 

intercourse with multiple partners) contributes another 6.3% of the total global burden of 

disease, as it is associated with the risk of sexually transmitted infections (STIs), human 

immunodeficiency virus (HIV), or cervical cancer.6,8

Various studies indicate that risky behavior has a substantial genetic component. For 

instance, a substantial part of the variation in the initiation of substance use can be explained 

by genetic factors: alcohol (37%),9 nicotine (44%),10 and cannabis (40%–48%).11 Even 

higher heritability estimates are shown for substance use disorders, for example, alcohol: 

45%–73%,9,12 nicotine: 44%–75%,9,10,12 and cannabis: 37%–59%.11,12 Furthermore, the 

heritability of risky sexual behavior was estimated by previous research to be around 

33%.13 It is assumed that different risky behaviors might merely reflect different phenotypic 

manifestations of (partly) shared underlying genetic vulnerabilities.14,15 However, it is 

largely unknown which genetic and biological mechanisms underpin the heritability of risky 

behaviors.16

Recent large genome-wide association studies (GWASs) have independently implicated a 

gene located on chromosome 3 encoding cell adhesion molecule 2 (CADM2) in various 

risky behaviors including alcohol (ab)use,17 lifetime cannabis use,1 number of sexual 

partners,17 and age at first sexual intercourse.18 Proteins encoded by CADM2 are involved 

in glutamate signaling, GABA transport, and neuron cell–cell adhesion, especially in the 

prefrontal and anterior cingulate cortices.19 These brain regions are well known for their 

role in cognitive control and motivational salience, which are in turn involved in impulse 

regulation and self-control.20,21

Low self-control, as indexed by high impulsivity, sensation seeking, and disinhibition, has 

been associated with engaging in risky behavior, including unprotected sexual intercourse13 

and substance use (initiation) or abuse.22,23 A review by Bezdjian et al. showed heritability 

for different indices of self-control of around 50% across 41 studies including around 27,000 

infants, children, adolescents, and adults.24 These findings suggest that genetic factors, 

at least in part, modulate various aspects of self-control. Specifically, CADM2 has been 

associated with sensation seeking,23 hyperactivity, and impulsivity.25 This suggests potential 

shared heritability between reduced self-control and risky behavior, most likely due to 

overlapping underlying biological processes.13,22,23 As such, reduced self-control might act 

as intermediate phenotype, linking CADM2 and various risky behaviors.

Candidate-gene studies have traditionally selected plausible candidate-genes based on a 

theory on the underlying biological mechanisms, for example, relating the dopamine 

cascade to ADHD26 or substance use.27 This approach is limited by current knowledge 

of the biology of investigated behaviors.27 In addition, candidate-gene studies are often 

restricted by a lack of available data resulting in underpowered or small-scale designs28 and 
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examination of only a few (or a single) phenotype(s).29 Consequently, these limitations have 

rendered the candidate-approach largely unsuccessful.30,31

We propose to apply GWAS techniques on a single gene, whose candidate-gene status is 

anchored in a body of (hypothesisfree) GWASs. In this first phenome-wide association study 

(PHeWAS)32 for CADM2 and risky behavior, the multiple testing burden is much lower than 

in GWASs, which should increase power. This study aims to establish if power increases 

substantially enough to detect associations in smaller samples, thereby also providing insight 

into gene-level effect sizes. By looking at several risky behavior phenotypes concurrently, 

we furthermore investigate the link between genetic variation in CADM2 and substance- and 

sex-related risk behaviors more comprehensively than single phenotype studies. Doing so, 

we aim to examine if the involvement of CADM2 in various risky behaviors and self-control 

related constructs (i.e., pleiotropy, when a single gene influences the expression of multiple 

phenotypic traits) can explain the potential genetic overlap between various aspects of 

reduced self-control and multiple risky behaviors. By combining data from four different 

cohorts and analyzing a range of risky behaviors and indices of self-control, we aim to 

increase reliability and robustness of findings.29 Finally, we explore if reduced self-control 

might mediate the relationship between CADM2 and various risky behaviors.

In data across four European ancestry population-based samples from different countries, we 

tested here whether single nucleotide polymorphisms (SNPs) in CADM2 are associated with 

risk behavior, including (1) substance use and abuse (alcohol, tobacco, cannabis, and other 

drugs), (2) sexual risk behavior (number of sex partners, sexual risk-taking, and age at first 

sexual intercourse), and (3) indices of reduced self-control (disinhibition, sensation seeking, 

risk-taking proneness, and ADHD symptoms). We conduct factor analyses to explore 

common underlying vulnerability factors. Furthermore, we explore whether relationships 

between CADM2 and risk behaviors are mediated by a self-control trait.

2 | MATERIALS AND METHODS

2.1 | Subjects and procedures

Data from 443,693 participants from four different data sources were used, including the 

Queensland Twin Registry’s “25 and Up” (25Up: N = 2,133) study in Australia,33 “Spit for 

Science” (S4S: N = 2,994) study in the USA,34 the “Netherlands Twin Register” (NTR: N 
= 12,120) repository in The Netherlands,35 and the “UK Biobank” (UKB: N = 426,446) in 

the United Kingdom.36 Although 25UP and S4S are considerably smaller than the others, 

they have not been included in previous risk behavior GWAS and have data on phenotypes 

that were not available in NTR and UKB, making them valuable additions. All studies 

were performed in accordance with the Declaration of Helsinki and were approved by local 

ethical committees. Study details are described in articles referenced in the Supplementary 

Methods section.

2.2 | Measures

2.2.1 | Genotyping and quality control—We used available genotyped or imputed 

SNP information in and around CADM2 (chr 3 (3p12.1), bp 83,951,945–86,126,470, 
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GRCh37/hg19). Per sample genotyping, imputation and quality control (QC) procedures can 

be found in Table S1. Variants with a minor allele frequency (MAF) below 1%, a genotype 

missingness rate above 5%, or deviations from Hardy–Weinberg Equilibrium (HWE) of p 
< 1e-10 were excluded from further analysis. SNPs were aligned with the 1,000 Genomes 

reference panel (phase 3),37 removing ambiguous SNPs and SNPs that had a MAF that 

diverged more than 0.15 from that in the reference panel. Following these procedures, n25Up 

= 297, nS4S = 2,972, nNTR = 6,166, and nUKB = 4,638 SNPs were available and retained 

for analysis. Genetic data and data on at least one phenotype were available for N25Up = 

2,133, NS4S = 2,994, NNTR = 12,120, and NUKB = 426,446 individuals (total N = 443,693). 

The per-phenotype sample size range was N25Up = 419–2,071, NS4S = 503–2,384, NNTR = 

581–9,432, and NUKB = 23,423–362,018 individuals.

2.2.2 | Outcome measures—In this study, we adopted a PHeWAS approach, meaning 

that we tested the association between CADM2 and all risk behavior and self-control 

measures that were available in the datasets. In order to provide an overview of all measures, 

we grouped them into six categories: lifetime experience with substance use (regarding 

tobacco, cannabis, and other substances), age at initiation of substance use (regarding 

alcohol, tobacco, cannabis, and other substances), average substance use level (regarding 

alcohol and tobacco), regular substance (ab)use (including regular alcohol, tobacco, and 

cannabis use and any behavioral/substance addiction), sexual risk behavior (including the 

number of sexual partners, sexual risk-taking, and age at first sexual intercourse), and 

self-control (including disinhibition, sensation seeking, risk-taking proneness, and symptoms 

of ADHD). Variables with a total N of < 1,000 were excluded as they could not be 

analyzed due to a lack of statistical power. Preprocessing of the data included combining 

measures (e.g., across different waves), removing outliers, and excluding inconsistent or 

invalid response patterns. An overview of all 23 outcome measures included can be found in 

Table 1. More detailed information about the (cleaning and combining of the) measures is 

given in Table S2.

2.3 | Data analysis

Primary analyses were performed separately within each cohort and combined in meta-

analyses. Identical analysis procedures were used in all individual datasets. Phenotype data 

cleaning, preparation, and descriptive analyses were conducted using the Statistical Package 

for the Social Sciences (SPSS; version 25).38

To test whether CADM2 SNPs were associated with separate risk behavior outcomes, 

association analyses were firstly conducted in PLINK (version 1.9).39 For dichotomous 

phenotypes, logistic regression was used; for continuous variables, we used linear 

regression. Covariates included sex, age, and highest level of education, as we aimed to 

capture the influence of CADM2 on risk behavior and self-control that was independent 

of these factors (e.g., education has shown to be associated both with CADM2 and risk 

behavior).40 Furthermore, principal components (PCs) for ancestry were included. PCs 

are used to control for possible stratification effects that arise when a genetic factor and 

a trait show a spurious correlation due to systematic differences in allele frequencies 

between groups of different genetic ancestry. We used the PCs as calculated by the institute 
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we received the data from, following their recommendations on how many PCs were 

appropriate to control for ancestry stratification effects within their specific sample. Because 

S4S participants were recruited at university, parental rather than own education level was 

included as a covariate in this sample. In 25Up, S4S, and NTR we used 10 PCs to control 

for population stratification, while in UKB we included 40 PCs. We controlled for clustering 

due to genetic relatedness in the twin datasets (25Up and NTR) by using the family option in 

PLINK and excluded individuals that showed high genetic relatedness in the other datasets 

(see Table S1).

Second, to assess the overall effect of the variants at the gene level, the association 

results were analyzed using Multi-marker Analysis of GenoMic Annotation gene-based 

tests (MAGMA, version 2).41 Because not all phenotypes were present in all cohorts, 

we conducted these analyses separately per cohort. SNPs were mapped to CADM2 using 

1000Genomes phase 3 data. We used the snp-wise = top procedure, which is more sensitive 

when only a small proportion of SNPs in the gene shows an association. To control for the 

number of phenotypes tested, we computed the Benjamini–Hochberg False Discovery Rate 

(FDR)42 p-values within each variable category, using R (version 3.6.2).43 When reporting 

the results, we present uncorrected p-values with an asterisk indicating if the FDR-corrected 

p-value was below p = .05.

Thirdly, we conducted two meta-analyses for those phenotypes that were present in multiple 

datasets in order to maximize power to detect associations. The first meta-analysis was 

performed on the results from the per-cohort gene-based tests using the meta-analysis 

procedure in MAGMA. This method aggregates the Z-values for the gene-based associations 

within the individual cohorts while taking sample size into account, in a procedure similar 

to “normal” meta-analysis. The results give an indication of the strength of the association 

with CADM2 across cohorts. The second meta-analysis was used to get per-SNP effects that 

can be used to estimate the variance in the phenotype explained by SNPs in the gene (R2). 

To conduct these meta-analyses, odds ratios for binary outcome variables were converted to 

betas with corresponding standard errors in the input files and all continuous variables were 

standardized. The meta-analysis was conducted in METAL44 based on standard errors and 

effect estimates (rather than on sample size) so that β and se(β) could be obtained.

Using the results from the SNP-based meta-analysis, we computed R2 (the procedure is 

described in Supplementary Methods II). To give an indication of how the resulting effect 

size estimates impacted power, we conducted post-hoc power analyses for the meta-analysis. 

The analysis was conducted based on the observed effect sizes as a function of the minimum 

and maximum sample size. We used the compromise power analysis option from the 

G*power package for the F test family with a single predictor.45

2.3.1 | Mediation analysis with latent factors—A secondary aim of this study was 

to test whether the association between CADM2 and risky behavior would be mediated 

by one or more indices of self-control. Assuming that latent factors would be stronger 

measures of underlying risky behavior propensity than the separate phenotypes (and to limit 

the number of analyses), we used factor scores in the mediation analyses. Assuming that 

CADM2 is associated with risky behavior and reduced self-control in general rather than 
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specific behaviors or constructs per se, such latent factors might show stronger relationships 

with CADM2. We used a data-driven approach without a priori specifying the nature of 

the factors or the number of factors to extract. We expect clustering due to the overlap 

in the measures, but the actual clustering could differ per sample. We used PC analysis 

with principal axis factoring (PAF/PFA) including oblique (oblimin) rotation; missing values 

were replaced with the mean.46 The analyses were conducted separately for each cohort 

and factors with an Eigenvalue >1 that explained >10% of the variance were extracted 

from the dataset (see Table S3). Subsequently, individual factor scores were computed using 

regression.

To test if a self-control trait can explain the association between CADM2 and risky behavior, 

we tested mediation following Baron and Kenny’s procedure (see Figure 1, including 

p-values rather than regression weights as MAGMA does not provide such estimates).47 

We first tested the relationship between CADM2 and the risk behavior factor (path c) in 

MAGMA, and if that was significant, we tested the association between the self-control 

trait (mediator) and the risk behavior factor in SPSS (path b). If path b and path c were 

significant, and there was an association between a self-control trait and CADM2 in the 

gene-based test (path a), we tested in a final step the relationship between CADM2 and the 

risk behavior factor outcome, while controlling for the self-control mediator, in MAGMA 

(path c’). When in path c’ the relationship between the risk behavior and CADM2 was 

attenuated while controlling for self-control, mediation was assumed.48 In all paths, we 

controlled for the effects of age, sex, and education, and in the analyses involving genetic 

data, we controlled for the PCs.

As an addition to see if common propensity would indeed show a stronger association with 

CADM2, we also meta-analyzed factors that were made up of similar indicators in different 

cohorts. We used similar procedures for these analyses as for the separate phenotypes in 

MAGMA.

3 | RESULTS

3.1 | Demographics and descriptives

The sample size of people included in at least one analysis consisted of 443,693 individuals 

(maximum sample size per analysis N = 362,018). Slightly more than half of the participants 

(54%) were female (25Up: 61%, S4S: 58%, NTR: 62%, UKB: 54%), and age ranged from 

18 to 94 with a weighted mean age of 38 years (25Up: M = 30.1, SD = 4.3; S4S: M = 

20.7, SD = 1.5; NTR: M = 44.8, SD = 16.9; UKB: M = 54.7, SD = 8.0). Furthermore, most 

participants had a moderate (49%) or high (33%) level of education (largest group 25Up: 

41.7% moderately high, S4S: 77.5% high, NTR: 45.7% high, UKB: 32.4% high education).

Cohort descriptions are provided in Table 1, including a description of the mean (continuous 

variables) and prevalence rates (dichotomous variables) for all outcome measures. Due to 

different operationalizations and sample compositions in the four cohorts, most descriptives 

cannot be directly compared. In the association analyses, we controlled for age, sex, and 

education level, and we conducted meta-analysis either on per-sample Z-scores for the 
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association (in MAGMA) or on standardized regression weights (in METAL) to control for 

sample differences.

3.2 | Associations for CADM2 with risk behavior and self-control

The associations between CADM2 and risk behavior and indices of self-control are shown in 

Table 2. Associations that were significant after FDR-correction for multiple testing (at p < 

.05) are indicated with an asterisk. Both lifetime tobacco use and lifetime cannabis use were 

associated with CADM2 in the meta-analyses. In the individual samples, these associations 

were significant in NTR and UKB but not in 25Up and S4S. No significant associations 

were found for lifetime use of other substances (i.e., recreational drugs), although it must 

be noted that this variable was not present in the largest sample (UKB). None of the age 

at initiation of substance use variables were associated with CADM2. The smallest p-value 

was.049 in the NTR sample for age at alcohol initiation. After correction for multiple 

testing, this finding was no longer significant. The meta-analyses revealed associations 

between both average alcohol consumption and average number of cigarettes per day and 

CADM2 that seem to be largely driven by significant associations in the UKB sample. 

Regular alcohol use, problematic alcohol use, regular tobacco use, and nicotine dependence 

were all associated with CADM2 in the meta-analyses. In the individual study analyses, only 

regular alcohol use was after correction significantly associated with CADM2 in a sample 

(S4S) other than the UKB. The number of sexual partners was associated with CADM2 
in 25Up, UKB and the meta-analysis, and age at first sexual intercourse in UKB and the 

meta-analysis but not in the individual 25Up, S4S, or NTR samples.

As for the analyses of indices of self-control, a significant association between CADM2 
and disinhibition (significant in the NTR and meta-analysis), sensation seeking (in NTR), 

and risk-taking personality (in UKB) was observed. As the constructs of sensation seeking 

and risk-taking personality were only measured in one study, no meta-analyses could be 

performed.

SNP-based meta-analyses were conducted in order to get per-SNP estimates that could be 

used to compute explained variances. Results show little overlap between the top-SNPs for 

different phenotypes (see Table S4). Only 31 SNPs showed a significant association with 

multiple independent phenotypes.

3.2.1 | Effect sizes of the associations and power analyses—The variance 

explained by all independently associated SNPs in CADM2 taken together ranged from 

0.07% for regular alcohol use to 3.02% for regular cannabis use (M = 1.05%, SD = 1.09%, 

Mdn = 0.45%). The sample sizes included in the analyses ranged from 2,094 to 362,018 

individuals (see Table 2). It does not seem to be the case that phenotypes from a particular 

sample or specific category have higher R2 than the others. Also, there does not seem to be 

an effect of the number of SNPs in the analysis on the size of R2 (r = −0.27, p > 0.05).

As most effect sizes were below 1%, we set the power analysis parameters at R2 = 0.001% 

to 1% as a range for the effect size and 2,000–400,000 as a range for the sample size. For 

an effect size of 0.001% even a sample size of 400,000 results in a power level of only 

50%, whereas for an effect size of 1% a sample size of 8,000 suffices to achieve 80% power. 
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In our study, the average observed effect size of the top SNP was R2 = 0.11%, resulting 

in sufficient (>80%) power levels at sample sizes of at least N = 7,100. A visualization of 

power as a function of effect size and the SNP sample size are provided in Figure S1A,B.

3.2.2 | Mediation analysis with latent factors—Factor analysis of the 14–20 

outcomes per sample overall identified five factors with Eigenvalues above 1 and explained 

variance >10%, of which two appeared to be made up by similar variables in multiple 

cohorts (see Table S3). The latent factor lifetime substance use was present in 25Up and 

S4S and was not significantly associated with CADM2. A tobacco (ab)use factor could be 

discerned in all datasets but was only significantly associated with CADM2 in UKB with 

p = 8.45e-06. In UKB there were two other factors, one for lifetime smoking and one 

for regular alcohol use, which were both associated with CADM2 (p = 1.01e-22 and p = 

5.84e-13, respectively). Finally, in NTR there was a self-control factor that was associated 

with CADM2 (p = 2.28e-08).

Thus, there were three risk behavior factors that could be used for the mediation analyses, 

all extracted from the UKB. There was only one measure of self-control included in the 

UKB, namely, risk-taking proneness (yes/no). Results of the analysis using this measure 

as a mediator between CADM2 and the three risk-taking behavior factors are presented in 

Figure 1 (with p-values rather than regression weights as MAGMA does not provide such 

estimates). Path a for the association between CADM2 and risk-taking proneness controlling 

for sex, age, and PCs was tested earlier and found to be significant (see Table 2). Paths 

c1–c3 for the associations between CADM2 and the outcomes (risk behavior factors) were 

reported in Table 3. Paths b1–b3 between risk-taking proneness and the risk behavior factors 

were all significant (tobacco [ab]use factor OR = 1.27, p < .001; lifetime smoking factor, OR 

= 1.27, p < .001; and alcohol abuse factor OR = 1.21, p < .001). In step c′, the associations 

between CADM2 and lifetime smoking and risky alcohol use factors were attenuated when 

including the mediator (p = 1.01e-22 to 1.51e-18 and 5.84e-13 to 5.05e-09, respectively), 

suggesting partial mediation by risk-taking proneness. The association between tobacco 

(ab)use and CADM2 was enhanced (p = 4.34e-05 to 9.14e-07) when controlling for risk-

taking proneness, which suggests that there was no mediation effect.

4 | DISCUSSION

In this multi-cohort study, it was shown that CADM2 is associated with multiple substance 

use and abuse traits, sex-related risky behavior, and different indices of self-control. Meta-

analyses showed significant associations between CADM2 and lifetime experience with 

tobacco and cannabis use, average alcohol and cigarette consumption, regular/problematic 

alcohol and tobacco use, number of sexual partners, age at first sexual intercourse, and 

disinhibition. Furthermore, in the per-sample analyses there were significant associations 

with sensation seeking, behavioral or substance addiction, and risk-taking proneness. The 

variance explained by a single CADM2 SNP ranged from 0.01% (for average alcohol 

consumption, cigarettes per day, nicotine dependence, and the number of sexual partners) 

to 0.26% (sensation seeking). Independent top SNPs together explained between 0.07% 

(regular alcohol use) and 3.02% (regular cannabis use) of the variance. Finally, the self-

control trait “risk-taking proneness” was found to be a significant partial mediator of the 
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associations between CADM2 and latent factors for lifetime smoking and regular alcohol 

use.

The results of this study are in line with results from recent GWAS, indicating associations 

of CADM2 with substance use and abuse (including alcohol consumption, lifetime cannabis 

use, and general drug experimentation),1,17,23,49 sexual risk behavior (such as age at 

first sexual intercourse and number of sexual partners),17,28 and different aspects of self-

control (sensation seeking, hyperactivity, and risk-taking propensity).1,18,23,25 Our study 

finds support for these findings in a large, hypothesis-driven, multi-cohort and phenome-

wide study for risk behavior, indicating that the role of CADM2 in risky behaviors and 

reduced self-control is robust. This is also in line with some earlier reported genetic 

correlations for various forms of risky behaviors,40 suggesting overlapping genes directly or 

indirectly influence these behaviors. The observed mediation effect of risk-taking proneness 

is in line with previous suggestions that the association between substance use and 

CADM2 might be (partially) mediated by reduced self-control.49 Our results suggest that 

variability in CADM2 may give rise to various aspects of reduced self-control underlying 

multiple expressions of risky behavior. This corresponds with proposed shared genetic and 

neurobiological mechanisms underlying various risky behaviors.14,15

CADM2 is mainly expressed in the brain (predominantly prefrontal and anterior cingulate 

cortices [PFC and ACC]), the central nervous system, and its peripheral nerve fibers.23,50 

The PFC and ACC are generally involved in cognitive functions concerned with motivation 

and controlling behavior.51 The ACC has been associated with error detection and response 

inhibition, whereas several regions within the PFC are involved in reward learning and 

decision-making processes, which can all be linked to self-control and risky behavior.52–54 

By affecting brain functions in these regions, variation in CADM2 may result in different 

manifestations of reduced self-control and risky behavior. Future research could further 

delineate which neurobiological mechanisms are involved in the link between CADM2, 

reduced self-control, and risky behaviors.

Looking at the individual SNPs (see Table S4), we observe that most top SNPs cluster in 

the region roughly around 85,500,000 (see Figure S2). This is a region containing large 

numbers of expression quantitative trait loci (eQTLs; panel C). eQTLs are places in the 

genome that influence to what extent a gene comes to expression, that is, how much is 

transcribed to messenger RNA. Only a few SNPs are among the top 10 independent SNPs 

for more than one phenotype. This suggests that the effects of CADM2 were not driven 

by one strong causal SNP. Six SNPs were associated with three different (but overlapping) 

primary phenotypes (sensation seeking, any behavioral/substance addiction, and risk-taking 

proneness). Another SNP that was a top SNP more than twice was rs1271459, associated 

with ever tobacco use, regular tobacco use, and age at first sexual intercourse. SNPs 

associated with multiple distinct phenotypes might be more central to the functioning of 

the gene. As an illustration, we looked up this rs1271459. No information was available for 

this SNP itself, but its proxy rs9820373 is a significant eQTL for CADM2 expression in 

the subcutaneous adipose tissue (pfdr = 5.4E-4).55 This is interesting as CADM2 has been 

associated with BMI,56 potentially through impulsive over-eating.
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4.1 | Strengths and limitations

This study has to be viewed in light of its strengths and limitations. Data from separate 

cohorts with different characteristics were used, which results in a large sample size and 

high generalizability. It also induces measure heterogeneity, which on the one hand may 

have limited the power to detect effects in the meta-analyses and on the other hand further 

substantiates the robustness of findings. This study included a range of risky behavior and 

self-control phenotypes, potentially expanding the findings. Furthermore, previous research 

also indicates that CADM2 may play a role in phenotypically heterogeneous risk-taking 

behaviors and personality.1,23 Future studies might further explore the role of CADM2 in 

other potentially related phenotypes, such as (a lack of) physical activity, eating patterns or 

overweight, gambling, and reckless driving2 and should investigate if these results generalize 

to populations with different age ranges or different genetic ancestry.

In this study, we observed explained variances between 0.01% and 3.02%. The 25UP and 

S4S samples were too small to detect significant effects in the individual samples. Virtually 

all phenotypes reached significance only after adding data from the larger samples (NTR 

and UKB). The comparison of four cohorts with different sample sizes has shown that in 

general samples of over 7,000 individuals are needed to find significant effects with these 

effect sizes (see Figure S1).45,49 This means that for the phenotypes that were available 

in UK Biobank, the addition of the other samples has not led to a substantial increase in 

information over and above what we already learned from previous studies. This is the first 

study to our knowledge, using this method to give a concrete indication of what sample sizes 

are needed to detect the effect of a single gene. We may conclude that we must be cautious 

to draw conclusions from individual small samples, but that these smaller samples can be 

combined in meta-analyses, especially for (possibly more detailed) phenotypes that are not 

available in large-scale data sets.

This is the first study aiming to shed light on effect sizes that can be expected on the level 

of genes. Although small, these effects are substantially larger than those of single variants, 

as have traditionally been investigated in candidate-gene research. Also, given that behavior 

arises as a result of a complex interplay between environment and a large number of genes 

with small effects, the effect sizes of CADM2 that we find could actually be considered 

substantial. Looking at the level of genes rather than SNPs is biologically more meaningful 

and could provide clues on underlying biological mechanisms, which in turn will contribute 

to a better understanding of transgenerational transmission of risky behaviors and provide 

clues for designing treatment and prevention programs.

This study shows the feasibility and added value of novel variations of the more common 

analyses in the field of behavior genetics, including genetic association analyses on 

factor analyzed traits and mediation analyses. New questions might be answered using 

such techniques, providing more insight into underlying common vulnerability patterns 

and etiological mechanisms. However, there were some limitations to the mediation 

analyses, including the lack of control for family relatedness and covariates in the 

Principal Components Analyses and the impossibility of calculating regression weights 

for the associations with CADM2. Also, we used Baron and Kenny’s procedure to test 

for mediation only for outcomes that showed a significant relationship with CADM2.47 
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Technically, mediation could arise in the absence of such a relationship. Bootstrapping 

is a more recently developed non-parametric method that can increase power to detect 

mediation. However, this approach has not yet been implemented in the area of genetic 

association analysis. Future research might develop techniques to tackle these limitations. 

In conclusion, the mediation results in this study suggest that mediation testing may 

be feasible, but improved statistical tools applicable to behavioral genetics need to be 

developed.

Next to the genetic etiology of risk behaviors, we recognize the generally known influence 

of environmental factors.13 For example cultural, parenting or peer norms can influence 

substance- and sex-related risky behaviors. What remains largely unknown is to what extent 

the impact of genetic and environmental risks is additive or interactive. The variants in 

CADM2 identified here lend themselves well to future gene–environment interaction testing, 

provided a multi-cohort study and a combined SNP measure are used to ensure sufficient 

power.

5 | CONCLUSIONS

This comprehensive multi-cohort study has shown the feasibility of a PHeWAS for risky 

behavior to confirm previous findings on associations between CADM2 and manifestations 

of risky behavior and reduced self-control from GWASs on individual phenotypes. It was 

shown that single SNPs in CADM2 could explain 0.01% to 0.26% of the variance and 

a combination of independent top SNPs together 0.07% to 3.02%. This study provides 

more insight into the relatively small effect sizes that can be expected from association 

studies. Furthermore, results revealed that a self-control trait might partially mediate the 

associations between CADM2 and substance-related risky behavior (lifetime smoking and 

regular alcohol use). Future studies should further explore the biological underpinnings 

of the observed relationships between CADM2, reduced self-control, and various risky 

behaviors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Significance of associations between CADM2 and risk behavior factors, with and without 

a mediating effect of risk-taking proneness. Path a: the effect of the predictor (CADM2) 

on the mediator (risk-taking proneness); path b: the effect of the mediator on the outcome 

factors (tobacco (ab)use, lifetime smoking, and risky alcohol use); path c: the effect of 

the predictor on the outcome variables; path c’: the effect of the predictor on the outcome 

variables controlling for the mediator. † C′ paths with attenuated p-values, indicating a 

partial mediation effect
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