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Abstract

Background: Motor complications are a consequence of the chronic dopaminergic treatment of 

Parkinson’s disease (PD) and include levodopa-induced dyskinesia (LIDs) and motor fluctuations 

(MF). Currently, evidence is on lacking whether patients with GBA-associated PD differ in their 

risk of developing motor complications compared to the general PD population.

Objective: To evaluate the association of GBA carrier status with the development of LIDS and 

MFs from early PD.

Methods: Motor complications were recorded prospectively in 884 patients with PD from four 

longitudinal cohorts using part IV of the UPDRS or MDS-UPDRS. Subjects were followed for up 

to 11 years and the associations of GBA mutations with the development of motor complications 

were assessed using parametric accelerated failure time models.

Results: In 439 patients from Europe, GBA mutations were detected in 53 (12.1%) patients and 

a total of 168 cases of LIDs and 258 cases of MF were observed. GBA carrier status was not 

associated with the time to develop LIDs (HR 0.78, 95% CI 0.47 to 1.26, p = 0.30) or MF (HR 

1.19, 95% CI 0.84 to 1.70, p = 0.33). In the American cohorts, GBA mutations were detected in 36 

(8.1%) patients and GBA carrier status was also not associated with the progression to LIDs (HR 

1.08, 95% CI 0.55 to 2.14, p = 0.82) or MF (HR 1.22, 95% CI 0.74 to 2.04, p = 0.43).

Conclusion: This study does not provide evidence that GBA-carrier status is associated with a 

higher risk of developing motor complications. Publication of studies with null results is vital to 

develop an accurate summary of the clinical features that impact patients with GBA-associated 

PD.
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INTRODUCTION

The core motor features of Parkinson’s disease (PD) are bradykinesia, rigidity, and tremor. 

These features are usually improved by treatment with levodopa and patients’ response is 

well-maintained by intermittent dosing during waking hours, especially in the early stages of 

disease. However, long-term dopaminergic therapy, particularly with levodopa, often results 

in the development of motor complications. These are typified by a reduction in the duration 

and reliability of the treatment related motor improvements, termed motor fluctuations 

(MF), and the emergence of involuntary movements, termed levodopa-induced dyskinesia 

(LIDs) [1, 2].

Motor complications impact quality of life and affect the vast majority of patients by 15–20 

years of treatment, although the time it takes for them to first develop differs considerably 

[1, 3, 4]. Several factors have been linked to the development of MF or LIDs, including 

female sex, younger age, higher motor symptom severity at diagnosis, medication regime, or 

nonmotor feature severity, including low mood and high anxiety [5–9].
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Mutations in the glucocerebrosidase (GBA) gene, which encodes the lysosomal enzyme that 

is deficient in Gaucher’s disease, are important and common risk factors for PD. Patients 

with GBA-associated parkinsonism tend to have an earlier age of onset and develop motor 

and cognitive impairment faster than the general PD population [10–13]. Recent work has 

assessed the risk of developing motor complications in GBA-associated PD, with conflicting 

results. The first longitudinal study found no association between GBA carrier status and the 

development of LIDs [14]. Two later studies found that GBA carriers were at increased risk 

of developing LIDs, but their findings regarding the development of MF were inconsistent 

[9, 15]. Given the importance of the proper recognition of subgroups of patients with PD 

at increased risk of motor complications, further studies are needed to clarify the impact of 

GBA carrier status on the risk of MF and LIDs.

This study aimed to examine the association between GBA carrier status and the 

development of either MF or LIDs over time in large, well characterized and prospectively 

followed cohorts of community-based, non-selected patients with PD from Europe and 

America. Understanding which groups of patients with PD are at high risk for motor 

complications would be of benefit in terms of prognosis and patient management, and for 

potential application to clinical trial design.

MATERIALS AND METHODS

Study cohorts

In the European dataset, patients with PD were included from the Norwegian ParkWest 

study [16], the Parkinsonism Incidence in North-East Scotland (PINE) study [17], and the 

Swedish New Parkinson Patient in Umeå (NYPUM) study [18]. These cohorts provide on

going follow-up of population-based incidence studies of all newly diagnosed PD identified 

in specific geographic regions, initiated between 2002 and 2009. Briefly, 212 patients were 

enrolled in the ParkWest study, 211 in the PINE study, and 182 in the NYPUM study with a 

diagnosis of PD guided by the UK brain bank criteria [19] though not excluding those with 

a family history of PD. Only those with a confirmed clinical or pathological (if postmortem 

examination was performed) diagnosis of PD at their latest or final clinical visit were 

included. Since enrollment, 71 had a diagnosis other than PD during follow-up. Further, 

57 declined genotyping, 31 have no available DNA sample or DNA was not extractable, 

and seven did not consent to follow-up. The remaining 439 patients were eligible for this 

study. At the time of the study, data from clinical visits for a period of up to ten years were 

available.

For the American dataset, patients with PD were included from the Parkinson’s Environment 

Gene (PEG) Study. The PEG cohort provides on-going follow-up of new-onset (up to 

5 years after diagnosis) idiopathic PD cases from three rural California counties (Kern, 

Tulare, Fresno) with participants enrolled in two waves (PEG1 between 2001 and 2007 and 

PEG2 between 2010 and 2014) [20]. PD patients were all recruited as part of the PEG 

case-control study through medical groups, neurologists, and public service announcements, 

and a Parkinson’s disease registry pilot program in these counties. All patients in PEG were 

seen by movement disorder specialists at least once at baseline, many on multiple occasions 

and during follow-up, and confirmed as having probable idiopathic PD based on UKBB 
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guidelines except for the family history criterion. Briefly, 849 patients were enrolled in 

the case-control study, and 525 patients have participated in prospective follow-up visits to 

assess progression (mean follow-up of 4.7 years (SD = 2.8)). Of those not examined during 

follow-up (n = 324), 174 were deceased (54%), 42 refused or could not be re-contacted 

(13%), and 108 are pending examinations (33%). Included in the present study were 445 

patients who were recruited within 4.0 years of PD diagnosis, assessed for the presence of 

motor complications, and had genetic information available. At the time of the study, data 

from up to three clinical assessments were available (maximum follow up 11.4 years from 

diagnosis).

Studies were approved by respective ethical committees: The Western Norway Regional 

Committee for Medical and Health Research Ethics, the MultiCentre Research Ethics 

Committee for Scotland, the Regional Ethics Review Board in Umeå, and the UCLA 

Institutional Review Board. Written informed consent was signed by all participants.

Clinical assessments

The clinical assessments have been described in detail before [16–18, 20]. At baseline, 

general medical and neurological examinations and semi-structured interviews were 

performed for all participants to establish medical, drug, and family history (first-degree 

relative with PD, self-reported). Furthermore, all patients were assessed using Hoehn 

and Yahr staging [21]. At baseline, patients in ParkWest, PINE, NYPUM and PEG1 

were assessed using the Unified Parkinson’s Disease Rating Scale (UPDRS) [22] and in 

PEG2 using the Movement Disorder Society (MDS)-UPDRS [23]. In PINE, ParkWest 

and NYPUM, patients were examined on PD medications whenever possible, whilst in 

PEG patients were examined while functionally off PD medications (overnight medication 

withdrawal) whenever possible for UPDRS part III.

For the European cohorts and PEG1 at baseline, motor complications were detected using 

UPDRS part IV (motor fluctuations, score ≥ 1 on UPDRS item 36, 37, 38 or 39; and 

dyskinesias, score ≥ 1 item 32, 33 or 34). For PEG2 and PEG1 follow up visits, motor 

complications were detected using MDS-UPDRS part IV (motor fluctuations, score ≥ 1 on 

UPDRS item 4.3 and 4.4; and dyskinesias, score ≥ 1 item 4.1 and 4.2). Home visits were 

offered in PEG1 to those unable or unwilling to come to the clinic to minimize attrition bias.

Antiparkinsonian treatment was prescribed and adjusted throughout the study by a study 

neurologist (European dataset) or treating physician (PEG) according to best clinical 

judgment. We calculated levodopa-equivalent doses (LED) in accordance with published 

recommendations [24].

Assessment of GBA status

Genomic DNA was isolated from the peripheral blood of each subject by standard methods. 

The presence of GBA variants in the European dataset has been described in detail [10]: 

188 patients of the ParkWest cohort were characterized by whole exome sequencing 

and six non-synonymous variants were detected (rs76763715/N370S, rs421016/L444P and 

rs781152868/Y135C, rs2230288/E326K, rs755 48401/T369M, and rs369068553/V460L) 

and confirmed by direct sequencing of fragments amplified using primers to specifically 
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amplify the functional GBA gene and not the pseudogene (Supplementary Table 1) [10]. 

These variants were genotyped in all available European samples using TaqMan single 

nucleotide polymorphism genotyping assay (Thermo Fisher Scientific), using ParkWest 

samples as controls for each detected genotype. The L444P genotype was determined 

using restriction fragment length polymorphism (PCR-RFLP) assays and all mutations 

confirmed by direct sequencing of the polymerase chain reaction product (Supplementary 

Table 1) [25, 26]. For the PEG dataset, all patients were characterized by a TruSeq 

custom amplicon panel (Illumina Inc., San Diego, CA), using paired probes designed 

to hybridize to unique target-specific sequences, including the GBA gene, and PCR 

amplification to enrich the target regions. 11 non-synonymous variants were detected in 

the eligible participants (rs150466109/K-27R, rs14677 4384/R39C, rs144173415/R47Q, 

rs77834747/I119T, rs409652/G202R, rs78973108/R257Q, rs2230288/E326K, rs75548401/

T369M, rs76763715/N370S, rs1064651/D409H, rs421016/L444P) (Supplementary Table 2). 

All amino acid substitutions are numbered excluding the 39-residue signal peptide.

For the purpose of this study, GBA variants were classified based on published reports 

of pathogenicity in Gaucher’s disease (GD) or reported associations with PD. GBA 
mutations were classified as “severe” (L444P, G202R, R257Q, and D409H) if linked to 

neuropathic type 1 or 2 Gaucher’s disease (GD) or “mild” (N370S) if associated with the 

non-neuropathic type 1 GD. “Risk” variants have been reported to increase risk of PD [27, 

28] but were linked to GD only when occurring in conjunction with other GBA mutations 

[29]. The remaining variants are of unknown significance. The initial classification of 

mutation severity in association with GD was based on a published classification [30] 

supplemented with more recent evidence from The Human Gene Mutation Database [31] 

(http://www.hgmd.cf.ac.uk/), CliniVar (https://www.ncbi.nlm.nih.gov/clinvar/), and literature 

searches (summarized in Supplementary Table 3). Each variant not classified in GD was 

subsequently assessed for association with PD using literature identified in Pubmed.

Statistical methods

Participants were identified as GBA carriers (with one or more GBA mutations) or non

carriers (no GBA mutation). For secondary analysis, we further subdivided the GBA 
mutations into severe, mild, risk factor or unknown significance (Supplementary Table 2). 

Because of the small sample size for the GBA mild subgroup, the mild and risk factor 

categories were combined. Between-group differences were compared using t-tests, Mann

Whitney tests and χ2-tests as appropriate. Non-parametric maximum likelihood estimates 

(NPMLEs) of the survival distributions were assessed by the expectation-maximization 

algorithm [32]. Parametric accelerated failure time models were applied for the primary 

survival analysis, with allowance for interval censoring and with t = 0 at time of diagnosis. 

The Weibull model was deemed optimal (over other parametric models) for time to 

MF using both the Akaike and the Bayesian information criteria. For LIDs the Weibull 

model performed similarly to the Gaussian model and was chosen for consistency and 

interpretability. These comparisons were made for models adjusted for age and sex. 

Furthermore, log minus log plots were assessed for the unadjusted models and displayed 

reasonably straight lines. Coefficients from the Weibull model were transformed into hazard 

ratios (HR), which were presented with 95% confidence intervals (CI). Further adjustment 
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for motor severity at first visit, or ethnicity (American dataset), or repetition of the models 

using t = 0 as time of first visit and including adjustment for disease duration at time 

of first visit did not affect the effect sizes (data not shown). Cox proportional hazards 

models assuming right-censored data were applied in secondary analysis to allow for models 

including time-varying covariates (PD medication) (analyzed only for European data). The 

time of event was set to the first visit MF or LIDs was recorded and censoring was at the 

last clinical assessment. There were no substantial differences between the HRs obtained 

using Cox proportional hazards models and those transformed from the Weibull model in 

unadjusted or adjusted models. Cox proportional hazards models were next applied adjusting 

for age and sex and the time varying medication variables total daily LED, use of dopamine 

agonists, or use of levodopa at each annual visit.

Data preparation, descriptive and between group comparisons were performed in SPSS. 

NPMLEs of survival distributions, parametric survival analysis for interval-censored data 

and Cox regression with time-dependent covariates were performed in R v. 4.0.2 with 

package survival, functions survfit, survreg and coxph. The main plots of survival curves 

were created with function ggsurvplot of package survminer.

Data availability

Anonymized data are available on request by any qualified investigator for purposes of 

replicating procedures and results.

RESULTS

Baseline profile of PD-GBA carriers

This study included 884 patients with PD recruited to either one of three European cohorts 

(ParkWest, PINE or NYPUM; n = 439) or the American PEG cohort (n = 445). The 

baseline characteristics of the cohorts are listed in Supplementary Table 4. The median 

age at diagnosis was 70.7 (14.0) years and 70.0 (13.0) years in the European cohorts and 

PEG cohort, respectively. The European cohorts comprised 60.8% (267) males and the PEG 

cohort comprised 61.3% (273) males.

In the European cohorts, GBA variants were identified in 53 (12.1%) patients [10] and in the 

PEG cohorts, GBA variants were identified in 36 (8.1%) patients (Table 1). The median age 

of diagnosis in the GBA carrier group was younger (EUR 66.7 years, USA 66.0 years) than 

in the non-carriers (EUR 71.1 years, USA 70.0 years) and the distributions in the two groups 

differed significantly in both the European (Mann-Whitney U p = 0.01) and PEG cohorts 

(Mann-Whitney U p = 0.03). No further differences were identified between carriers of a 

GBA mutation and non-carriers for demographic or clinical variables assessed at the first 

clinical visit (Table 1).

Effect of GBA on the development of motor complications

We first examined the development of motor complications in 439 participants of the 

European cohorts. Of these, 9 patients were only assessed at one clinical visit and were 

excluded, leaving 430 patients in the survival analysis. By 10 years of follow-up, 36 (67.9%) 
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of the 53 carriers of any GBA mutation had developed MF compared to 222 (58.9%) of 

the 377 non-carriers, and 18 (34.0%) of 53 GBA mutation carriers had developed LIDs 

compared to 150 (39.8%) of the 377 non-carriers. Parametric accelerated failure time models 

were applied to assesses the impact of GBA carrier status on the time to develop motor 

complications. The risk of developing MF or LIDs in carriers of a GBA-mutation was not 

different compared to non-carriers in unadjusted analysis (MF: HR 1.22, 95% CI 0.86 to 

1.74, p = 0.27; LIDs; HR 0.78, 95% CI 0.48 to 1.28, p = 0.33) or when controlling for 

age and sex (Table 2; Fig. 1). Repetition of the model excluding those GBA variants of 

unknown significance did not affect the effect sizes (data not shown). Further, analysis of the 

impact of either severe GBA mutations or mild and risk factor GBA mutations on the time 

to develop motor complications compared to non-carriers revealed no statistically significant 

association with either MF or LIDs (Table 2). Finally, we applied Cox proportional hazards 

regression models including time-varying covariates to account for the possible effects of 

medication regime over the course of PD. Inclusion of time varying total LED, use of 

levodopa or use of dopamine agonist did not alter the lack of association of GBA carrier 

status with the development of either MF or LIDs (data not shown).

To validate these findings, we next assessed the development of motor complications in 

445 participants from the PEG cohort. 440 patients were assessed for MF and 445 patients 

for LIDs during the study. 10 patients reported MF and 3 LIDs at the time of diagnosis 

and were excluded from the survival analysis. Parametric accelerated failure time models 

were then applied to assess the association of GBA status with the development of motor 

complications from the time of PD diagnosis, and showed that in the American cohorts 

GBA -carriers were not at increased risk of developing MF or LIDs in comparison to the 

non-carriers in unadjusted analysis (MF: HR 1.18, 95% CI 0.72 to 1.96, p = 0.51; LIDs: HR 

1.08, 95% CI 0.54 to 2.13, p = 0.83) or when controlling for age, sex (Table 2, Fig. 1C, 

D). Similarly, the effect sizes did not change when the analysis was repeated after excluding 

the variants of unknown significance, or when analysing the impact of either severe GBA 
mutations or mild and risk factor GBA mutations compared to non-carriers (data not shown).

DISCUSSION

In this study we explored the relationship between GBA carrier status and the long-term 

development of motor complications in patients with PD followed prospectively from the 

early stages of disease. Our findings from both European and American PD populations do 

not support an association of GBA mutations with an increased risk of developing MF or 

LIDs. These data have important implications of fully understanding the impact of GBA 
mutations on the prognosis of PD.

GBA-PD is associated with a younger onset of PD and a more aggressive disease course, 

including faster progression of motor impairment measured using the UPRDS part III [10–

13, 33–35], and it has been suggested that this subgroup of patients may also be at increased 

risk of developing motor complications. Motor complications negatively affect patients’ 

quality of life and progression of these symptoms can trigger consideration of advanced 

treatment options [36]. Further, there is an increasing interest in using genetic stratification 

to improve the design of clinical trials, with the first trials using GBA as an inclusion 
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criterion already completed [37]. Accordingly, it is important to establish which factors put 

patients at increased risk of developing motor complications.

The majority of previous work assessing motor complications in GBA-associated PD is from 

crosssectional studies. Of seven studies [38–44], none found an association of GBA-carrier 

status with MF and only two [43, 44] with a higher frequency of LIDs at the time of 

examination. Few longitudinal cohort studies have addressed how motor complications 

develop over the course of GBA-associated PD compared to the general PD population [9, 

14, 15]. In agreement with the findings of the current study, two did not show an association 

between GBA carrier status and the time to develop LIDs [14] or MF [9]. Conversely, two 

studies have reported an association of GBA variants and an increased risk of developing 

LIDs [9] or both LIDs and MF [15] when compared to non-carriers. The first of these 

from Spain included 532 patients with PD recruited at a late disease stage (on average > 

10 years disease duration) and the date of LIDs and MF onset was retrospectively obtained 

by consulting previous medical records [15]. The Spanish cohort had a similar frequency of 

GBA carriers (12.2%) but a substantially younger age of PD onset (56 ± 12 years) compared 

to the current study. LIDs were shown to develop earlier in carriers of benign GBA variants 

(in this study including both synonymous and non-synonymous variants) (HR 2.4; 95% 

CI 1.41 to 4.09; p = 0.001) and MF to develop earlier in carriers of either benign GBA 
variants (HR 2.44; 95% CI 1.51 to 3.96; p < 0.001) or carriers of severe GBA mutations 

(HR 1.85; 95% CI 1.22 to 2.81; p = 0.004) [15]. Surprisingly, in this study the effect on 

the development of MF was smaller for the more damaging category of GBA mutations 

[15]. Subsequently, a population-based UK study prospectively assessed the development 

of motor complications in a total of 113 patients and found that whilst GBA mutation 

status missed the threshold for significance in unadjusted analysis (HR 2.75; 95% CI 0.94 

to 8.0; p = 0.064), GBA was associated with the development of LIDs in multivariate 

analysis adjusted for baseline MMSE score (HR 4.5; 95% CI 1.5 to 13.9: p = 0.009) [9]. 

No associations were found with MF and given the small number of participants and events 

observed, this study may be too small to draw firm conclusions regarding the association of 

GBA with LIDs or MF. In the present study, in both in the European and American cohorts, 

GBA status had virtually no impact on MF or LIDs with a HR close to one, indicating that 

patients with GBA-associated PD are not at higher risk of developing motor complications.

Despite the small number of studies that have addressed the impact of GBA variants on the 

development of motor complications, there is a striking heterogeneity in their design. For 

example, the study design (notably retrospective vs prospective follow up and population

based vs specialist clinic settings), cohort size, disease duration at recruitment, length of 

follow up, methods used to detect motor complications (including UPDRS/MDS-UPDRS 

part IV or physicians’ diagnosis), and the criteria to select and identify GBA variants, were 

different across the studies identified. Each of these factors can diminish the capacity to 

compare the effects of GBA across different studies and likely contribute to the differences 

in the findings. This highlights the difficulty in assessing the role of GBA variants in PD and 

advocates for the validation of findings in longitudinal cohort studies designed specifically 

to study the progression of PD.
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Our study had several limitations. The modest number of carriers of individual variants 

prevented us from analyzing the effect of each variant separately. Further, several cohorts 

were only screened for selected GBA mutations and some individuals with GBA variations 

(particularly severe mutations) were probably missed, which could bias results toward the 

null. However, the overall frequency of GBA variants detected in those cohorts analyzed 

using targeted genotyping (PINE, 9.4%; NYPUM 15.0%) is similar to those assessed with 

more comprehensive coverage (PEG, 8.1%; ParkWest, 11.6%) and thus, these biases can 

be expected to be minor. Similarly, we did not account for other genetic variants, such 

as in LRRK2, that are known to impact motor complications [45, 46] and the course of 

GBA-associated PD [47]. Furthermore, a number PEG participants presented with either MF 

or LIDs at their first clinical assessment. This is not unexpected as PEG recruited patients 

up to five years after PD diagnosis, and studies have shown that motor complications 

may emerge as early as several months to a few years after the initiation of treatment 

[48]. Finally, the frequency of visits and the duration of follow up in the PEG cohort 

was lower than in the European studies, which could result in a lower number of motor 

complication events detected. Our study also had many important strengths, including the 

use of large population-representative cohorts and the prospective assessment of motor 

complications using uniform data-ascertainment methods for more than 4000 study visits 

analyzed up to 11 years from diagnosis, which address some of the weaknesses of previous 

studies. Furthermore, both the European and PEG studies made substantial efforts to follow 

participants until death, including home visits for those no longer willing or able to attend 

clinic visits, greatly reducing the problem of selection and attrition bias. Finally, we used 

adjustment for important confounders, including treatment-related factors and were able to 

validate our findings from the European cohorts in an independent data set from the USA.

CONCLUSION

In this study we do not find evidence that increased risk of motor complications is a 

key feature of GBA-associated PD but further studies in larger population-based cohorts 

with comprehensive coverage of GBA variants are needed to further clarify the issue 

especially with regard to severity of the mutations. The inclusion of negative findings in 

the narrative of GBA-PD is vital to enable a balanced assessment of the clinical features 

that may differentially affect this subgroup of patients. A clear understanding of the link 

between GBA-PD and MF and LIDs is vital for proper patient management, not least 

because decisions regarding current treatment for those with GBA-PD may be influenced 

if treatment-related motor complications would be considered as an important side effect 

among carriers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Nonparametric maximum likelihood estimates of the survival distributions for onset of 

motor fluctuations (MF) and levodopa-induced dyskinesias (LIDs) in the European data set 

(A and B) or the American dataset (C and D). Time from Parkinson’s disease diagnosis is 

shown in years. Subjects were grouped into carriers of a GBA variant (blue) or non-carriers 

(yellow).
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