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Abstract

Pain is often characterized as a fundamentally subjective phenomenon; however, all pain 

assessment reduces the experience to observables, with strengths and limitations. Most evidence 

about pain derives from observations of pain-related behavior. There has been considerable 

progress in articulating the properties of behavioral indices of pain; especially, but not exclusively 

those based on facial expression. An abundant literature shows that a limited subset of facial 

actions, with homologues in several non-human species, encode pain intensity across the 

lifespan. Unfortunately, acquiring such measures remains prohibitively impractical in many 

settings because it requires trained human observers and is laborious. The advent of the field 

of affective computing, which applies computer vision and machine learning (CVML) techniques 

to the recognition of behavior, raised the prospect that advanced technology might overcome 

some of the constraints limiting behavioral pain assessment in clinical and research settings. 

Studies have shown that it is indeed possible, through CVML, to develop systems that track 

facial expressions of pain. There has since been an explosion of research testing models for 

automated pain assessment. More recently, researchers have explored the feasibility of multimodal 

measurement of pain-related behaviors. Commercial products that purport to enable automatic, 

real-time measurement of pain expression have also appeared. Though progress has been made, 

this field remains in its infancy and there is risk of overpromising on what can be delivered. 

Insufficient adherence to conventional principles for developing valid measures and drawing 

appropriate generalizations to identifiable populations could lead to scientifically dubious and 

clinically risky claims. There is a particular need for the development of databases containing 

samples from various settings in which pain may or may not occur, meticulously annotated 

according to standards that would permit sharing, subject to international privacy standards. 

Researchers and users need to be sensitive to the limitations of the technology (for example, the 

potential reification of biases that are irrelevant to the assessment of pain) and its potentially 

problematic social implications.

Introduction

The International Association for the Study of Pain’s recent revision to the definition of 

pain (“an unpleasant sensory and emotional experience associated with, or resembling 

that associated with, actual or potential tissue damage;” Raja et al, 2020) added several 

contextualizing notes. First, pain is “always a personal experience, influenced…by personal, 

psychological, and social factors.” Second, “a person’s report of an experience as pain 
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should be respected.” Lastly, verbal description is only one of several behaviors to express 

pain.” The first and second recognize that the experience of pain is subjective and falls 

into the category of phenomena we call “feelings.” The second addresses the common 

temptation, when a phenomenon is subjective, to be skeptical about its reality or its potential 

to be interrogated scientifically. The third recognizes that evidence about pain exists in 

various types of behavior. While we can acknowledge that there is much in the experience of 

pain that is unique and individual, if we are interested in advancing understanding of pain, 

either from a purely scientific point of view or for utilitarian purposes of management and 

control, then we must achieve some consensus on the evidence we use to infer its presence 

and properties.

The experience of pain cannot be directly measured. Instead, there are two general 

categories of pain indicators. One consists of changes in the body, especially but not limited 

to the central nervous system, that are believed to mark and quantify pain and that can 

be measured more-or-less directly by some form of instrumentation. The other consists of 

behavior. The vast majority of pain indicators, including verbal descriptions, fall into this 

category. Other behavioral pain indicators include instrumental acts, such as withdrawal or 

avoidance and expressive acts, such as vocalizations or grimacing.

In recent years advances in technology, accompanied by expanding analytic tools in the area 

of computer vision and machine learning (CVML), have been applied to some behavioral 

pain indicators in efforts to improve on them for both scientific and practical reasons. Until 

recently, most progress has been made toward automatic assessment of facial expression of 

pain (Hammal & Cohn, 2018; Werner et al, 2019). Although in everyday pain experience 

we encounter associations between body movement and pain, the communicative functions 

of body movements in relation to pain have been fairly unexplored in automatic pain 

assessment. Notable exceptions are to be found in the work of Aung et al. (2015; see 

also Egede et al, 2020) who found association between pain and certain bodily protective 

behaviors, such as guarding/stiffness and bracing/support. In this article, we describe the 

advent of such approaches, as they relate to facial expressions of pain, beginning with 

the behavioral roots that gave rise to them. We articulate the prospects foreseen for such 

approaches, then describe early progress in the form of “demonstrations of concept”. We 

then go on to summarize key developments and address emergent applications of the work, 

including the development of commercial products. In the course of this narrative, we 

highlight emergent problems that, we believe, should qualify enthusiasm about the field.

Verbal Assessment of Pain

While it is possible to gain insight about a subjective process, that insight often 

comes indirectly—by operationalizing it in the form of a measure. In the field of pain, 

operationalized verbal reports have become a standard—indeed it is common to see verbal 

report referred to as the “gold standard.” Verbal reports of pain can be obtained about 

different dimensions but pain intensity is overwhelmingly the most frequently assessed. The 

widely used visual analog scale (VAS), in which the respondent marks a spot on a line 

of finite length to characterize their pain, is a variation on verbal report. In clinical and 

population-based studies, verbal descriptor or VAS scales are commonly used to characterize 
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certain pain states or as outcome measures in studies of interventions. The 0 – 10 numeric 

rating scale was advocated for and implemented widely in health-care settings as a fifth vital 

sign

Limitations of Verbal Assessment of Pain.

The fact that verbal report techniques are used ubiquitously is a testament to their 

utility. However, concerns about their potential shortcomings are common. One concern 

is epistemological, reflecting an underlying belief that scientific inquiry should be based 

in measurements of things that are objectively observable. But there are others. For one, 

verbal reports bear an uncertain relation to the underlying experience. They can be shown to 

behave in a way that should coarsely correspond to an underlying pain state, such as when 

people use lower numbers or words reflecting lesser pain to describe their pain after being 

administered a known analgesic. However, when a patient with low back pain who initially 

gave a rating of 8 to their pain now gives a rating of 4 after a rehabilitation program does 

that mean they are in half as much pain? In the historical debates about pain measurement, 

this issue was at the center of several attempts to develop psychophysical techniques with 

ratio-scale properties (Gracely, McGrath & Dubner, 1978; Gracely & Wolskee; 1983, Price 

et al, 1983).

Even if it can be shown that verbal ratings vary according to expectations in experimental 

and clinical studies, it is not possible to be certain that all individuals use the scales in the 

same way. Some people are more sensitive to variations in the experience and more precise 

reporters than others. Williams et al (2000), for example, reported a lack of concordance 

between patients and consistency within patients in their use of visual analogue and numeric 

rating scales as they actively interpreted the meaning of their experiences.

Often, variations in the operationalization reveal inconsistencies in the characterization. 

When different techniques are used to assess the painfulness of the same level of nociceptive 

stimulation in experimental studies, or the same patient at the same time in clinical studies, 

the evaluations are often incommensurate. For example, in one of our recent studies, 

participants were asked first to rate cold pressor pain using a VAS. Then, at the end of 

the study, they were asked to rate the maximum pain using the pain intensity rating (PIR) of 

the McGill Pain Questionnaire. Participants who gave the maximum pain rating according 

to the VAS—a rating corresponding to “worst pain imaginable” frequently gave a PIR rating 

implying pain of considerably lower intensity.

One of the most well-known features of verbal reports is their extraordinary malleability. 

This property has been known for a long time, featuring in Beecher’s (1959) classic 

Measurement of Subjective Responses in the form, among other things, of the placebo 

effect. Craig’s early studies of the social modeling effect (e.g., Craig & Weiss, 1971), 

showed that exposure to tolerant or intolerant social models could make participants rate 

electric shocks less or more painful, respectively. Such malleability may, of course, simply 

exemplify that pain is an extremely plastic phenomenon. On the other hand, recognizing 

that verbal report is under exquisite control of the perceiver raises concern whether what is 

being measured is instead the response to personal or social expectations embedded in the 

conditions of observation such as expectancy effects or demand characteristics, independent 
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of any true effect on the pain experience itself. One example of the concern arose in 

studies of hypnosis that made use of the “hidden observer” technique (Hilgard et al, 1978). 

Participants under hypnosis were given suggestions that they would experience an analgesic 

state. They then rated the painfulness of cold in the cold-pressor test. Participants were also 

told that under hypnosis they would have access to the experience of their hidden observer

—a part of them that would experience the pain as it was—and that they were to give the 

ratings of the hidden observer after they rated their own pain under hypnotic analgesia. 

The studies showed a dissociation between the ratings of the hypnotized subject and the 

same subject’s hidden observer Spanos and Hewitt (1980), however found that the hidden 

observer’s ratings could be easily diverted by manipulations of what the participant expected 

that the researcher expected.

Similarly, self-presentation biases are likely to come into play and distort controlled verbal 

reports in a species as socially responsive as humans. A common self-presentation bias in 

the pain context is stoicism. When self-report is the criterion, studies (both clinical and 

experimental) routinely find, for example, that men report lower pain than women (Mogil, 

2012). It is, of course, possible that this reflects a true difference in pain sensitivity between 

the sexes, but there is an obvious socialization difference in which masculinity is equated 

with enduring pain that can also account for the difference.

A final shortcoming of verbal report in studies of pain is that there are important instances 

in which verbal reports cannot be obtained because the respondent is incapable of using 

words to describe their pain (for example, preverbal infants, people with profound verbal 

communication impairments and nonhuman animals), or people who, though capable of 

communicating verbally, are impaired in the ability to communicate reliably about pain 

(such as in types of dementia).

Physiological Assessment of Pain

There is a substantial history of search for alternatives to self-report. A diversity of 

physiological measures has been promoted over the years, including measures of autonomic 

responses such as electrodermal activity (Tursky, 1974), oxygen saturation (Worley et al, 

2012), heart-rate variability (Koenig et al, 2014) and evoked potentials (Zaslansky et al, 

1996). With the advent of neuroimaging procedures measures of regional cerebral bloodflow 

have become ubiquitous in pain studies. Some have been promoted as true “central registers” 

of the pain experience, but none are widely recognized as such (Robinson, Staud & Price, 

2013).

Limitations of Physiological Assessment of Pain

A physiological measure of pain has been a kind of “holy grail” among some researchers 

and clinicians. Physiological variables such as those noted are routinely deployed in both 

basic and clinical studies but have not achieved consensual status as measures of pain 

outcomes. Some, such as electrodermal activity or heart-rate variability, serve as indices of 

processes that are affected by pain, such as autonomic arousal. As measures of pain, they are 

sometimes overly responsive and therefore poorly discriminating of variations in pain states, 

sometimes insufficiently responsive and therefore also poorly discriminating, and sometimes 
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covary with other affect states with which pain is correlated, such as fear. Neuroimaging 

procedures have identified various brain regions in which activation varies in accordance 

with other evidence of pain; however, they are distributed across networks in a manner 

that does not lend itself to simple interpretation as pain indicators. Most physiological 

assessment techniques are at least modestly invasive, involving special instrumentation and 

sometimes highly specialized laboratory environments and therefore do not lend themselves 

to study in ecologically normative conditions.

Pain Assessment Based on Fine-Grained Facial Observation

The insight that behavior is fundamental to the understanding of pain gained currency 

with the development of behavioral approaches to pain management. As Fordyce (1976) 

observed, a person has to do something for it to be known that they are in pain. The early 

behavioral approach was based in the learning theory of the day but did not make nuanced 

distinctions about the properties of pain-related behaviors that varied by topography.

The model brought an emphasis on observation and precise definition and assessment of 

behaviours that, curiously, dovetailed with the concerns of students of emotion.

The study of emotion had venerable roots in the work of Charles Darwin. In The 
expression of the emotions in man and animals, Darwin (1872) argued that emotions are 

phylogenetically shared with other species. He described how various affective states, 

including pain, are represented in specific behavioral topographies, especially but not 

exclusively facial expression.

Interest in the role of the face in communication of affect revived in the late 1960’s, 

reflecting in part the influence of studies supporting the idea that facial expressions of 

certain emotions are universal across human cultures (Ekman, Sorenson & Friesen (1969) 

Subsequent refinements in methods for studying facial expressions laid the foundation for 

examining their role in communicating information about pain.

In 1978, Ekman and Friesen published the Facial Action Coding System (FACS). This is 

a system for deconstructing any facial movement into its constituent actions based on the 

changes that appear when an individual muscle or combination of muscles are activated. 

Observers trained to FACS proficiency then view facial expressions and describe their 

constituent actions in terms of 44 action units (AUs) or action descriptors (ADs). Most AUs 

can be described in terms of their intensity. Intensity coding for most AUs is on a 6-point 

A – E scale, where a code of A is assigned to a trace of an action, B to an action that 

meets minimum requirements for the action, E to an action that is as strong as it could be, 

and codes in between refer to gradations between meeting the minimum requirements and 

maximum intensity (note that, in quantitative analyses the alpha codes are transformed to 

numbers between 1 and 5; if the action has not occurred a code of 0 is assigned as default).

The system is thus anatomically based, atheoretical, and relatively objective (“relatively” 

because inferences are still involved; for example, when rating intensity). It is manualized 

such that, with intensive study, an observer can learn the system within about 100 

hours. Data quality when performed by observers who have established proficiency in the 
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system by passing a proficiency test, is generally sufficient to meet conventional reliability 

standards and the system is generally considered to be the “gold standard” for assessing 

facial action.

The FACS has been applied extensively in studies to characterize the appearance of the 

face when a person is in pain. A systematic review of 37 studies (Kunz, Meixner & 

Lautenbacher, 2019) reported that, for both experimental and clinical pain, a subset of 

facial actions reliably discriminates between pain and no-pain conditions. These are: brow 

lowering (FACS AU 4), orbit tightening (AUs 6 or 7), levator tightening (Aus 9 or 10), and 

mouth opening (Aus 25, 26, or 27). Eyelid closing (AU 43) also consistently discriminates 

between pain and no pain in studies of clinical pain. The same actions discriminated pain 

from no pain independent of the participants’ cognitive status (impaired vs unimpaired).

Systems resembling FACS have been developed for studies of pain in children. The two 

systems that have been applied most widely are the Neonatal Facial Coding System (NFCS; 

Grunau & Craig, 1987) and the Child Facial Coding System (CFCS; Chambers et al, 1996). 

Rather than being defined by the underlying facial musculature of the constituent actions, 

NFCS and CFCS codes are based on appearance changes. In both neonates and young 

children, the codes that have been found most consistently to discriminate pain from no 

pain conditions are homologous to the codes that distinguish pain from no pain conditions 

in adults, including seniors; namely, brow bulge (NFCS)/brow lower (CFCS), eye squeeze 

(both systems), nasolabial furrow /nose wrinkle (NFCS), nasolabial furrow, upper lip raiser 

(CFCS) (Prkachin, 2009). Various other facial actions have been associated with pain in 

neonates and children. Nevertheless, the smaller “core” subset appears with remarkable 

consistency across types of pain and the human life-span, including among the aged. There 

is also a noteworthy similarity with the facial actions reported to be associated with pain in 

nonhuman animals that have been studied to date (e.g., Langford et al, 2010).

Limitations of Fine-Grained Facial Observation of Pain

Somewhat remarkably, despite the substantial scientific literature documenting the 

properties of facial expressions of pain, the work has had little application in basic 

science or clinical studies of pain. The simple reason for this is that objective description 

of facial action by FACS or similar systems is burdensome. FACS is implemented by 

human observers who require training to render assessments that are sufficiently reliable 

for scientific purposes. Implementing FACS in scientific or clinical studies cannot be done 

practically in real-time because coding requires multiple observations of behavioral samples 

to identify the separate actions of separate muscle groups. Ordinarily it requires slow-motion 

and stop-action to settle on a final set of codes. This makes the coding process lengthy--a 

final code from a sample of behavior is typically estimated to require a coding time: 

real time ratio of around 100:1. Conducting studies with requisite numbers of participants 

and observations quickly becomes arduous and, for human observers, oppressive. Realistic 

application in clinical settings is impractical. Although some work has aimed at reducing 

training and coding time by focusing on only facial actions that have been empirically 

associated with pain (Rash et al, 2019), even modified procedures are problematically time-

consuming. Further, the measurement rendered by human observers is insufficiently granular 
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and continuous to render certain kinds of information that could provide the insights into 

pain processing that the face may be capable of; for example, temporal information about 

the onset and decay of certain facial actions that may be informative about such issues as the 

relative reflexivity or conscious modulation of the sufferer.

For these reasons, since the inception of fine-grained systems for measuring facial action, 

there has been an underlying question whether advances in information technology could 

render a technique as reliable and valid as facial coding by trained observers that 

would reduce the burden of observation, that would not be subject to human observers’ 

susceptibility to fatigue and error, that might be more sensitive and better able to represent 

dynamic changes. Development of the field of affective computing appeared to address this 

prospect.

Towards Automated Assessment of Pain from Nonverbal Behavior.

Affective computing has been defined as “computing that relates to, arises from, and 

deliberately influences emotion” (Picard, 1997, 2010). It subsumes a wide range of topics 

and applications, one of which is the measurement and modeling of affective processes. 

Affective processes like pain have behavioral markers, including but not limited to facial 

expressions, that can be captured and stored by technology. Decoding their messages is 

a kind of pattern recognition. Advances in computer and data science enabled by the 

development of neural nets and machine learning, which had proved to be successful 

modeling pattern recognition, appeared to offer a technological solution to the burden 

associated with decoding facial expressions. Further potential benefits, such as rapid 

processing and the ability to render more precise information about movement dynamics 

than can be effectively obtained from human observers, appeared possible.

Some of the earliest demonstrations of the feasibility of such automated analysis of facial 

expression appeared in work by Bartlett et al (1999) and Cohn et al (1999). Bartlett et al 

obtained images of FACS upper-face AUs varying in intensity from 20 people. Processed 

by a two-layer neural network, a hybrid classification system combining holistic spatial 

analysis, facial feature measurement, and analysis of motion flow fields was able to correctly 

classify 92% of the six facial actions (of which three [AUs 4, 6, 7] had been implicated 

in studies of pain), outperformed naïve human judges, and approximated the performance 

of human experts. Cohn et al used video frames of 15 FACS AUs or AU combinations 

as training stimuli. After alignment, facial landmarks were marked and then automatically 

tracked using an algorithm to estimate optical flow across images. Discriminant function 

analysis produced 92% or higher agreement with the classifications of a human coder in 

a training set and between 81 and 91% (depending on facial region) in a cross-validation 

set. These studies strongly suggested that advances in computer vision methods combined 

with advanced statistical analysis could, in principle, make automated analysis of facial 

expression possible.

The advent of techniques to automatically measure facial expressions naturally stimulated 

interest in extending the technology to the measurement of facial expressions of pain. 

Effective automated assessment held promise to overcome barriers to more widespread 
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scientific and practical applications of facial expression measurement. In principle, it could 

reduce or eliminate the need for human coders thereby managing the problem of observer 

burden. Once tested sufficiently and validated, an automated system could potentially be 

more reliable than measurement by human observation because it could reduce variability 

and human error. Early work on automating measurement of human emotional expressions 

began to reveal properties of facial action that had been impractical to study. For example, 

using an automated facial analysis technique, Ambadar, Cohn, and Reed (2009) showed that 

different categories of smiling (polite, amused, embarrassed) differed in terms of velocity, 

duration, and association with head movements. From a scientific perspective, the prospect 

of an automated system opened the tantalizing possibility of measuring momentary dynamic 

changes in pain-related facial expressions to draw similar inferences about its meaning and 

underlying determinants. From a practical perspective, an automatic, objective, reliable, 

and efficient assay of the occurrence and intensity of pain could improve clinical pain 

assessment, allowing health-care personnel to provide better treatment to patients, with 

little to no increase in cost (Hammal & Cohn, 2018). It could also support pharmaceutical 

therapies by providing an objective quantitative tool for evaluating the efficacy of current 

and new analgesics and serve as an objective complement to self-reported pain measures in 

clinical trials of drug or device interventions to reduce pain.

Methodological Foundations.

To learn the association between pain occurrence or intensity and facial behavior, recordings 

of participants responding to painful conditions are needed in order to train and test 

classifiers. Samples of sufficient size to estimate training parameters and perform validation 

analyses are necessary. The number of participants should be motivated by two factors. One 

is the number needed to achieve saturation in the performance of the predictive models 

(i.e., automatic classifiers). The other is the number needed to enable sufficient power in 

the statistical models for quantifying the contribution of the used variables in the predictive 

models. For instance, in prior work on a related problem (training automated classifiers for 

facial action units), it was found that automatic classifier performance saturates at about 60 

participants in the training set (Girard & Cohn et al., 2015). With 25 participants in the 

UNBC pain archive, the number of available participants is far lower than that minimum 

number needed. Additionally, independent criteria for establishing the absence, presence, 

or intensity of pain (i.e., “ground truth”) must be present. Although they have not been as 

widely tested in pain studies, ground truth in automated pain assessment has mostly been 

derived from annotations by expert observers (using FACS or a variant of FACS) of video 

recordings of facial expression of pain. However, there must be sampling in conditions in 

which it is reasonable to assume that pain has occurred (such as during a clinical test, 

or during exposure to artificially induced painful conditions, such as noxious heat), and 

in conditions when pain is unlikely. As an alternative or supplement, judgment studies 

can be performed in which observers (who might vary in expertise) rate recordings on 

an appropriate scale of pain intensity. Another alternative that has only recently come to 

be explored is the subjective judgments of participants undergoing the potentially painful 

procedure. Finally, known conditions can serve as ground truth, such as when, in one 

experimental condition, a participant is exposed to a stimulus known to cause pain and 

in another, they are not. If ground truth is based on annotations or ratings by human 
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observers, they must also meet criteria for acceptable reliability. Meeting the aforementioned 

criteria is a challenging task but has been achieved by several groups (Bartlett et al., 2014 

Hammal et al., 2008, 2012; Littlewort et al., 2009; Sikka et al., 2015). Because of the power 

requirements of machine learning and classification procedures, there is an issue related to 

the density and precision of annotations. Analyses are based on the recordings made in the 

aforementioned clinical or experimental conditions. A behavioral sample can be annotated 

at the level of the overall sequence using a single observation or a summary, which yields 

one measure per sequence. Alternatively, depending on the annotation method, it can be 

annotated at the level of the individual frame. Whereas annotation at the level of the frame 

provides considerable amounts of data for training and validation purposes, annotation at 

the level of the sequence provides but one per participant and condition, with obvious 

implications for sampling in the pain recording phase of any study. In either case, but more 

particularly for studies in which annotation is frame-by-frame, at least in data collected to 

date, the distribution of pain intensities is problematic, with there usually being a much 

higher number of frames in which annotations suggest no pain than pain, with implications 

for training models.

In part because of the resources required to meet the forgoing criteria, but also because 

experimentation with different CVML methods benefits from comparison and calibration 

against extant work, databases that can be shared for model testing are desirable. The 

UNBC-McMaster Pain Archive (Lucey et al., 2011; Prkachin & Solomon, 2008) was the 

first to address this need. The archive contains video recordings of people with shoulder 

pain taken during active abduction, flexion, internal and external rotation of their affected 

and unaffected shoulders (Prkachin & Solomon, 2008). It comprises 200 video sequences 

from 25 different participants (66 % female). For each sequence, the distribution includes 

66 Active Appearance Model (AAM) tracked landmarks (fiducial points around the eyes, 

eyebrows, and mouth) at the frame level and per-frame and per-video pain score annotations. 

Expert labeled FACS codes were scored using a 0–5 ranking of the intensity of the facial 

actions in most cases. Intercoder agreement as calculated by the Ekman–Friesen formula 

(Ekman & Friesen, 1978) was .95. The participant’s’ elf-reported pain intensity and an 

independent observer’s ratings of pain intensity (OPI) were annotated at the sequence level. 

Offline observer ratings were performed on a 6-point Likert-type scale that ranged from 

0 (no pain) to 5 (strong pain). To assess inter-observer reliability of the OPI pain ratings, 

a second rater independently rated 210 randomly selected videos. The Pearson correlation 

between the observers’ OPIs was 0.80, which represents high inter-observer reliability.

Since being made available to qualified researchers, the Pain Archive has been the most 

widely used dataset for exploring automatic pain assessment from facial expression, 

accounting for approximately 41% of the literature published in this field according to a 

2019 systematic review (Werner et al, 2019).

A smaller number of studies (Kachele et al., 2015, 2017; Lopez-Martinez et al., 2017, 2018; 

Werner et al., 2014, 2017; Yang et al., 2016) have made use of BioVid (Walter et al, 2013), 

a heat pain database. BioVid contains recordings of 87 people exposed to four intensities 

of experimental heat pain and a no pain baseline. Each intensity (including no pain) was 

presented 20 times in a random sequence. Each video excerpt has a duration of 5.5 sec. 
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Unlike UNBC-McMaster, ground truth is based on stimulus intensity, rather than a measure 

of pain expression.

A third database, EmoPain (Aung et al, 2015) contains recordings from 22 adults with low 

back pain. The recordings were taken while the patients engaged in movements resembling 

common therapeutic tasks for back pain patients. Data streams include audio recordings, 3D 

motion capture, and electromyographic recordings from the paraspinal muscles in addition 

to facial expression. Measures available for ground truth include patient pain and anxiety 

ratings, and offline observer ratings using a joystick method. EmoPain has not yet been 

publicly released as had been planned.

Proof-of-Concept Studies.

One of the earliest efforts to develop an automated system for measuring pain expression 

appeared in Ashraf et al (2009). The authors employed recordings from the UNBC-

McMaster archive of shoulder-pain patients described above. They had been quantified 

at the level of the individual video frame by a FACS-based index of expressive intensity, 

dubbed the Prkachin Solomon Pain Index (PSPI; Prkachin, 1992; Prkachin & Solomon, 

2008), and consisting of the summed scores of AUs that have consistently been associated 

with pain in observational studies. After transformations to optimize registration of the 

face, support vector machines (SVMs) were trained to classify full sequences or individual 

frames as showing pain or no pain. The best combination of representations resulted in hit 

rates of 77% and 82% for sequence level and frame-level classification, respectively and 

false acceptance rates of 44% and 30%, showing that it was possible to obtain reasonable 

differentiation of pain from no pain states when evaluated with respect to the ground 

truth of direct facial measurement by trained observers. Unsurprisingly, the more granular 

frame-level approach provided better performance. Figure 1 displays performance of both 

approaches for a representative participant.

In another early study of automatic pain detection, Littlewort et al. (2009) employed a 

system for automatic detection of FACS AUs to examine facial changes during exposure 

to experimental pain produced by immersion of the arm in ice-water and to compare those 

changes with actions performed when participants pretended to be in pain. Genuine pain was 

associated with increases in six automatically detected representations of AUs previously 

associated with cold-pressor pain in studies using human observers. “Faked” pain was 

associated with 11 automatically coded actions. In a subsequent machine learning phase, 

automated facial action parameters were processed via a Gaussian SVM in an attempt 

to discriminate genuine from faked pain. The resultant 2-alternative forced-choice percent 

correct value of 88% substantially exceeded the performance of naïve human observers at 

49%.

Lucey et al (2011), also using UNBC-McMaster, applied a system combining Active 

Appearance Models (AAMs) for tracking face shape and appearance, input to SVM’s 

for pain and AU classification at the level of the individual video frame. Ground truth 

consisted of expert-coded FACS AUs, including, but not limited to the PSPI. In a test of 

the system for directly classifying pain (i.e., predicting a PSPI score of greater than 0) the 

Receiver-Operating-Characteristic (ROC) based A’ metric yielded a score of .75, indicating 
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performance substantially greater than chance. An indirect classification system, predicting 

pain from an alternative set of individual FACS AUs that excluded two components of the 

PSPI and included AU12, performed slightly better, achieving an A’ score of .77, relative to 

.78 for the PSPI. Building upon those results, Lucey et al (2012) again used a combination 

of AAM/SVM representations to derive parameters of similarity normalized points (SPTS) 

and canonical normalized appearance (CAPP). These were trained to detect individual 

AUs and the PSPI metric. SPTS and CAPP solutions were then used individually and in 

combination to evaluate performance. With some exceptions, the individual representations 

performed reasonably at both AU detection and overall PSPI prediction. Combining both 

parameters yielded an A’ value of .84 at predicting the PSPI index.

Hammal & Kunz (2012) proposed a hybrid machine learning approach to classifying 

spontaneous expressions of experimental pain, based on the Transferable Belief Model. 

The model was based on the dynamic fusion of appearance features around the wrinkle 

areas (the deepening of transient facial features). Video sequences of participants responding 

to painful or non-painful heat stimulation were classified in a 2-alternative forced-choice 

paradigm, achieving a correct classification rate of 81.2%. A test of the ability of the 

system to correctly discriminate among pain, posed expressions of six basic emotions, and 

neutral expressions (an 8-alternative forced choice) achieved a correct classification rate 

of 84.5%. Automatic classification outperformed untrained human observers. Importantly, 

these findings demonstrated the feasibility of automatically differentiating pain from other 

emotional expressions. Unlike approaches that rely exclusively on static information from 

video recordings, the model incorporated temporal changes in features, thus more closely 

approximating the perceptual processes of human observers.

Most approaches to pain detection seek to determine only whether pain is present or absent. 

Hammal and Cohn (2012), extended previous efforts by attempting to classify pain intensity 

(as opposed to presence). Using UNBC-McMaster, they defined four pain intensity scores 

from the PSPI metric: none (PSPI = 0), trace (PSPI = 1), weak (PSPI = 2), and strong 

(PSPI >= 3). For each video frame, AAMs were first used to track and register rigid and 

non-rigid face motion. Based on this information, the canonical appearance of the face 

(CAPP) was extracted for each frame. CAPP features were then rescaled to 96 × 96 pixels 

and passed through a set of Log-Normal filters of 7 frequencies and 15 orientations. The 

extracted spatial face representation was then aligned as a vector of 9216 features and used 

by four SVMs trained separately to measure the four pain intensity levels. Results showed 

fair-to-good classification of the intensity levels, depending on the classification accuracy 

metric and method of validation between training and testing data, with moderate-to-high 

consistency between automated measurement and the original PSPI metric. Several other 

researchers have described effective CVML methods for assessing pain intensity from facial 

expression (Erekat et al., 2020; Kaltwang et al., 2012; Liu et al., 2017; Lopez-Martinez et 

al., 2017; Rudovic et al., 2013; Sikka et al., 2014; Szczapa et al., 2020; Werner et al., 2014). 

In short, the data suggest that automated assessment of expressed pain intensity is feasible.

These early efforts provided an initial proof-of-concept that the occurrence of pain can be 

automatically measured from the face. There have since been scores of studies supporting 

the concept (see Werner et al, 2019, for a survey of work to that year).
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Applications in Specific Populations.

Interest in evaluating pain by assessment of nonverbal expression has been driven to a 

significant extent by clinical concerns; in particular, the fact that large cohorts of people 

cannot report on their pain because of verbal communication deficits. These include 

infants and young children and people with neurological impairments, especially dementias. 

There are extensive literatures describing validated techniques for assessing pain via facial 

expression and other types of nonverbal behavior in neonates and young children (Craig, 

Prkachin & Grunau, 2011) and in dementia (Hadjistavropoulos et al 2014). Many suffer 

from the same problem of burden associated with observational techniques described above; 

consequently, there has been a similar interest in development of automated measures for 

these populations.

Automated assessment of pain in infants and children.—There have been several 

efforts to develop automated systems for assessing pain in infants and children (Zamzmi 

et al, 2018). Most have made use of a publicly available resource, the Classification of 

Pain Expressions (COPE) database (Brahnam et al., 2006). The database consists of 200 

still photographs taken of neonates during five conditions, one of which was undergoing 

blood sampling by lancing of the heel. In an initial study, 88% correct classification in 

distinguishing the response to heel lancing from pain from rest, crying, air-puff, and friction 

conditions was achieved with a SVM approach. In a later study, using techniques based on 

processing of image textures and SVM’s, an Area-Under-the-Curve ROC value of .93 was 

obtained discriminating pain from non-pain conditions.

With recordings obtained from neonates undergoing heel-lancing, Zamzmi et al (2015) 

extracted optical flow strain measures to train a K-nearest neighbor classifier, achieving 96% 

correct classification distinguishing pain from no pain, as evaluated against the ground-truth 

of nurses’ ratings on an infant pain scale incorporating assessments of facial expression, 

among other behaviors.

Sikka et al (2015) studied children, aged 5 to 15, during different phases of treatment 

for appendicitis. An automated procedure—the computer expression recognition toolbox 

(Littlewort et al, 2011)—was used to detect FACS AUs, which were then used in logistic 

regression to classify pain, achieving Area-Under-the-Curve values of .84 – .94 predicting 

pain.

Automated assessment of pain in aging and dementia.—Kunz et al (2007), using 

FACS, showed that facial pain expressions were able to document pain among patients 

with dementia who could not articulate valid verbal pain ratings and that patients with 

dementia showed a greater pain reaction than controls. As with other applications of 

behavioral measurement, this knowledge has been slow to affect clinical practice because 

of the measurement burden problem highlighted above. This has motivated the pursuit of 

automated systems for evaluating pain expression in dementia.

Progress in this pursuit has recently been documented by Rezaei et al (2021). Using 

video recordings taken from UNBC-McMaster and a new dataset of elderly people with 

and without dementia undergoing potentially painful physiotherapy maneuvers a computer 
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vision model of fully automated detection of pain expression was developed and evaluated. 

The model attempted to approximate the perceptual processes of human observers, who take 

into account temporal changes in expression by pairing target frames and reference frames. 

The best performing models, when evaluated against a pain/no pain decision based on the 

PSPI metric, yielded Area Under the Curve values of .86, and .85 for per-frame detection 

of people with dementia and those without, respectively. This supports the feasibility of 

automatically detecting pain-related facial actions in this verbal-communication-impaired 

population and is all-the-more remarkable when considering the subtlety of the actions 

evaluated and the presence of perturbing conditions, such as body motion out of plane and 

variations in lighting.

Automatic Detection of Self-Reported Pain.

The bulk of this work has focused on modeling pain as represented in facial expression. 

More recently, however, some researchers have attempted to model other pain parameters, 

including sufferers’ self-reports. To date, four studies have investigated automatic 

assessment of self-reports of pain, using video from UNBC-McMaster. Lopez-Martinez et 

al. (2017) proposed a two-step learning approach to estimate pain intensity as self-reported 

on a VAS. The approach began with a Recurrent Neural Network to automatically estimate 

PSPI scores at the level of individual video frames. The estimated scores were then fed 

into personalized Hidden Conditional Random Fields, used to estimate the self-reported 

VAS pain scores at the sequence level. To account for individual differences in facial 

expressiveness, an individual facial expressiveness score (the ratio of an independent 

observer’s pain intensity rating) to the VAS was introduced.

A limitation of the foregoing technique is that it required retraining on previously acquired 

VAS ratings and thus could not generalize to previously unseen participants. To overcome 

this limitation, Liu et al. (2017) employed another set of predefined personalized features 

(i.e., age, gender, complexion) to automatically estimate self-reported VAS ratings. The 

authors combined facial shape with these features to train an end-to-end combination of 

Neural Network and Gaussian Regression model (named DeepFaceLIFT), for VAS pain 

intensity measurement from video.

Szczapa et al. (2020), proposed a video-based measurement of pain intensity scores using 

the dynamics of facial movement. Gram matrices formulation was used for facial point 

trajectory representations on the Riemannian manifold of symmetric positive semi-definite 

matrices of fixed rank. Curve fitting and temporal alignment were then used to smooth the 

extracted trajectories. A Support Vector Regression model was then trained to encode the 

extracted trajectories into ten pain intensity levels consistent with the VAS pain intensity 

measurement.

Erekat et al. (2020) proposed a spatio-temporal Convolutional Neural Network - Recurrent 

Neural Network (CNN-RNN) model for automatic measurement of self-reported pain and 

observed pain intensity, respectively. The authors proposed a new loss function that explored 

the added value of combining different self-reported pain scales in order to improve the 

reliability of pain intensity assessment. Using an automatic spatio-temporal architecture, 
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their results showed that enhancing the consistency between different self-reported pain 

intensity scores enhances self-reported pain estimation.

Limitations, Constraints, and Perils of Automated Assessment of Pain.

Progress toward automated analysis of pain in the past decade has been steady; nevertheless, 

the field is still in early development. It is a prudent time to consider some of the 

limitations of the approaches developed so far and problems that further studies will have to 

acknowledge or confront.

Alternatives for Ground Truth.

Most efforts for automatic assessment of facial expression of pain have focused on frame-

level pain intensity measurement such as the FACS-based PSPI metric. The emphasis on 

frame level scores, from static images or a subset of images, is consistent with approaches 

to objective AU detection more generally. An alternative, simpler, approach to assessing 

facial expression in pain is the judgment study. Using this technique, raters, who may 

be naïve or could have varying levels of sophistication (e.g., being trained to recognize 

FACS AUs or having clinical experience with pain), view recordings of subjects who may 

be in pain and evaluate how much pain they appear to be in by using some kind of 

rating scale. The number of raters can be adjusted to meet a target reliability criterion 

for averaged ratings (e.g., intraclass correlation >= 0.80) (Rosenthal, 2008). The obtained 

aggregate scores can then be used as the ground truth of pain intensity score. The judgment 

study approach is more suitable to evaluating pain intensity at the sequence level because 

frame-level evaluation is beyond human resolving capacity. It is possible, however, that 

paradigms that combine slow-motion replay with use of a dial/joystick manipulandum 

could capture temporal changes in pain action with sufficient reliability and sensitivity to 

render meaningful measurement. Considering their greater simplicity and reduced burden, 

it is somewhat surprising that judgment study approaches have not been employed to a 

greater extent in studies of automated pain assessment. Indeed, because they are based on a 

holistic analysis that does not assume independence of an expression’s component actions 

and probably represent human perceptual processing more realistically, they likely have 

advantages over measurement of specific facial actions.

Generalizability.

With few exceptions (e.g., Sikka et al., 2015), previous efforts in automatic assessment of 

pain have focused on a single type of pain (shoulder pain, controlled heat; Hammal et al., 

2018; Werner et al., 2019). Pain comes in a variety of types, differing by modality (heat, 

electric, chemical), site, nature (clinical vs artificial), and history (acute vs chronic) that 

may produce different behavioral responses both within and across modalities. Given the 

variety of pain experiences, a variety of procedures, both experimental and observational, 

participants, and sensors are needed (Hammal et al., 2018). The models and solutions 

that have shown promise for automatic detection are based on limited sampling. There 

is considerable evidence from direct facial measurement studies that facial expressions of 

pain involve a common core of actions (Prkachin, 1992, Kunz et al., 2019), but recent 

findings indicate that those actions come in different clusters (Kunz & Lautenbacher, 2014; 
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Kunz, Prkachin, Solomon, & Lautenbacher, 2020). This points to a need to collect further 

databases that sample a broader range of pain types as a way to assess the generality and 

generalizability of extant and novel models and solutions.

An important related need is to test approaches individually and in head-to-head 

comparisons across multiple databases. No studies have explicitly trained and tested 

classifiers on different databases in order to evaluate generalizability of automatic 

pain assessment across databases. Unless generalizability between separate databases is 

examined, it remains unknown whether methods developed in one database would be valid 

in others.

Care needs to be taken to address other issues of generalizability as well. Three crucial 

dimensions that need to be taken into account are “race,” gender, and ethnicity (Green et 

al., 2003). There is an ample literature showing that, apart from facial actions, skin color 

coding for race has a significant effect on how pain in others is judged (Wandner et al, 2010, 

2012), and equally abundant literatures showing that race and sex affect pain treatment and 

outcomes (Drwecki, 2018; Fillingim et al, 2009). With the exception of the non-publicly 

available database collected by Sikka et al, (2015) demographic information is incomplete 

or lacking in many instances. In future research, it will be important to systematically 

collect participants’ demographic information to investigate the variance/invariance of pain 

experience and measurement in order to provide a more comprehensive assessment of pain 

occurrence and intensity.

Bias.

There is recent evidence that algorithms arising from deep-learning approaches to 

processing the face perform differently as a function of race and sex (for example at facial 

recognition), sometimes to a considerable degree (Buolamwini & Gebru, 2018). Likely a 

consequence of the fact that the datasets used for training largely sample unrepresentatively; 

i.e., from young, light-skinned, male populations, increasing awareness of the existence 

and implications of algorithms that are biased raises serious concerns about issues of 

fairness. The issue has become of sufficient general concern to lead to calls to ban 

certain applications of artificial intelligence, including work on mental health diagnosis and 

detection of deception (Pasquali & Malagieri, 2021).

That the issue of biased behaviour of algorithms likely applies to detection of pain was 

demonstrated by Taati et al. (2019), who compared the performance of currently available 

facial landmark and facial action unit detection algorithms on a dataset consisting of facial 

expressions showing various degrees of pain in a population of older people with dementia 

and older people living independently. Ground truth was landmark identification and facial 

action unit coding by human experts. Performance of the pre-trained algorithms at landmark 

detection was significantly better for independent-living seniors than for those with 

dementia. Retraining the algorithms with representative examples of faces of independent-

living and seniors with dementia was able to improve performance significantly. With 

respect to detecting facial action units by available pre-trained algorithms, there was no 

difference between independent-living seniors and those with dementia, possibly because the 

algorithms performed poorly in general. The results emphasize the importance of sampling 

Prkachin and Hammal Page 15

Front Pain Res (Lausanne). Author manuscript; available in PMC 2022 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



broadly and representatively with respect to subject group and type of pain and highlight 

the need for extreme caution against overgeneralizing about what the results of automated 

analysis show, particularly as the field moves inexorably toward implementation in clinical 

settings.

Fully Automatic Multimodal Pain Assessment.

By far, most efforts at automatic analysis of pain have focused on the face. However, pain 

produces multiple behavioral responses (e.g., facial expressions, head and body movements, 

vocalizations) both within and across modalities. Various observational systems have been 

developed for quantifying other behaviors indicative of pain. Some are generic and can 

be applied or adapted to different types of pain (e.g., Keefe et al, 2011, Prkachin et al, 

2002); others have been developed for specific purposes or populations (e.g., the Pain 

Assessment Checklist for Seniors with Limited Ability to Communicate; Fuchs-Lacelle 

& Hadjistavropoulos, 2004; the Pain Assessment in Advanced Dementia scale; Warden, 

Hurley, & Volicer, 2003). In physical medicine and rehabilitation, body language is 

an important behavioral index of pain in patients with moderate to severe cognitive 

impairments, and those who have difficulty communicating verbally (de Knegt et al., 

2013). Nonverbal (e.g., screaming, sounds of distress) and verbal (e.g., “ouch,” “owie”) 

pain vocalizations have proven clinically useful for pain detection in young children and 

others with limited linguistic abilities (Dubois et al., 2008). There is strong likelihood that 

automatic analysis of acoustic characteristics of vocal expression can contribute to pain 

detection and understanding.

There is a nascent literature that has begun to apply the methods of machine learning to 

these other behavioral indicators of pain (e.g., Aung et al, 2015). Efforts are needed to 

extend CVML technologies sensing beyond facial expression to include body and head 

movement, physiological measures, speech, and paralinguistic communication related to 

pain experience.

Automatic multimodal measurement affords potentially rich sets of behavioral features to 

include in automatic measurement of the occurrence and intensity of pain. Newer databases 

that include multimodal measures, such as EmoPain and BioVid make this development 

possible. Efforts in this direction will enable the objective measurement and monitoring of 

pain intensity in clinical, family, and work environments (Hammal & Cohn, 2018).

Links to Concepts of Expression in Pain.

For all its technological sophistication, there is a kind of dustbowl empiricism about the 

corpus of work on automated analysis of pain. Although it builds on prior knowledge 

and findings--in particular the literature applying fine-grained behavioral analysis to the 

characterization of expression in pain--for the most part it has not addressed conceptual 

issues related to its meaning. Behavioral studies suggest that there is considerable 

complexity in the facial behavior that accompanies pain. Kunz and Lautenbacher (2014), 

for example, provide evidence that the actions that most consistently relate to pain in the 

literature occur in separable clusters. This is an issue that has not been addressed in the 

empirical assessment literature. Moreover, there is good reason to believe that not all the 
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expression that happens in pain is about pain. For example, the action of zygomaticus 

major (AU 12 in FACS), which is also the principal movement in a smile, is sometimes 

found to accompany pain, both in the behavioral literature (Kunz et al, 2009) and the 

automatic analysis literature. Structural and functional analyses of this action suggest that, 

although it often does accompany pain, it is likely marking a different process (Kunz et al, 

2013; Prkachin & Solomon, 2008). CVML models to date do not seem to have recognized 

this distinction yet may have analytic potential to advance its understanding. Similarly, 

there is evidence that different components of the behaviors that correlate with pain are 

encoding different dimensions of the experience. Kunz et al (2012) found that actions 

involving movement around the eyes related most closely to sensory features of pain, while 

movements of the brows and upper lip related most closely to affective features. CVML 

studies have not addressed such issues to date but could be important in advancing our 

understanding of them.

Commercial and Other Applications.

Commercial tools for pain assessment informed by the existing literature on automated 

assessment have already been developed and marketed and there is every reason to believe 

that this trend will continue. For example, Painchek (www.painchek.com) is a smartphone 

app-based device that combines a facial expression assessment component with input 

from five other domains (voice, movement, behavior, activity, body) to yield a pain score 

for application in geriatric and pediatric settings (Atee, Hoti & Hughes, 2018). It goes 

without saying that the development and marketing of tools for clinical assessment should 

be based on knowledge about automated assessment that is grounded in the empirical 

literature, consistent with the best-established technological solutions, has been subjected 

to rigorous validation procedures, and informed by understanding of issues of bias raised 

above. Importantly, commercial applications must be cognizant of the risks attendant on 

oversimplified interpretation of the meaning of a pain score derived from automated analysis 

of the face. An oft-stated rationale for focusing on facial and other behavioral indicators of 

pain is to improve pain management by improving pain detection. There is a substantial 

literature, however, showing that observers underestimate behavioral evidence of pain 

(Prkachin, Solomon, & Ross, 2007). This underestimation bias is paradoxical given that 

significant proportions of subjects in empirical studies show no behavioral evidence of pain 

(Kunz, Karos & Vervoort, 2018). Facial expressions of pain have been characterized as a 

“late signaling system” (Prkachin, 2011), which implies that, if facial evidence of pain is 

present, it is likely very significant and needs to be taken seriously. Conversely, if it is not 

present, the possibility of its significance should not be discounted, a risk that is present with 

oversimplified interpretation of pain scores, however rendered.

A related concern arises from what appears to be widespread interest in the idea of pain 

simulation and empirical work implying that genuine pain can be distinguished from 

dissimulated pain. The idea lends itself to considerations that there may be forensic 

applications of automated assessment technology. It is true that perceptual (Prkachin, 

1992a), behavioral (Craig, Hyde & Patrick, 1991), and now automated assessment studies 

(Littlewort, Bartlett, & Lee, 2009) have shown evidence that facial expressions during 

genuine and simulated pain have certain identifiable differences; however, the differences 
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that have been documented have occurred under highly artificial conditions and appear, for 

the most part, to be small. Foreseeable application of forensic products based on automatic 

analysis appear open to abuse and unlikely to be probative.

Whither Automated Assessment of Pain?

That automated analysis of pain may be feasible has been demonstrated in the proof-

of-concept studies reviewed above. The numerous studies that make up the corpus of 

the field since then have mainly added to the field by exploring alternative artificial 

intelligence systems. Ultimately, the value of this work is most likely to be realized in 

basic science and clinical research. In particular, the prospect of a form of assessment that 

can automatically yield reliable, valid and continuous information about how and when 

people (and animals) are expressing pain holds promise to enable detailed studies of pain 

modulation that are prohibitively difficult to perform with human observers who are subject 

to inherent limitations in their ability to resolve changes in behavior that sometimes occur 

in milliseconds, fatigue, and error. This could include evaluations of the time-course of pain 

reducing or augmenting influences but could also extend to studies of how intrapersonal 

variables and the interpersonal, social, and environmental context affect influence pain 

over momentary differences in time. There is evidence from extant studies that automated 

detection techniques can give insight into momentary changes at or near the level of a 

frame of video (Ashraf et al, 2009; see figure 1). In principle, valid measurement at that 

level of sensitivity could yield important information about dose-response relationships in 

evaluations of analgesic medications. A system that combined automated detection of pain 

with detection of other affective states (e.g., anger) and also permitted time-series analysis 

could facilitate greater understanding of the interplay of the states. To date, no attention has 

been applied to how automatic pain detection may vary between men and women, people of 

different racial and ethnic backgrounds, or context, to name just a few factors. Of particular 

interest in would be studies of pain expression in interactions in health-care settings or in 

families.

The work performed to date for automated pain measurement has been interesting, progress 

has been rapid and has generated the kind of buzz commonly associated with new 

technologies. But numerous current controversies over unforeseen consequences about 

how these new algorithms have been developed (for example, errors that have been 

“baked in” to the data on which facial recognition systems were trained, leading to 

wrongful arrest), or how they work highlight the need to proceed cautiously, mindful that 

“move fast and break things” is not a slogan that augurs well for the careful and safe 

development of a tool to advance understanding of pain in particular and other health 

related applications in general. The existing approaches are built on a very limited sample 

of participants, pain types, annotation procedures, conditions of observation, ages, “racial”/

ethnic categories, and regions of the world. Careful expansion of audiovisual pain databases 

that sample more broadly and representatively across these dimensions will be necessary 

to establish confidence in the quality and meaning of the measurement obtained and to 

manage foreseeable and unforeseeable perils of using this technology to improve patients’ 

outcome. Particular concern arises around the prospect of developing and commercializing 

technologies geared to clinical, medico-legal, and forensic applications, especially around 
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the idea of proprietary knowledge. Practical applications of automatic pain assessment 

need to be based on rigorous science that meets standards of professional peer review and 

public accountability, including verification that the product’s performance is consistent with 

human performances in both the assessment of pain and related conclusions.
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Figure 1. 
SVM scores for sequence- and frame-level ground truth. The upper pictorial representations 

are the video frames corresponding with the crosses on the respective SVM score plots 

below. Reprinted with permission from Ashraf et al., 2009.
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