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Abstract

Purpose of review: Liquid biopsies have emerged as a non-invasive alternative to tissue biopsy 

with potential applications during all stages of pediatric oncology care. The purpose of this 

review is to provide a survey of pediatric cell-free DNA (cfDNA) studies, illustrate their potential 

applications in pediatric oncology, and to discuss technological challenges and approaches to 

overcome these hurdles.

Recent findings: Recent literature has demonstrated liquid biopsies’ ability to inform 

treatment selection at diagnosis, monitor clonal evolution during treatment, sensitively detect 

minimum residual disease following local control and provide sensitive post-therapy surveillance. 

Advantages include reduced procedural anesthesia, molecular profiling unbiased by tissue 

heterogeneity, and ability to track clonal evolution. Challenges to wider implementation in 

pediatric oncology, however, include blood volume restrictions and relatively low mutational 

burden in childhood cancers. Multi-omic approaches address challenges presented by low-

mutational burden and novel bioinformatic analyses allow a single assay to yield increasing 

amounts of information, reducing blood volume requirements.

Summary: Liquid biopsies hold tremendous promise in pediatric oncology, enabling non-

invasive serial surveillance with adaptive care. Already integrated into adult care, recent advances 

in technologies and bioinformatics have improved applicability to the pediatric cancer landscape.
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Introduction

First identified in 1948, cell-free DNA (cfDNA) has become a promising circulating 

biomarker in oncology [1,2]. Developments in liquid biopsy, the capture of cfDNA, 

circulating proteins and circulating tumor cells (CTCs), have led to adoption of technologies 

across stages of patient management including screening and diagnosis, molecular 
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prognostication, tracking treatment response, detection of minimal residual disease (MRD), 

monitoring clonal evolution, and post-therapy surveillance [3–7]. The U.S Food and Drug 

Administration approved the first digital drop polymerase chain reaction (ddPCR) liquid 

biopsy tests in 2016, and two next generation sequencing (NGS) liquid biopsy panels in 

2020 as companion diagnostics for associated targeted therapies [8–10]. As of the time of 

publication, no liquid biopsy tests have been FDA approved in pediatrics.

Liquid biopsies are of particular interest for pediatric oncology since they are non-invasive, 

avoiding procedural sedation and enabling serial sampling. Furthermore, liquid biopsies 

mitigate diagnostic challenges of tumor heterogeneity and accessibility by capturing genetic 

material shed throughout the body. This promise, however, comes with unique challenges 

that have limited wider implementation in pediatrics. Pediatric and adult cancers have 

differing genomic properties; pediatric cancers have low mutational burden [11–14] with 

few recurrent hotspots [15**–20]. Adult cancers feature more point mutations (single 

nucleotide variants (SNV)) and insertion/deletion errors (indels), while pediatric cancers 

are characterized by chromosomal structural variations including copy number alterations 

(CNA), translocations, and fusion genes [12,14,15**,21–23]. This review highlights studies 

that illustrate the potential applications of cfDNA in pediatric cancers. We discuss 

technological challenges and emerging approaches to overcome these hurdles.

cfDNA Overview

cfDNA are ~120–220bp long fragments [24] of double-stranded DNA found in plasma, 

cerebral spinal fluid (CSF), saliva, pleural fluid, ascites, stool, aqueous humor, and urine 

[25–28]. cfDNA molecules are released from healthy and malignant cells through apoptosis, 

necrosis, and secretion, then cleared from circulation with a half-life of several minutes to 

2.5 hours [29,30]. cfDNA’s rapid clearance and dynamic changes make it an ideal biomarker 

for “real-time” analyses compared to classic biomarkers like alpha-fetoprotein (AFP) [31].

cfDNA originating from tumors (circulating tumor DNA; ctDNA) are shorter than normal 

cfDNA (~90–150bp) [32–34*]. The portion of overall cfDNA comprised of ctDNA varies 

with cancer type, tumor location, tumor burden, and metastases. In low-burden and early 

disease, ctDNA fraction is minute [35,36]. The detection of ctDNA therefore requires 

ultrasensitive methods that detect somatic variations. Thus, a broad understanding of the 

available technologies and evaluation of these considerations is necessary when selecting an 

approach for analyzing cfDNA.

Technologies

PCR

Polymerase chain reactions (PCR) specifically amplify targeted cfDNA templates. To 

improve sensitivity and amplify a minute quantity of ctDNA, ddPCR technology subdivides 

PCR reactions into numerous nano-liter droplets, and can detect variant allele fractions 

(VAF) as low as 0.001% [7,37]. Although ddPCR attains high sensitivities, it has limitations. 

First, it requires a priori knowledge of disease- or patient-specific mutations [37], thereby 

Sundby et al. Page 2

Curr Opin Pediatr. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



missing any de novo mutations. Similarly, genome-wide surveys of translocations, indels, 

and CNA are limited given the focused nature of the assay.

NGS

NGS methods do not require prior knowledge of mutations, but have worse limits of 

detection than ddPCR and increased cost. The primary parameters affecting cost are breadth 

and depth of sequencing. Breadth is the proportion of the genome that is sequenced. NGS 

breadth varies from a panel of genes of interest (e.g., CAPPseq [38]), to regions of the 

genome (e.g., whole exome sequencing (WES)), to the entire genome (whole genome 

sequencing (WGS)). This gives NGS the capacity to detect both recurrent hotspot mutations 

and previously unknown or uncommon variants.

Depth refers to the average number of times a base pair is sequenced. Shallow WGS 

(e.g., 0.1–2x ultra-low pass WGS (ULP-WGS)) accurately detects CNAs [39] at low 

cost but has poor sensitivity for specific somatic variants. As depth increases, SNVs, 

indels, and translocations may be identified. However, since assay cost increases, deep-

sequencing panels typically restrict breadth, focusing on smaller genomic regions and 

missing abnormalities outside of those regions.

Methylation, Fragmentomics, and Transcriptomics

While previous methods identify genetic variations to characterize ctDNA, recent techniques 

leverage other ctDNA signatures. Pediatric cancer’s low mutational burden may be better 

suited to alternative markers or combinatorial approaches. Methylation, for example, is a 

promising pediatric marker since epigenetic dysregulation is a recurrent characteristic of 

childhood cancers [40]. The circulating methylome can be measured in targeted cfMeDIP-

seq [41] or ddMethyLight assays [42] as well as genome-wide approaches [43]. Methylation 

fingerprints may also define cfDNA tissues of origin [44,45]. Emerging bioinformatic 

techniques, such as fragmentomics and transcriptomics, leverage non-random differences 

in cfDNA fragments and sequence coverage for in silico enrichment of ctDNA [33,34*,46], 

and infer transcriptome profiles based on chromatin availability and nucleosome footprints 

[47–51**].

Clinical Applications of Liquid Biopsies

The diversity of assays available to profile cfDNA is matched by the range of potential 

applications for these tools in the clinic (Fig. 1).

Molecular Profiling and Treatment Selection

Sequencing from multiple regions of the same tumor reveals significant intratumor genetic 

heterogeneity [52,53]. Up to 69% of detected somatic mutations are absent from other 

regions of the same tumor [52], leading to potential sampling biases during biopsy. Liquid 

biopsy of cfDNA captures genetic materials released from multiple tissue regions and 

separate disease foci, mitigating sampling biases. Current adult clinical trials employ cfDNA 

for risk stratification and treatment selection [7,54].
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Liquid biopsy could similarly be used to inform management of pediatric cancers, guiding 

treatment intensification and de-escalation. Intra- and interlesional heterogeneity of MYCN 
and ALK, for example, is well described in neuroblastoma [55,56]. Accurate assessment of 

MYCN, ALK, and segmental chromosome alterations (SCA), has prognostic implications 

[57–59] and is incorporated into treatment selection. Intermediate-risk neuroblastoma 

patients without MYCN amplification or specific SCA maintain excellent outcomes with 

treatment reduction [60]; therefore, genomic misclassification would lead to inappropriate 

de-escalation of treatment. Multiple studies demonstrate sensitive and tissue concordant 

molecular characterization of these genes and SCA in neuroblastoma using liquid biopsies 

[61–65]. The promise of liquid biopsy for risk stratification is further illustrated in pediatric 

sarcomas. In Ewing sarcoma (EWS) and osteosarcoma, the presence of detectable ctDNA 

alone predicts inferior outcomes. Furthermore, 8q gain in osteosarcoma cfDNA portended 

poorer 3-year event-free survival (EFS) (60% vs 80.9%) [66], and EWS high-risk co-

mutations of STAG and TP53 [67] are detectable in cfDNA [68].

Implementation of liquid biopsy for genomic characterization of Wilms tumor could 

reconcile international treatment paradigms. European consortium paradigms recommend 

neoadjuvant chemotherapy without tissue diagnosis due to the prevalence of favorable 

disease and risk of metastatic seeding with biopsy or surgery. In contrast, North American 

algorithms recommend upfront nephrectomy for biology-guided therapy. In small studies, 

TP53 mutations were detectable in 100% of pre-nephrectomy urine cfDNA [69] and tumor-

confirmed mutations were identified in plasma [70]. cfDNA profiles of poor prognosis TP53 
mutations [71,72] and 1p/16q alterations [70], therefore, could guide therapy without risking 

seeding tumor.

Treatment Response and Clonal Evolution

While mortality from primary pediatric cancers has decreased, intensification of treatments 

has led to increased treatment-related morbidity [73]. Clinical trials, therefore, have 

examined response-adapted protocols that reduce long-term morbidities in hematologic 

malignancies [74–76]. In pediatric solid tumors, response-adapted therapy is hindered by 

lack of serial biopsies; response markers are limited to imaging [77] and necrosis estimates 

on post-neoadjuvant resections [78]. Liquid biopsies offer non-invasive, serial monitoring to 

assess tumor burden, clonal evolution, and epigenetic changes.

In a small osteosarcoma cohort, patients with >80% necrosis in resections had undetectable 

ctDNA following initiation of neoadjuvant therapy. Patients with less than 70% necrosis, 

however, had persistence of ctDNA throughout therapy [64]. Although larger validation 

studies are needed, these data suggest that ctDNA may predict prognostic post-neoadjuvent 

percent necrosis in osteosarcoma [78]. Similarly, dynamic changes in ctDNA have 

been shown to correlate with tumor burden in Wilms tumor [79], hepatoblastoma [80], 

retinoblastoma [81–83], EWS [51**,77,84] and neuroblastoma [61,62]. Additionally, 

circulating epigenetic signatures approximate tumor burden and response. Data suggest that 

regional differences in coverage over DNase I hypersensitive sites (DHSs), a surrogate 

for chromatin status and epigenetic signatures [49,51**], infer tissue type and can 

estimate tumor burden [51**]. Applebaum et al. measured epigenetic signatures using 
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5-hydroxymethylcytosine (5-hmC) to predict disease burden and response in metastatic 

neuroblastoma. 5hmC deposition on MYCN predicted relapse and end of induction total 

5-hmC levels are prognostic. In two patients with no clinical evidence of disease, 5hmC 

profiling predicted subsequent relapse [85*].

Finally, serial cfDNA can monitor clonal evolution and identify therapy-resistant subclones. 

A landmark study in lung cancer reported that cfDNA is more sensitive than tissue 

biopsy for detection of acquired resistance to erlotinib through EGFRT790M mutations 

[86]. In pediatrics, cfDNA temporally resolved heterogeneity in progressive neuroblastoma 

with a mean of 22 new SNV between diagnostic and subsequent samples, including 17 

commonly acquired relapse-specific mutations [61]. Similarly, Barris et al identified TP53 
mutations in relapsed osteosarcoma plasma not identified in initial tumor or germline [87]. 

In medulloblastoma, dynamic changes in CSF cfDNA methylation mirror tissue changes 

during treatment and progression [43].

Detection of Minimum Residual Disease and Post Therapy Surveillance

cfDNA’s short half-life [29,30] and representation of spatial heterogeneity [88] make it 

an ideal biomarker to detect post-operative minimum residual disease (MRD) and early 

recurrence. In adults, post-operative persistence of ctDNA portends a >80% risk of relapse 

in colorectal cancers [89] and urothelial carcinomas [90]. These findings suggest that ctDNA 

positivity post-neoadjuvent therapy or surgery could inform clinical decisions regarding 

follow-up frequency and need for adjuvant or radiation therapy. Indeed, the addition 

of immunotherapy to urothelial carcinoma patients with post-operative ctDNA improved 

disease-free survival and overall survival [90]. Furthermore, application of cfDNA for 

MRD may enable earlier relapse detection. In lung cancer, recurrence of detectable ctDNA 

identified relapse a median of 5.2 months earlier than imaging [91]; in colon and breast 

cancer, cfDNA outperforms biochemical biomarkers CEA and CA 15–3 for early, sensitive 

detection of recurrence [92,93].

To date, there have been no large MRD pediatric studies using cfDNA; however, case series 

demonstrate feasibility. Hayashi et al, used tumor-informed EWS-ETS ddPCR to detect 

fusion genes in plasma from three EWS patients. Two patients had persistent post-operative 

ctDNA and clinically relapsed. The only ctDNA negative patient remained in remission 

[84]. In osteosarcoma, three of seven patients followed with targeted NGS liquid biopsy 

relapsed, all of whom had recurrence of detectable ctDNA prior to radiographic relapse 

[87]. Circulating mutant Rb1 becomes undetectable following enucleation of intraocular 

retinoblastoma [94,95] but was again detectable in regionally recurrent or metastatic 

relapsed disease [83]. Finally, previously detectable circulating CTNNB1 in hepatoblastoma 

becomes undetectable following total resection with no histological or radiographic evidence 

of residual disease [80].

Challenges and Future Directions

Rapid technological advances coupled with exciting preliminary studies in pediatric 

histologies portend an important future for cfDNA in pediatric oncology, however several 

important considerations must be considered in this population.
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Blood draw limitations

An assay’s limit of detection is constrained by the number of unique sequencing reads 

generated. Each milliliter of blood has approximately 1,000 genome equivalents (GE) [96] 

and sequencing to a depth greater than unique GE results in duplicated reads with no 

improvement in limits of detection [97**]. Theoretically, this presents a barrier in pediatrics 

due to weight-based limits in blood draw volume. Kahana-Edwin et al., however, highlight 

that the percentage of total blood volume collected during weight-based draws in pediatrics 

is consistent with adults. Furthermore, even early-stage pediatric cancers often represent a 

larger tumor burden relative to patient size than adult counterparts. Taken together, pediatric 

assays should capture a proportional or higher ratio of ctDNA:cfDNA due to relative 

tumor burden in similarly staged diseases [98]. Indeed, pediatric studies in neuroblastoma 

[65,99], EWS [66] and hepatoblastoma [80] have demonstrated the feasibility of sensitive 

detection from less than 1mL of plasma, and studies of unilateral intraocular retinoblastoma, 

characterized by exceptionally small tumor volumes, detect ctDNA in plasma [83,100].

Clonal hematopoiesis of indeterminate potential

An emerging challenge in liquid biopsies is false positives due to somatic mutations present 

in peripheral blood but not in tumor, termed clonal hematopoiesis of indeterminate potential 

(CHIP) [101]. A common phenomenon associated with aging, CHIP is the presence of 

a mutant clone in the blood without evidence of dysplasia, neoplasm or cytopenia [102]. 

CHIP are attributed to survival advantages in certain mutations acquired during normal 

hematopoietic stem cell (HSC) divisions [103]. Studies of serial samples banked 10 years 

apart suggest that CHIP rarely undergo continued expansion [104] and have minimal risk of 

transforming into hematologic malignancy [105,106].

CHIP are classically defined as having a VAF of ≥2% [102–105,107], however, this 

threshold is based on previous limits of detection using WES [105]. Recent studies 

using error suppression algorithms suggest that CHIP accumulation likely begins in fetal 

development. 18.2% of sequenced cord blood samples harbor low frequency (VAF 0.002–

0.006) somatic mutations [108] and, during normal hematopoiesis, individuals gain one 

mutation in HSCs per decade [103,109]. It is hypothesized, however, that these mutations 

do not confer survival advantages in youth [110] and, consequently, VAF of CHIP typically 

remains <0.5% until age 50 [107,111]. The VAF of CHIP in pediatrics, therefore, remains 

undetectable by many liquid biopsy assays [7,39]. As technologies continue to push limits of 

detection in an effort to identify early-stage cancer, low-VAF CHIP may become a relevant 

source of false-positives in pediatric oncology. Multi-omic or combinatorial imaging-cfDNA 

assays may mitigate this.

CHIP frequency increases in adults who received chemotherapy [105,112,113] and radiation 

therapy [105,113]. These CHIP are enriched for TP53 mutations [113], the most common 

somatically mutated gene in pediatric cancer [13], presenting a potential source of false 

positives in post-therapy surveillance and MRD detection. The only study examining CHIP 

in pediatric cancer survivors, however, showed no increases using a 14-gene NGS panel 

[110]. Larger, longitudinal studies including broader panels or WGS with error suppression 

are necessary for validation.
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Low mutational burden

With early-stage disease, increasing the number of targeted mutations improves probability 

of detection [5]. Pediatric cancers, however, have approximately one-fourteenth of the 

mutation burden of adult cancers [13], with as few as one SNV per exome [12], limiting 

targeted panels’ utility in early-stage detection.

One strategy to improve probability of detection is to expand assayed targets by 

integrating “multi-omic” features including CNA [32,34*,51**], fragmentation profiles 

[32–34*,46,51**], protein [114–116] and epigenetics [51**]. CNA are the most common 

alteration in pediatric solid tumors [13,15**,22] and may be inferred from off-target reads 

of targeted panels [117] or detected using ULP-WGS [34*,39,81]. The utility of cfDNA 

CNA as a biomarker has been shown in neuroblastoma [61,62,65], retinoblastoma [81,82], 

and EWS [64], and the sensitivity of these assays can be boosted with fragmentomics 

[32–34*,46]. Our group reported that CNA combined with fragment size analysis not 

only detects malignancy, but can accurately distinguish benign from malignant tumors 

in neurofibromatosis type 1 (NF1) [34*]. For small tumors, combinatorial assays with 

cfDNA and protein have doubled sensitivity in Stage I/II pancreatic cancers and lesions 

measuring <1.5cm [115]. Furthermore, pediatric cancers have a high incidence of mutations 

in epigenetic regulators [13,15**,118]. Integrating epigenetic and genetic signatures enabled 

accurate classification of sarcoma types [51**]. Finally, combinatorial approaches may not 

be multi-omic but multi-modality. Using a pan-cancer liquid biopsy for surveillance, Lennon 

et al. increased their positive predictive value by 45% after integrating imaging features 

[119].

Conclusions

Liquid biopsies have emerged as a non-invasive alternative to tissue biopsy. Despite 

the potential to allow serial molecular profiling while reducing invasive procedures and 

anesthesia events, implementation in pediatrics has been limited and liquid biopsy remains 

only a research tool. This is partly due to challenges presented by relatively low mutational 

burden. Multi-omic strategies show promise for sensitive detection of low mutational burden 

disease, but are expensive and require more blood for parallel assays. Exciting recent studies 

demonstrate that bioinformatic processing of 12x-35x WGS enables characterization of copy 

number analysis, small indels, fusions, chromatin accessibility, and detailed fragmentomics 

from a single assay (Fig. 2) [51**,97**]. These novel approaches offer tremendous promise 

for childhood cancer by detecting the most common pediatric alterations in childhood 

cancers, incorporating multi-omic input, and reducing required blood and cost.
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Abbreviations:

5-hmC 5-Hydroxymethylcytosine

AFP alpha-fetoprotein

CSF cerebral spinal fluid

cfDNA cell-free DNA

CHIP clonal hematopoiesis of indeterminate significance (CHIP)

CTC circulating tumor cells

CNA copy number alterations

ctDNA circulating tumor DNA

ddPCR digital drop polymerase chain reaction

DHSs DNase I hypersensitive site

EWS Ewing sarcoma

GE genome equivalents

HSCs hematopoietic stem cells

indel insertion and deletion error

MRD minimum residual disease

NGS next generation sequencing

NF1 neurofibromatosis type 1

PCR polymerase chain reaction

SCA segmental chromosome alterations

SNV single nucleotide variant

ULP-WGS ultra low pass whole genome sequencing

WES whole exome sequencing

WGS whole genome sequencing

VAF variant allele frequency
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Key points:

• Liquid biopsies non-invasively capture cfDNA and circulating biomarkers 

shed from cancerous and healthy cells.

• Liquid biopsies enable accurate molecular diagnostics and prognostication, 

tracking treatment response, detection of MRD, monitoring clonal evolution, 

and post-therapy surveillance.

• Multi-omic liquid biopsies hold promise for the overcoming the low-

mutational burden challenge in pediatric cancers.
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Figure 1. Clinical applications of liquid biopsy in pediatric oncology.
Liquid biopsies capture genetic material shed throughout the body, enabling non-invasive 

molecular profiling without the confounding variable of tumor heterogeneity. Liquid 

biopsies can therefore inform care and treatment selection at diagnosis, monitor clonal 

evolution during treatment, sensitively detect minimum residual disease following local 

control and provide sensitive post-therapy surveillance. Multiple studies have demonstrated 

that liquid biopsies have the potential to detect relapsed disease before radiographically 

evident.
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Figure 2. Moderate depth WGS improve detection by enabling multi-omic integration from a 
single assay.
Recent studies have demonstrated that, with advanced bioinformatic analysis, WGS to 

depths of 12–35x is sufficient for detection of copy number alterations, indels, translocations 

and fusions, assessment of chromatin accessibility and fragmentomics [51**,97**]. 

In addition to detecting the most common genomic alterations in childhood cancer, 

therefore, integration of these output also infers epigenetic and transcriptomic signatures. 

Combinatorial approaches, previously requiring multiple assays, enhance detection of early 

stage cancers. Created with BioRender.com.
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