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Abstract

Purpose: Digital breast tomosynthesis (DBT) has been shown to somewhat alleviate the breast 

tissue overlapping issues of two-dimensional (2D) mammography. However, the improvement in 

current DBT systems over mammography is still limited. Statistical image reconstruction (SIR) 

methods have the potential to reduce through-plane artifacts in DBT, and thus may be used to 

further reduce anatomical clutter. The purpose of this work was to study the impact of SIR on 

anatomical clutter in the reconstructed DBT image volumes.

Methods: An SIR with a slice-wise total variation (TV) regularizer was implemented to 

reconstruct DBT images which were compared with the clinical reconstruction method (filtered 

backprojection). The artifact spread function (ASF) was measured to quantify the reduction of 

the through-plane artifacts level in phantom studies and microcalcifications in clinical cases. The 

anatomical clutter was quantified by the anatomical noise power spectrum with a power law fitting 

model: NPSa(f) = αf –β. The β values were measured from the reconstructed image slices when 

the two reconstruction methods were applied to a cohort of clinical breast exams (N = 101) 

acquired using Hologic Selenia Dimensions DBT systems.

Results: The full width half maximum (FWHM) of the measured ASF was reduced from 8.7 

± 0.1 mm for clinical reconstruction to 6.5 ± 0.1 mm for SIR which yields a 25% reduction 

in FWHM in phantom studies and the same amount of ASF reduction was also found in 

clinical measurements from microcalcifications. The measured β values for the two reconstruction 

methods were 3.17 ± 0.36 and 2.14 ± 0.39 for the clinical reconstruction method and the SIR 

method, respectively. This difference was statistically significant (P ≪ 0.001). The dependence of 

β on slice location using either method was negligible.
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Conclusions: Statistical image reconstruction enabled a significant reduction of both the 

through-plane artifacts level and anatomical clutter in the DBT reconstructions. The β value was 

found to be β≈2.14 with the SIR method. This value stays in the middle between the β≈1.8 for 

cone beam CT and β≈3.2 for mammography. In contrast, the measured β value in the clinical 

reconstructions (β≈3.17) remains close to that of mammography.
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1. INTRODUCTION

Digital breast tomosynthesis (DBT) is an emerging breast imaging modality that builds 

on existing equipment and techniques used in mammography by incorporating three 

dimensional (3D) information.1 Since becoming clinically available in the United States2 

in 2011, the clinical use of DBT has rapidly expanded. Some of the major benefits of 

DBT are that it offers in-plane spatial resolution comparable to that of mammography while 

simultaneously alleviating two major problems inherent to two-dimensional (2D) imaging 

modalities: (a) overlaying structures obscuring important pathology (false negatives leading 

to decreased sensitivity) and (b) overlaying structures simulating pathology when none 

is present (false positives leading to decreased specificity).3–6 In order to generate this 

additional spatial information, a series of cone-beam projection images are acquired about 

the compressed breast over a limited angular span (from 15° to 50° in current clinical 

systems).7 These projection data are then reconstructed in a pseudo-tomographic manner to 

generate a 3D image volume.

The primary objective in breast imaging (in breast cancer screening in particular) is 

to determine whether or not a malignancy is present. However, the normal anatomical 

background in images may significantly confound this task. The impact of the anatomical 

clutter on detection performance has been quantified using several techniques8–12 including 

a spatial frequency-dependent power spectrum, viz., the anatomical background noise power 

spectrum.10–12 In the presence of structural anatomical clutter, the overall detectability for 

a specific imaging task is jointly impacted by a generalized noise power spectrum that 

consists of two major components: quantum noise and background anatomical clutter.10–12 

The quantum noise depends on a variety of physical factors of the imaging system (such 

as the quantum detection efficiency of the detector), image acquisition parameters (such 

as the overall radiation exposure level and tube potential), and the breast itself (such as 

density, compressed thickness, etc.). On the other hand, the variability in the normal breast 

parenchymal structure results in an inherent anatomical clutter of the breast. The final 

apparent anatomical clutter or noise will depend on this inherent anatomical clutter as well 

as imaging conditions, imaging geometry (compression, CC vs MLO planar view, etc.), 

modality, reconstruction technique, and image postprocessing.13

It is well understood that the level of anatomical clutter has a strong impact on 

lesion detection performance.12,14–17 Therefore, quantitative assessment and prediction of 
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diagnostic performance for mammography should take into consideration not only imaging 

system/acquisition parameters but also the anatomical clutter. As an example, the concept 

of a generalized NPS including the anatomical clutter has been developed and incorporated 

into the model observer framework.18 With this framework, a quantitative understanding 

of anatomical clutter for a given imaging method may be used to help predict the lesion 

detection performance for that method.

The anatomical clutter can be quantified using the concept of power spectrum of anatomical 

background noise that was empirically modeled as12:

NPSa(f) ≈ αf−β (1)

where f is the spatial frequency, and α and β are two parameters determined by fitting 

the measured and radially averaged NPSa(f) to the model given in Eq. (1). The parameter 

β has been measured for a variety of breast imaging modalities, including mammography, 

digital breast tomosynthesis (DBT)19, and dedicated breast cone-beam CT (BCT).13,16,20 

For each modality, a range of published β values may be found. Not only does β depend 

on the imaging modality but it also varies with the x-ray beam energy,13 breast density,17 

reconstructed tomographic slice thickness,16,20 and even the imaging plane (e.g., CC vs 

MLO for mammography and DBT).16

One way to compare β values across modalities is to use the same patient cohort and 

measure β values for that cohort using different imaging techniques. In one crossmodality 

study,16 the β value was measured in a patient cohort for mammography, DBT, and 

dedicated breast CT, finding values of β = 3.235 ± 0.090, β = 3.080 ± 0.032, and β = 

1.790 ± 0.042 for mammography, DBT, and dedicated breast CT, respectively. These results 

demonstrated that for the clinical systems tested, moving from mammography to DBT, 

somewhat surprisingly, only results in a minimal reduction in anatomical clutter. This result 

can be understood in large part as a result of being limited by through-plane artifacts from 

the adjacent slices in DBT reconstructions. However, the measured β values are a result 

of specific DBT imaging system with specific tube, detector, angular span of the acquired 

cone beam projection angles, and image reconstruction method. Even for a given DBT 

imaging system, when different angular spans of the acquisition view angles and different 

image reconstruction methods are used to reconstruct DBT images, the β values may vary. 

Even if the angular span of the acquisition view angles is fixed, as it is for most currently 

available clinical DBT imaging systems, different image reconstruction methods may result 

in different levels of through-plane artifacts and thus, potentially result in different β values.

Given the argument that a reduction in through-plane artifacts level would lead to a 

potential reduction in anatomical clutter and previous results from other investigators21–23 

demonstrated that a reduction of through-plane artifacts can be achieved in DBT with some 

statistical image reconstruction (SIR) methods, one may wonder, if the use of SIR in DBT 

would result in a more pronounced reduction in β values than β≈3.1 from the current 

clinical reconstructions? If the answer is yes, then what would be the quantitative β values 

for a specific SIR? The main purpose of this paper was to address these questions.
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2. IMAGE RECONSTRUCTION ALGORITHM

To study the impact of SIR on anatomical clutter, the specific image reconstruction 

algorithm and numerical implementation details must be first specified. In this section, the 

SIR algorithm used in this work and the associated reconstruction parameters are presented.

2.A. Algorithm and numerical implementation method

In this paper, a well-known edge-preserving regularizer, that is, the total variation (TV) 

norm of an digital image is chosen to regularize the iterative image reconstruction. For a 

two-dimensional (2D) M × N vectorized image slice x, the TV norm is defined as follows:

TV (x) = ∑
i = 1

MN
xi + 1 − xi

2 + xi + N − xi
2 . (2)

Given a system matrix A to model the forward projection of an image volume and a diagonal 

matrix Q to model the statistical counts of the measured projection data, the log-processed 

projection data vector y can be used to reconstruct the image vector x by solving the 

following convex optimization problem:

x = Arg Min
x

1
2 Ax − y Q

2
+ λTV (x) , (3)

where λ is a parameter controlling regularization strength to model the desired image 

features such as the noise level and spatial resolution trade-off. Note that the TV norm 

and its variants have been studied in a constrained optimization framework to address 

the reconstruction problem with sparse view angles both in x-ray cone-beam CT24 and 

in DBT.22 In these works, an implementation method known as ASD-POCS22,24 was 

developed to iteratively solve the formulated constrained optimization problem. In this 

paper, rather than solving the constrained optimization problem using ASD-POCS, we start 

with the more conventional unconstrained optimization problem in Eq. (3). There are many 

readily available numerical methods to solve the unconstrained optimization problem in Eq. 

(3). The method used in this paper is the well-known forward-backward proximal splitting 

method.25 In this method, the solution, x, of the convex optimization problem in Eq. (3) is 

recast as the solution of the following fixed point problem:

x = proxλPTV x − PATQ(Ax − y) (4)

where the positive semi-definite matrix P is a binary mask to define the compact support of 

the breast image volume and the proximity operator25 proxλPTV(u) is defined as the solution 

of the following standard denoising problem:

proxλPTV (u) = Arg Min
x

1
2 x − u P−1

2
+ λTV (x) , (5)

Garrett et al. Page 4

Med Phys. Author manuscript; available in PMC 2021 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The fixed point x in Eq. (4) can be iteratively solved using the following alternating 

sequences:25

u = xk − sPATQ Axk − y , (6)

xk + 1 = proxλPTV (u) . (7)

Eq. (6) represents a gradient descent update with a statistical penalty matrix Q, a binary 

mask matrix P, and a step size s.

The denoising problem in Eq. (5) can be iteratively solved using a 2D shrinkage operator 

Di
n + 1 = Sμ ex, i

ex, i
Ei 2

, Sμ ey, i
ey, i
Ei 2

, where Sμ(x) = x 1 − μ
x +

 is the well-known one-

dimensional shrinkage operator. This iterative solver is presented in lines 8–22 in the 

pseudocode of the entire numerical implementation process shown in Algorithm 1. The 

detailed derivation to obtain this solver using a variable splitting technique26 and the 

corresponding ADMM was presented in the Appendix of the paper. Additionally, in the 

numerical implementation, the ordered-subset method27 was used with five subsets, each 

subset containing three view angles of cone beam projections. Other empirically chosen 

reconstruction parameters used in this paper to produce images were listed in Table I.
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Algorithm 1:

Pseudocode for the numerical implementation of the SIR used in this work with a 2D TV 

norm regularizer.

Note: Dn = dx
n, dy

n , Bn = bx
n, by

n , and E=[ex,ey]
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2.B. Statistical weight matrix Q

As described in Eq. (3), the matrix Q is a diagonal matrix which models the statistical 

counts of the measured projection data and is used to penalize rays during the reconstruction 

according to their noise. In other words, a noisy ray with very few photons arriving at 

the detector is given a smaller weight than a ray where the photon number arriving at 

the detector is high. Each diagonal element, Qi, of Q was determined using the measured 

detector counts and a correction for electronic noise28,29 as follows:

Qi = Di
2

Di + σE
2 , (8)

where Di is the measured detector counts at the detector location, i, and σE
2  is introduced 

to account for the detector readout electronics. In this work, the approximate electronic 

noise variance was estimated by acquiring images with the window of the x-ray tube being 

blocked with a lead blocker. The variance in the resulting projection images was found to be 

σE
2 ≈ 50.

2.C. Binary diagonal image mask matrix P for breast volume support

To mitigate truncation artifacts and speed up computation, a 3D breast mask was used to 

constrain reconstruction.30,31 This mask approximates the breast support by identifying the 

breast boundaries in the projection domain, backprojecting the borders, and filling in to the 

chest wall as shown in Fig. 1. The calculated breast mask was used as the image domain 

weight, P in Eq. (6). To arrive at Eq. (4), we required that P be positive semidefinite. In our 

definition here of P as a binary breast mask we meet those criteria since P is diagonal with 

diagonal elements of either 0 or 1.

2.D. Forward- and back-projection

In numerical implementation, projection matrices of the imaging system were used to 

perform both forward- and back-projection.32 Projection matrices provide a calibrated 

mapping from the image domain to the projection domain. To be more specific, for a given 

view angle, i, there is a one-to-one correspondence between a location denoted by (u,v) on 

the detector plane and a voxel location denoted by (x,y,z) in the image volume:

u × s
v × s

s
= Bi

x
y
z
1

(9)

where s is a scalar, and Bi is a 3 × 4 matrix, where the subscript i indicates the current 

projection number. Although Bi itself is not square, for a fixed slice location, z, one 

can invert the matrix algebraically and use a similar formulation to perform the forward 

projection as follows:
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x × s′
y × s′

s′
= Fi(z)

u
v
1

(10)

where s′ is another scalar and Fi(z) is a 3 × 3 z-dependent matrix, where the subscript i 
indicates the current projection number.

2.E. Computational facilities

The algorithm was coded in Visual C (Microsoft, Inc., Redmond, WA, USA) and CUDA 

(NVIDIA Corporation, Santa Clara, CA, USA) and executed on a local workstation with 

dual Xeon E5–2620 CPUs (Intel Corporation, Santa Clara, CA, USA) and 64 GB of RAM 

and a GTX 1070 GPU (NVIDIA, Santa Clara, CA, USA) GPU with 8 GB of RAM. In 

the clinical cohort studied for this work, the average total time needed to perform the SIR 

reconstructions was approximately 70 s.

3. EXPERIMENTAL METHODS AND MATERIALS

In this work, projection data from a patient cohort with 101 patients were retrospectively 

processed. This cohort included breasts with and without pathology, however, cases with 

metal, implants, or large calcifications were excluded. The measurements were performed 

in volumes reconstructed using two methods: the clinical reconstruction (FBP + standard 

postprocessing) and the SIR method described in Section 2.A. Both the clinical and the 

SIR-reconstructed volumes had 1 mm slice sampling and a variable in-plane pixel pitch 

using a projective pixel grid where the pixel pitch is determined by the detector element 

size and the system magnification for a given slice location as shown in Fig. 2. In this 

method, voxels further from the detector (closer to the focal spot) are smaller than those 

closer to the detector. In this work, the voxel size was exactly matched between the clinical 

reconstruction and the SIR reconstructions.

3.A. Data acquisition

All datasets used in this work were acquired using Hologic Selenia Dimensions (Hologic, 

Inc. Bedford, MA, USA) DBT imaging systems. A cohort of 101 clinical DBT exams was 

acquired with IRB approval. This cohort included a mix of both CC and MLO views (63 

CC, 38 MLO) with an average breast thickness of 6.7 ± 1.6 cm and average patient age 

of 55 ± 10 yr. The mean tube potential used was 34 ± 4 kVp, and the average glandular 

dose (AGD) in the cohort was 2.7 ± 0.9 mGy. Three clinical cases from this cohort were 

analyzed subjectively and are presented in this work for qualitative image quality assessment 

for different image reconstruction methods.

3.B. Artifact spread function measurements

To quantify the potential reduction of through-plane artifacts in SIR compared with the 

clinical reconstruction, the well-known artifact spread function (ASF)21,33–35 was measured 

to compare spatial blurring along the slice direction for the two reconstruction methods. To 

measure the ASF, we placed a 1 mm chrome steel ball (Fastenal Company, Winona, MN, 
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USA) at a height of 25 mm above the breast support in the center of a custom breast-shaped 

solid water phantom (Gammex, Middleton, WI, USA; see Figs. 3 and 4). The phantom was 

imaged 25 times using typical imaging parameters (32 kVp, 40 mAs, 1.0 mGy AGD). The 

ASF was measured according to the following definition:35

ASF(z) = IMax(z) − Ibkg(z)
IMax z0 − Ibkg z0

, (11)

where IMax denotes the maximum intensity value in the region containing the highly 

attenuating bead, Ibkg denotes the mean value in an adjacent background region, z, denotes 

the slice position, and z0 denotes the actual slice location of the highly attenuating bead. 

The ASF width was quantified using the measured full width half maximum (FWHM) of the 

ASF in millimeter. To test whether the measured ASF reduction in phantom studies can be 

generalized to the clinical scenario, we also identified a high-contrast calcification (∅ ≈ 640 

μm) in a clinical case (not part of the cohort used to measure β) with a fairly homogeneous 

background (see Fig. 3) and measured the ASF for that calcification in situ. Note that since 

this clinical measurement was retrospective, repeated scans were not possible, so a single 

ASF curve was measured and the result is presented without the error bars.

3.C. Anatomical noise power measurement

The anatomical clutter parameter, β, was measured using a previously published method36 in 

the central 25 slices of each reconstructed volume. In this method, one hundred 256 × 256 

ROIs were randomly placed in each reconstructed slice. Each ROI was constrained to fall 

completely within the breast parenchyma (ROIs straddling the skin line, pectoralis muscle, 

etc., were rejected). Once a satisfactory ROI was identified, the ROI was windowed using a 

radial Hanning window to suppress spectral leakage and the power spectrum was calculated. 

This process was repeated for 100 ROIs per slice to determine an average power spectrum 

for that slice. A least squares fitting was then performed to determine the parameters α and 

β. The ROIs were allowed to overlap and were chosen independently for each slice. The 

selected ROIs were chosen once and then used in both the SIR and clinical reconstruction. It 

should be pointed out, that since multiple ROIs were chosen from the same subject, there is 

a possibility of correlations. In this work, any such possible correlations were not taken into 

account.

Since the anatomical component of the NPS is only dominant in a certain range of frequency 

values, the power-law fitting of the NPS was performed over a limited frequency range, 

[fmin,fmax]. This range was carefully chosen by avoiding extremely low frequencies and 

extremely high frequencies. In previously published work, the recommended frequency 

ranges vary,12,15,16,20 with fmin≥0.1mm−1 and fmax≤0.5–1mm−1. In a clinical cohort, there 

is always interexam variation in both dose (increased/decreased quantum noise contribution) 

and anatomical clutter. In order to be robust in practice, the frequency range can be 

selected15,16 to maximize the coefficient of correlation, r2. This range was found by 

searching all possible frequency ranges (s.t. fmin < fmax) to choose the β value that yielded 

the best fit with minimal least squared error.
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To validate that the selected range indeed corresponded to a frequency range dominated 

by anatomical clutter, a custom made anthropomorphic phantom (Gammex, Middleton, WI, 

USA) (see Fig. 4) was imaged using typical imaging parameters (32 kVp, 38 mAs, 1.0 mGy 

AGD). Using five repeated scans of the phantom, both the quantum only and total noise 

power spectra were calculated in the slices of the phantom containing simulated anatomical 

variation and compared for each reconstruction method. The total noise power spectra were 

calculated directly in the five reconstructed volumes and averaged; the quantum noise power 

spectrum was calculated by subtracting the ensemble average of the five reconstructions 

from each reconstruction to generate five noise only volumes.

3.D. Data analysis

The measured β values were compared in several ways. The average β value for each 

reconstruction method was measured by averaging the measured β values from all the 

measured slices in each case to calculate a single β value per breast. The average and 

standard deviation of those measurements (one per case) was calculated.

To determine if any difference in the mean values was significant, a two-sample t test 

(significance threshold: α = 0.01) was performed in MATLAB (R2017a, The Math-Works, 

Natick, MA, USA). The null hypothesis was that the means were equal, H0:μ1 = μ2, and 

thus the alternative hypothesis is a difference in the mean measured value, H1:μ1 > μ2. 

The measured values for each case were also compared directly in a plot (βSIRvs.βClin), 

and a linear regression was then performed to determine any correlation between the two 

reconstruction method.

In addition to comparing the measured β values in the two reconstruction methods, two 

tests were performed to determine if the two methods treated different breast views or slice 

positions differently. To compare the two views, the average values were calculated for 

the MLO and CC views for each reconstruction method. In each case (clinical and SIR 

reconstructions), the mean values were compared using a two-sample t test as previously 

described.

Finally, the measured β values were averaged for each slice position (relative to the 

center of the volume) for each method. This averaging resulted in 25 β measurements per 

reconstruction method. To determine if β had any dependence on slice position in either 

reconstruction method, a one-way ANOVA was performed. This ANOVA test compared 

the measured values at different slice locations with the overall average to determine if the 

average value at any of the slice locations was significantly different. The null hypothesis 

was that the mean value at each slice position was equal to the underlying mean across 

slices, H0:for alli:μi = 〈μall〉; the alternative hypothesis was that the mean value at any slice 

position was different than the underlying mean across all slices H1:for somei:μi > 〈μall〉 or 

μi < 〈μall〉.

Garrett et al. Page 10

Med Phys. Author manuscript; available in PMC 2021 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4. RESULTS

4.A. Qualitative comparison of reconstructed images

In the first case (Fig. 5), a cluster of calcifications in a heterogeneously dense breast 

(BIRADS density: (c); R CC view) from a 40-year-old woman is shown. This cluster of 

calcifications is well focused and conspicuous in the focal plane in both reconstructions. 

However, in the clinical reconstruction, the residual signal from the cluster is clearly visible 

and distracting in the reconstructed slices 10 mm above and below the cluster.

In the second case (Fig. 6), a highly calcified dense mass in a fatty breast (BIRADS density: 

(a); R CC view) of a 69-year-old woman is shown. Subjectively, this is a very interesting 

pathology with many different high-contrast features present. However, the superposition of 

the high-contrast features in the clinical reconstruction indicates substantial signal leakage 

from the nearby image planes and the superposition leads to reduced image sharpness. Both 

the margins of the mass as well as the calcified structures are difficult to distinguish, and the 

different layers of the mass are not well separated. In contrast, in the SIR reconstructions, 

the signal leakage is substantially reduced, and the individual layers of the mass may be 

clearly differentiated.

In the third case (Fig. 7), a spiculated mass with calcifications in a breast with scattered 

fibroglandular tissue (BIRADS density: (c); R CC view) of a 67-year-old woman is shown. 

This case demonstrates some of the issues with FBP at the boundaries of the breast, 

where the skin line was incorrectly reconstructed, and through-plane blurring obscured the 

subcutaneous fat.

4.B. Artifact spread function measurements

The measured ASF curves for the phantom case are shown in Fig. 8 (a). The mean and 

standard deviations of the FWHM of the ASF measurements in the phantom case were 8.7 ± 

0.1 mm for the clinical reconstruction and 6.5 ± 0.1 mm for the SIR method (approximately 

a 25% improvement). The measured FWHM for the clinical reconstruction is slightly less 

than the previously published values34,35 for this system (≈10 mm). The measured ASF 

curves for the in vivo calcification are shown in Fig. 8(b). The measured FWHM of the ASF 

was 7.0 and 5.3 mm for the clinical and SIR methods, respectively (again, approximately a 

25% improvement).

4.C. Anatomical noise power spectrum

4.C.1. Validation of the range of spatial frequencies used in power-law model 
fitting—For this cohort, the frequency ranges used for the two reconstruction methods are 

summarized in Table II. To validate that these selected frequency ranges truly correspond 

to the frequency range dominated by anatomical clutter, the total and quantum only NPS 

for the anthropomorphic breast phantom are shown in Fig. 9. In the frequency range used 

to perform the least squares fitting, the total noise power spectrum is strikingly different 

compared with the quantum only NPS, indicating that contribution to the total NPS in 

that frequency range is indeed dominated by anatomical clutter. Using these ranges, the 

correlation was very high in all cases. For the clinical reconstructions, the median r2 value 
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was r2 = 0.9975, the interquartile range (IQR) was 0.0034, and the range was 0.0219. For the 

SIR method, the median r2 value was r2 = 0.9969, the IQR was 0.0039, and the range was 

0.0482.

4.C.2. Dependence on reconstruction method—The average measured NPS along 

with the corresponding least-squares power-law fits are shown in Fig. 10. The average 

measured β values and the corresponding standard deviations are shown in Table III. A 

reduction in β of approximately 1 was seen in the SIR reconstructions compared with the 

clinical reconstruction. This difference between the mean β values of the two methods was 

statistically significant (P ≪ 0.001).

As one can observe from Fig. 10, the quantum noise power is much higher for the SIR 

method at frequencies below0.5mm−1. To understand this phenomenon, it is important to 

note that, in this work, the regularization parameters were chosen to achieve a similar 

noise variance (in terms of quantum noise) to the current clinical reconstructions. For the 

anthropomorphic phantom NPS presented, the approximate noise standard deviation for the 

quantum noise only was 13 for the clinical reconstructions and 9 for the SIR reconstructions 

(calculated by integrating the measured quantum NPS to estimate the noise variance). The 

TV regularization used in this work may preferentially suppress high-frequency noise, and 

so even though the noise variance is similar in the two reconstructions, the quantum noise 

power spectrum for the SIR cases does have higher power for low frequencies.

The measured β values using the SIR method are compared with the measured values from 

the clinical reconstruction in Fig. 11. The least-squares regression of the measured values 

was plotted as well; the corresponding relationship is provided in the plot legend. The 

correlation was moderately high (r2 = 0.700) and slope of this fit was found to be 0.91, with 

a negative and nonzero offset of −0.73.

4.C.3. Dependence on the acquisition modes: CC vs MLO—The distribution of 

measured β values in the different views (CC and MLO) is shown in Fig. 12. For each 

reconstruction method, the difference between the CC and MLO views with each method 

was not significant (P > 0.01).

4.C.4. Dependence on slice positions—Figure 13 shows the average β as a function 

of slice location for the central 25 slices about the center of the volume. These curves are 

relatively flat, indicating that, irrespective of reconstruction method, the anatomical clutter 

in the central slices about the center of the compressed breast is approximately the same. 

This was confirmed with the ANOVA comparison of the means, in which it was found that 

P > 0.05 for both reconstruction methods, indicating no statistically significant difference 

was present between the mean β values at different slice locations in either reconstruction 

method.

5. DISCUSSION

In this work, the anatomical noise power spectra of DBT volumes generated using two 

reconstruction methods were measured and fitted to a power law model with two parameters, 
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α and β. Image volumes of the same cohort of cases were reconstructed using each of the 

two methods and a direct comparison of the measured exponent β values was performed. 

Since the acquired data for the two reconstruction cohorts was the same, other parameters 

such as system geometry, acquisition parameters had no influence on the results. Under 

these conditions, it was found that the use of an SIR method reduced the through-plane 

artifacts levels and significantly reduced the anatomical clutter in DBT reconstructions as 

quantified using a power-law fitting of the anatomical noise power spectra. The measured 

β value is around 2.14 for SIR and 3.17 for the clinical reconstruction method. In addition, 

β had no significant dependence on either slice position or view (MLO vs CC) with either 

reconstruction method.

The measured β values in the clinical and SIR reconstructions were found to be moderately 

correlated (r2 = 0.72, Fig. 11). This correlation indicates that a case with a small β value 

in one reconstruction method roughly corresponds to a small β value in the other. This 

result suggests that if measured β values are correlated with breast density, etc., in one 

reconstruction method, a similar correlation may be expected in the other. However, in Fig. 

11, there are several outliers which lie closer to the line of slope unity than the other data 

points. Inspecting the reconstructed images for these outliers demonstrated that each of these 

four cases were fairly dense. In these outliers, it is possible that the anatomical clutter in 

both the clinical method and the SIR method are limited by the inherent anatomy in each 

slice, rather than the reconstruction method.

As shown by other investigators16,19 and the result shown in this paper, the β values 

measured from the current clinical reconstruction is not significantly different from the 

β values measured from 2D mammography. Despite this minimal reduction in β, several 

large-scale clinical trials have shown that the introduction of DBT can help reduce recall 

rates, while simultaneously increasing cancer detection rates.37,38 Given that even a slight 

reduction in the anatomical clutter may offer improved screening performance (recall our 

reference values of β = 3.235 and β = 3.080 for mammography and DBT, respectively), 

an immediate question to be answered in the future studies is the clinical implications 

of a significant reduction of anatomical clutter in the final outcome of clinical diagnoses. 

However, this question must be addressed in future clinical trial studies using much larger 

patient cohorts, rather than the relatively small cohort size used in this study. As a specific 

example, it has previously been shown14 that if quantum noise remains constant, but β is 

reduced, mass detection for human observers improves significantly with the most dramatic 

improvements for larger masses. An interesting question for future studies is to address what 

would be the impact of β parameter reduction in SIR on the mass detection tasks. Note that 

the use of SIR in DBT can result in a reduction of quantum noise level as well. Therefore, 

in the future, the impact of the SIR method on quantum noise should be explored and 

human observer studies should be used to validate this potential improvement in diagnostic 

performance and quantify the significance of any improvement.

Another potential significance of the reduced β values in SIR reconstructed DBT images 

can be inferred by the following consideration: with traditional mammography, it has 

been shown that anatomical clutter has a more pronounced impact on mass detection than 

quantum noise. As a result, the dependence of the images on dose is minimal,39 unlike other 
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well-known quantum-limited tomographic imaging systems such as computed tomography 

(CT).40,41 Given the significantly reduced anatomical clutter in SIR-reconstructed DBT 

images, an interesting question arises: if the low-frequency power of the anatomical clutter 

is reduced, does the modality become more dose dependent? It would be interesting to 

investigate the potentially modified impact of radiation dose on diagnostic performance in 

DBT imaging with SIR reconstruction using model and human observer studies.

The SIR image reconstruction problem in Eq. (3) was solved in this work using the 

backward-forward splitting method together with variable splitting methods to convert the 

2D TV denoising problem into a denoising problem with a generalized shrinkage operator as 

a solution. However, there are many other ways to solve the same optimization problem42–49 

including other strategies to leverage the elegance of a variety of other variable splitting 

method and corresponding ADMM update strategies42, 44,50–52 or to incorporate the benefits 

of TV regularization.22,53–63

One potential limitation of this work is that we demonstrated through-plane blurring artifacts 

in DBT images could be reduced, resulting in a significant reduction in anatomical clutter 

when a specific SIR implementation is used; yet we have not demonstrated this can be 

achieved with other SIR methods in general. However, work from many other groups has 

previously shown that a reduction in through-plane blurring artifacts can be achieved using 

other SIR methods.21–23,58,64,65 Based upon our finding in this paper that the reduced 

anatomical clutter is associated with the reduction of through-plane blurring artifacts, it 

is anticipated that other SIR methods might also be used to reduce anatomical clutter 

as long as the parameters in these alternative methods are optimized to achieve the goal 

of through-plane artifacts reduction. Nevertheless, detailed studies in parameter selection 

for these methods and clinical studies similar to the one presented in this paper must be 

performed to answer the question of whether these methods can reduce anatomical clutter in 

the same way presented in this paper.

6. CONCLUSION

When SIR with proper reconstruction parameters was used to reconstruct DBT images, 

the width of the ASF in DBT was reduced by about 25% relative to that of the clinical 

reconstructions. Anatomical clutter characterized by the β values in anatomical noise power 

spectrum was reduced from β≈3.17 in clinical reconstruction to β≈2.14 in SIR.
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APPENDIX: SOLVING THE DENOISING PROBLEM WITH 2D TV-NORM AS 

REGULARIZER

In this appendix, we present the detailed derivation of the used iterative solver of the 

denoising problem shown in Eq. (7):

x: = Arg Min
x

1
2(x − u)TP−1(x − u) + λ∑

i
xi + 1 − xi

2 + xi + N − xi
2

(12)

The problem in Eq. (12) can be reformulated as the following constrained optimization 

problem with auxiliary variables di,x/y:26

x = Arg Min
x, di, x, di, y

1
2(x − u)TP−1(x − u) + λ∑

i
di, x

2 + di, y
2

s.t. di, x = xi + 1 − xi, di, y = xi + N − xi .
(13)

This constrained optimization problem can then be solved by the minimization of augmented 

Lagrangian (AL) method via the ADMM algorithm.66 Using the ADMM algorithm, the 

above TV minimization denoising is decomposed as the following three alternating sub-

problems:

• X-Problem: The image variables, xi, are updated at the iteration n+1 by 

minimizing the Augmented Lagrangian with the values of variables d and b 
at the iteration n as the input:

xi
n + 1: = Arg Min

xi

λ
2pi

xi − ui
2 + 1

2μ xi + 1
n − xi − di, x

n − bi, x
n 2

+ xi + N
n − xi − di, y

n − bi, y
n 2 .

(14)

• D-Problem: The introduced auxiliary variables di are updated at the iteration 

n+1 by minimizing the Augmented Lagrangian with input of variables xi at the 

iteration n+1 and the input of variables b at the iteration n:

Di
n + 1: = Arg Min

di
∑

i
di, x

2 + di, y
2 + 1

2μ di, x − ei, x
2 + di, y − ei, y

2 . (15)

where

ei, x = bi, x
n − xi + 1

n + 1 − xi
n + 1

(16)

ei, y = bi, y
n − xi + N

n + 1 − xi
n + 1

(17)

• B-problem: In ADMM scheme, the scaled multipliers bi are updated using the 

following scheme:
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bi, x
n + 1 = di, x

n + 1 + ei, x , (18)

bi, y
n + 1 = di, y

n + 1 + ei, y . (19)

The subproblems X and D can be readily solved with the following closed-from solutions.

• Solution of the X-Problem:

xi
n + 1: = μ/pi

μ/pi + 4λui + 4λ
μ/pi + 4λ xi + ℎi

xi: = 1
4 xi + 1

n + xi + N
n + xi − 1

n + xi − N
n ,

ℎi: = 1
4 di − 1, x

n − di, x
n + di − N, y

n − di, y
n + bi − 1, x

n − bi, x
n + bi − N, y

n − bi, y
n .

(20)

These three formulae clearly dictate how the TV-denoising procedure works. 

The denoising result comes from two contributions: a weighted combination of 

the original image ui and a denoised one, that is, xi + ℎi. The weight for each 

component is 
μ/pi

μ/pi + 4λ  and 4λ
μ/pi + 4λ , respectively. The smaller the λ values, the 

lower weight is assigned to the denoised contribution and vice versa. Moreover, 

the denoised image also consists of two terms: a low-pass filtered contribution xi
from a two-dimensional mean filter operation and a denoised edge contribution 

hi which can be viewed as a high-pass operation.

• Solution of the D-Problem: the D-problem with two variables, di,x and di,y, 

can be easily solved and the result is written as follows using the well-known 

shrinkage operator Sμ(x):

di, x
n + 1 = Sμ Ei

ei, x
Ei

, di, y
n + 1 = Sμ Ei

ei, y
Ei

(21)

Sμ(x) = x 1 − μ
x +

= x 1 − μ
x , μ

x ∈ (0, 1]

0
, (22)

Namely, the two components of variable Di at each pixel are the shrinkage of 

the corresponding components of Ei variable with μ as the threshold reference: 

when ∣Ei ∣ < μ, both di,x and di,y are set to zero. Otherwise, both di,x and di,y are 

generated from the corresponding ei,x and ei,y by a fraction of (1 − μ/∣Ei∣).
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Fig. 1. 
The workflow used to calculate the 3D breast mask volume.
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Fig. 2. 
An illustration of the projective pixel grid used in this work.
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Fig. 3. 
Projection images of the phantom (a) and clinical cases (b) used for the ASF measurements 

are shown along with the corresponding reconstructions in (c) and (d), respectively.
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Fig. 4. 
A photograph (a) and radiograph (b) of the custom anthropomorphic phantom used to 

validate the fitting range used in the measurement of β.
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Fig. 5. 
A cluster of calcifications in a clinical DBT exam reconstructed with the clinical 

reconstruction engine (top) and SIR (bottom) is shown in focus (middle image column) 

and at locations above (left two image columns) and below (right two image columns) the 

focal plane in the z direction. All image shown with the same W/L.
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Fig. 6. 
A highly calcified dense mass in a clinical DBT exam reconstructed with the clinical 

reconstruction engine (top) and SIR (bottom) is shown at different z locations. All images 

are shown with the same W/L.
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Fig. 7. 
A boundary region in a clinical DBT exam reconstructed with the clinical reconstruction 

engine (top) and SIR (bottom) is shown at different z locations. All image shown with the 

same W/L.
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Fig. 8. 
The measured ASF curves for the two reconstruction methods in the phantom (a) and a 

clinical case (b).
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Fig. 9. 
The total and quantum NPS in the anthropomorphic breast phantom using the clinical 

reconstruction method (a) and SIR (b). The average upper and lower frequency limits used 

for the power-law fitting in the clinical cohort are shown in this figure.
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Fig. 10. 
The averaged measured NPST for each reconstruction method. The corresponding linear 

least squares fit is shown as a dashed line for each case.
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Fig. 11. 
The measured β values for the DOS-SPART DBT reconstructions plotted against the clinical 

reconstruction. The linear least squares fit is shown in the legend.
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Fig. 12. 
The measured β values for the DBT reconstructions shown separated by view.
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Fig. 13. 
The average measured β value as a function of slice position for the two reconstruction 

methods.
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Table I.

Reconstruction parameters.

Parameter Value

Number of iterations: NIter 50

Number of regularization steps: NDenoising 5

Step size (s) 0.75

λ 12.5

μ 1.25

Q Generated as described in Eq. (8)

P Generated as described in Section 2.C.
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Table II.

The limits of the frequency range used to calculate β for the DBT reconstructions and the corresponding 

standard deviations for the different reconstruction methods.

Clinical SIR

fmin ± σf(mm−1) 0.13 ± 0.03 0.12 ± 0.03

fmax ± σf(mm−1) 0.62 ± 0.12 0.63 ± 0.12
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Table III.

The measured average values of β and the corresponding standard deviations for the different reconstruction 

methods.

Clinical SIR

βmean ± σβ 3.17 ± 0.36 2.14,pm 0.39
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