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TO THE EDITOR:

Juvenile myelomonocytic leukemia (JMML) is a rare and frequently fatal myeloproliferative 

neoplasm of early childhood, with a median age of diagnosis of approximately 2 years [1]. 

The disease is characterized by splenomegaly, thrombocytopenia, peripheral monocytosis 

and elevated hemoglobin F [1]. Allogeneic hematopoietic stem cell transplantation (HSCT) 

is the only curative therapy; however, five-year event-free (EFS) and overall survival (OS) 

remains poor, typically due to relapse [2]. Interestingly, in rare cases, patients experience 

spontaneous resolution without the need for extensive therapy [3, 4], highlighting the need 

for a better understanding of this enigmatic disease.
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Children with RASopathies including Neurofibromatosis type 1 and CBL syndrome are 

at risk of acquiring JMML if they develop loss of heterozygosity in their bone marrow 

compartment for NF1 and CBL, respectively [4, 5]. Nearly 95% of JMML patients have 

somatic or germline mutations in genes encoding proteins that activate the RAS/MAPK 

pathway (NF1, CBL, NRAS, KRAS, RRAS, RRAS2, FLT3, PTPN11) [1, 4]. Several groups 

have documented secondary mutations at diagnosis that occur in one-third of patients [6, 7]. 

These mutations include alterations in epigenetic regulating genes, transcription factors, the 

spliceosome complex and signal transduction pathways. While the canonical RAS pathway 

mutations lack prognostic significance, secondary mutations are associated with a poor 

prognosis [6]. Considering the role of epigenetics in other cancers and the fact that DNA 

methylation plays a critical role in the differentiation of both fetal and adult hematopoietic 

stem cells [8], our research interest has focused on DNA methylation in JMML. We and 

others have recently shown that DNA methylation profiles are predictive of outcome [9–

12]. Patients who experience spontaneous resolution have a methylation pattern similar 

to healthy, age-appropriate controls, while hypermethylated DNA signatures are common 

in patients who have more aggressive disease [9–11]. In our experience, altered DNA 

methylation is tied to the presence of secondary mutations, as all patients who present 

with more than one genetic mutation have hypermethylated DNA profiles. Intriguingly, 

only a small proportion of these mutations occur in genes that are known to regulate DNA 

methylation [6]. We therefore carried out experiments to investigate whether aberrant DNA 

methylation drives leukemogenesis, leading to the acquisition of additional mutations, or 

whether aberrant methylation is a secondary event to primary RAS pathway mutations.

METHODS

Study subjects

We identified 35 patients that were born in the state of California from 1990 to 2017 

who were confirmed to have JMML per World Health Organization criteria [1] and were 

previously consented to participate in a JMML tissue bank study. None of the patients had 

Noonan syndrome. Diagnostic JMML material was available for all 35 of these patients. 

Guthrie cards from the 35 patients were obtained from the California Department of Public 

Health California Biobank Program. In addition, Guthrie cards were obtained from the 

California Biobank Program for 12 healthy control subjects born in California who did not 

develop cancer during childhood. DNA was extracted using standard methods and targeted 

deep sequencing (Supplemental Table 1) as well as methylation profiling were performed. 

For additional details, see Supplemental Methods.

RESULTS

Genetic changes in newborn blood samples

We analyzed a total of 35 newborn blood screening (NBS) cards from children who 

developed JMML later in childhood and from 12 healthy controls. Clinical characteristics 

at disease onset showed a median age at diagnosis of 1.5 years, elevated white blood cell 

count (WBC), monocytes and hemoglobin F (Supplementary Tables 2 and 3). At diagnosis 

of JMML, somatic mutations were identified in 34 of 35 patients. The most common 
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mutations were in PTPN11 (12), NRAS (7) and KRAS (7) (Supplementary Fig. 1A). Ten 

of the 34 patients had a secondary mutation at diagnosis. The most common secondary 

mutations were in NF1 (2) and SETBP1 (2). Of the 34 patients who had a somatic mutation 

present upon diagnosis of JMML, those mutations were found in newborn cards in 13 (38%) 

patients using a VAF cut-off of 0.01. Clonal mutations (VAF > 15%) were found in 9 of the 

34 (26%) patients. Somatic mutations in NRAS (4) and PTPN11 (3) were the most common 

detected at birth (Supplementary Fig. 1B). In three patients with germline CBL mutations, 

loss of heterozygosity (LOH) was detected at diagnosis but not at birth. Of the 10 patients 

who had a secondary mutation at diagnosis, none of those were found in newborn blood 

samples. Patients who had a somatic mutation detected at birth were significantly younger at 

diagnosis with a median age of 7.1 months compared to 19.8 months in patients who had no 

mutations at birth (p = 0.03) (Supplemental Table 4). However, no difference was observed 

in EFS or OS for patients with or without somatic mutations at birth (Supplementary Fig. 2). 

Targeted deep sequencing did not identify any mutations in the 12 healthy controls included 

in our study.

Methylation profiling of newborn blood samples

To better understand when DNA methylation changes occur in patients, we profiled all 

35 patient and 12 control NBS cards with a custom-capture targeted MethylSeq assay. 

Minimum distance to the nearest centroid classified all NBS cards as having “low” DNA 

methylation using the international, consensus definition [12] (Fig. 1A). While all NBS 

cards were categorized as displaying a low methylation (LM) signature, three patients 

clustered separately from all other samples (Supplementary Fig. 3). Notably, all three of 

these patients had a clonal NRAS mutation detected at birth.

Comparison of methylation profiles at birth and at diagnosis

Of the 35 patients, 16 had sufficient DNA available from diagnosis for DNA methylation 

analysis (Fig. 2). These samples were classified as LM, intermediate (IM) or high 

methylation (HM). Nine patients had a LM signature at diagnosis, 4 were IM and 3 were 

HM (Figs. 1B and 2). One patient, UPN3153, had serial samples permitting longitudinal 

profiling at birth, diagnosis, and post-chemotherapy. The allelic frequency of the patient’s 

KRAS mutation was 0% at birth, 39% at diagnosis and 27% post-chemotherapy. The NBS 

card was designated LM while both the diagnostic and post-chemotherapy timepoints were 

IM (Supplemental Figure 4). Despite detection of mutations in nine of the corresponding 

NBS cards, of which seven were present at a VAF ≥ 19%, all patients had lower methylation 

at birth compared to diagnosis of JMML (Fig. 2).

DISCUSSION

In this study, we used next generation sequencing to detect genetic mutations and DNA 

methylation status to determine the sequence of events that lead to the development of 

JMML.

We identified somatic RAS pathway mutations in 13/34 (38%) of children that developed 

JMML later in their life, confirming the prenatal origin of this malignancy in nearly half 
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of patients. We found that patients who had a somatic mutation detected at birth were 

significantly younger at diagnosis compared to patients who had no mutations at birth. This 

is consistent with a previous report by Matsuda et al who reported a cohort of seven JMML 

patients who had an earlier onset of disease when a mutation was present at birth [13]. 

Interestingly, only 2 of 7 patients with KRAS mutations at diagnosis were detected in the 

NBS cards. This is somewhat surprising considering that patients with KRAS mutations 

typically present at a younger age compared to those with clinical NF1 [1]. Of the two 

patients with NF1 in our cohort, both had somatic secondary hits in their JMML samples. 

UPN1070 presented at 7 months and was found to have a second NF1 mutation and 

UPN0969 presented at 77 months and was found to have loss of heterozygosity due to 

uniparental disomy (Supplemental Table 2). UPN1070 had a somatic alteration in NF1 

detected in the NBS card at birth, while UPN0969 did not.

A report by Gale et al demonstrated that genomic fusion sequences are present and 

detectable in neonatal blood spots of patients who went on to develop MLL rearranged 

infant leukemia [14], illustrating that preleukemic clones can be detected at birth in 

patients that present with leukemia early in life. In children with B-precursor ALL, a 

high frequency of leukemic clones has been observed in NBS samples across cytogenetic 

subtypes, including ETV6-RUNX1 fusion [15] and high hyperdiploid ALL [16]. However, a 

wide variation in latency to the time of diagnosis of leukemia, as observed for some JMML 

patients in our study, suggests that postnatal factors also play an important role in disease 

progression [17].

Methylation profiling of NBS cards from children in our study who went on to develop 

JMML revealed methylation signatures that were similar to normal age-matched controls. 

Several patients had diagnostic leukemia that was classified as intermediate or high 

methylation. However, all newborn cards were classified as low methylation at birth 

using the recent international consensus definition [12] including patients who had clonal 

mutations in their NBS card. Therefore, we conclude that aberrant DNA methylation is a 

secondary event to genetic changes.

The causes of somatic mutations at birth and the subsequent alteration in DNA methylation 

are still unknown. One possibility is that prenatal environmental exposures can cause 

mutations or changes in DNA methylation as has been hypothesized in the development 

of childhood ALL [18]. However, we did not collect data about prenatal environmental 

exposures for JMML patients.

In summary, our findings demonstrate that somatic mutations occur in utero in nearly half 

of JMML patients and that genetic alterations precede aberrant DNA methylation. Further 

investigation is required to explore the potential mechanisms of altered DNA methylation in 

this disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Newborn blood spot cards display a low DNA methylation signature.
A JMML NBS or control NBS samples profiled by MethylSeq classified according to the 

international JMML methylation consensus signature [12]. B Methylation status at diagnosis 

of patients (n = 16) reported in this study. Panel A and B Heatmaps show the beta values of 

1386 CpG loci used for methylation classification.
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Fig. 2. Genetic mutations precede changes in DNA methylation.
Genetic and methylation profiling of paired NBS and diagnostic samples from JMML 

patients are displayed. The star indicates the NBS sample of the pair.
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