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Abstract

INTRODUCTION: Progranulin (GRN) mutations occur in Frontotemporal lobar degeneration 

(FTLD) and in Alzheimer’s disease (AD), often with TDP-43 pathology.

METHODS: We determined the frequency of rs5848 and rare, pathogenic GRN mutations in two 

autopsy and one family cohort. We compared Braak stage, β-amyloid load, hyper-phosphorylated 

Tau (PHFtau) tangle density and TDP-43 pathology in GRN carriers and non-carriers.

RESULTS: Pathogenic GRN mutations were more frequent in all cohorts compared to the 

Genome Aggregation Database (GnomAD), but there was no evidence for association with AD. 

Pathogenic GRN carriers had significantly higher PHFtau tangle density adjusting for age, sex and 

APOEε4 genotype. AD patients with rs5848 had higher frequency of hippocampal sclerosis and 

TDP-43 deposits. Twenty-two rare, pathogenic GRN variants were observed in the family cohort.

DISCUSSION: GRN mutations in clinical and neuropathological AD increase the burden of 

tau-related brain pathology but show no specific association with β-amyloid load or AD.
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Introduction

Alzheimer’s Disease (AD) is the primary cause of dementia among older people with a 

strong genetic predisposition1 (60–80% heritability), a prevalence of 30% at age 70 years 

and an annual incidence rate of 6–8% by age 85 years2. Extra-cellular accumulation and 

deposition of β-amyloid in brain is thought to be an early event. Although phosphorylated 

tau is thought to have a role in the cause of AD its role in pathogenesis is uncertain. 

Understanding biological mechanisms of AD could reveal insights about etiology, and aid in 

the development of novel treatments and pre-symptomatic diagnosis3,4.

Progranulin (GRN), a microglial protein, is neurotrophic and anti-inflammatory, and there 

is increased expression by microglia in conditions of pathology5. GRN mutations are 

consistently associated with frontotemporal lobar degeneration (FTLD)6 but recent genetic 

and epidemiological studies suggest that GRN variants may also be observed in AD. GRN 
depletion heightens Aβ and tau deposition in mice, and its expression rises in microglia 

surrounding plaques7–9.

Progranulin levels are increased in the cerebrospinal fluid (CSF) of patients with both 

an autosomal-dominant early onset AD and sporadic late-onset AD10. GRN mutations 

in patients with clinical AD have been previously reported in large families in the 

National Institute on Aging family-based study11, among large, multiply affected families 

of Caribbean Hispanic ancestry12 and in patients from a large exome-sequencing study13. 
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A family clinically diagnosed with AD and also carrying a GRN mutation (c.154delA) had 

FTLD with ubiquitin-positive, tau-negative, and lentiform neuronal intranuclear inclusions 

(-U NII) with neuronal loss and gliosis, affecting the frontal and temporal lobes, and TDP43 

inclusions14. Only one of the six family members had mixed pathology meeting NIA-

Reagan criteria15 of high likelihood and coexisting FTLD-U N11 with TDP43 inclusions. 

GRN mutations were also observed in a patient with postmortem evidence of AD: NIA-

Reagan criteria of high likelihood15 and coexisting FTLD-U N11 with TDP43 inclusions16.

Here we investigated the frequency of pathogenic GRN mutations in large unrelated AD 

cohorts and in families among patients with either clinical or postmortem AD. In clinical 

AD, we compared the frequency of behavioral and other symptoms (such as learning 

disabilities) consistent with a FTLD presentation. In autopsied-confirmed AD, we evaluated 

the presence of co-pathologies including tauopathies and TDP-43 presentation.

Methods

ROSMAP Cohort

Cohorts and Whole Genome Sequencing (WGS).—WGS data from 1,161 autopsied 

brain tissues were accessed from the ROSMAP cohort which is comprised of two 

prospective studies of aging-The Religious order Study (ROS) and the Memory and Aging 

Project (MAP). The detailed description of the study design and data collection scheme 

are described elsewhere17–19. All individuals have longitudinal clinical assessments of 

AD based on the NINCDS-ADRDA criteria20,21 and neuropathological diagnosis based 

on the NIA-Reagan criteria15. We defined neuropathological diagnosis of AD as having 

a NIA-Reagan score of 1 or 2 (high or intermediate likelihood of disease). Both studies 

were approved by an Institutional Review Board, and all participants signed an informed 

consent, Anatomic Gift Act, and a repository consent to all their data to be shared. WGS 

was performed at the New York Genome Center using DNA extracted from brain tissue 

(n=806), whole blood (n=389) or lymphocytes transformed with EBV virus (n=5). Details of 

the sequencing technology and bioinformatics pipeline for data processing, read alignment 

and variant calling have been described22.

Correlation of GRN mutations with neuropathological phenotypes: We first 

evaluated the frequency of rare putatively pathogenic GRN variants in the ROSMAP 

autopsy cohort. Pathogenicity was defined as coding mutations that have a Combined 

Annotation Dependent Depletion (CADD) greater than 20 or mutations that affect splicing. 

Joint frequency of GRN mutations was defined as the sum of minor allele frequencies 

(MAF) of pathogenic mutations. We then correlated the GRN mutation dosage (number 

of mutations carried by each individual) with neuropathological traits. Neuropathological 

traits included a) global pathology defined as global measure of pathology based on the 

scaled scores of five brain regions where the scaled variable is the original count divided 

by the standard deviation, b) Braak Stage23, c) diffuse plaque burden, d) neuritic plaque 

burden, e) PHFtau tangle density across eight brain regions, f) area occupied by β-amyloid 

across eight brain regions, g) hippocampal sclerosis (present/absent), h) TPD-43 inclusions 

(present/absent), i) synaptic measure across three cortical (hippocampus, midfrontal cortex, 
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and inferior temporal) and j) presence of Lewy bodies. Three stages of TDP-43 pathology 

were measured (stage 1, localized to amygdala; stage 2, extension to hippocampus and/or 

entorhinal cortex; stage 3, extension to the neocortex), and the severity of the TDP-43 

cytoplasmic inclusions in neurons and glia were rated on a 6-point scale24.

Correlations were computed as follows: a) unadjusted, b) adjusted for age at death and 

sex, c) adjusted for age at death, sex and pathological AD diagnosis. Pathological AD was 

derived using the NIA-Reagan diagnosis of Alzheimer’s disease25.

The National Alzheimer’s Coordinating Center (NACC)

Cohort and WGS: NACC coordinated collection of phenotype data from the 29 National 

Institute on Aging (NIA) Alzheimer’s Disease Centers (ADCs), stored and shared all 

data, coordinated implementation of definitions of AD cases and controls, and coordinated 

collection of samples. For autopsy samples, clinical and neuropathologic information were 

recorded in either the minimal dataset (MDS) or the more extensive uniform data set (UDS) 

(after 2006), and neuropathologic information was recorded in the Neuropathology Data Set 

(NPDS). Details of the cohort have been reported 26,27. Clinical diagnosis of AD was based 

on the NINCDS-ADRDA criteria20,21 and neuropathological AD was defined as a score of 1 

or 2 (high or intermediate likelihood) on the NIA-AA Alzheimer’s disease neuropathologic 

change (ADNC) scale15.

Whole exome sequencing (WES) data for the NACC autopsied individuals were generated 

as a part of the Alzheimer’s Disease Sequencing Project and were accessed from 

The National Institute on Aging Genetics of Alzheimer’s Disease Data Storage Site 

(NIAGADS)28. The study design and details of the WES experiment and variant calling 

are described elsewhere29,30.

Correlation of GRN mutations with neuropathological measures: GRN mutation 

dosage defined as the sum of non-reference alleles in pathogenic mutations was correlated 

with presence of FTLD with tau pathologies (FTLD-tau) such as argyrophilic grains, tau 

intracytoplasmic inclusions, TDP-43 inclusions, neurofibrillary tangles or pre tangles (see 

reference)31 from the NACC MDS and UDS. The proportion of individuals with clinical AD 

and with FTLD-tau pathology were compared between GRN carriers and non-carriers.

Estudio Familiar de Influencia Genetica en Alzheimer (EFIGA)

Cohort and WGS: WGS data from 307 families in the cohort was accessed. Study design, 

adjudication, and clinical assessment of AD in this cohort was previously described32. 

Participants were followed-up every two years with a neuropsychological test battery33, a 

structured medical and neurological examination and an assessment of depression34,35. The 

Clinical Dementia Rating Scale (CDR)36,37 and functional status were done and the clinical 

diagnosis of AD was based on the NINCDS-ADRDA criteria20,21. Seventy-seven families in 

EFIGA underwent sequencing as a part of the ADSP discovery and extension phases38.

WGS on 1886 individuals from 264 families was also performed at the New York Genome 

Center (NYGC) using one microgram of DNA, an Illumina PCR-free library protocol, and 

sequencing on the Illumina HiSeq platform.
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We harmonized the WGS the EFIGA families (n=307), and jointly called variants to create 

a uniform, analysis set. Genomes were sequenced to a mean coverage of 30x. Sequence data 

analysis was performed using the NYGC automated analysis pipeline which matches the 

CCDG and TOPMed recommended best practices39. Briefly, sequencing reads were aligned 

to the human reference, hs38DH, using BWA-MEM v0.7.15. Variant calling was performed 

using the GATK best-practices. Variant filtration was performed using Variant Quality Score 

Recalibration (VQSR at tranche 99.6%) which identified annotation profiles of variants that 

were likely to be real and assigns a score (VQSLOD) to each variant.

Correlation of GRN variants with clinical assessment of FTLD-like 
symptoms: Behavioral traits associated with FTLD had been collected in a sub-group of 

the EFIGA cohort and was compared in those with clinical AD with and without pathogenic 

GRN mutations. Presence of FTLD like behavioral symptoms were assessed on a ten-point 

Middelheim Frontality Score40.

Statistical analysis—Partial correlations adjusting for covariates were computed using 

the ppcor R package41 and results were assessed for significance at p≤0.05.

Results

Frequency of GRN mutations:

We annotated mutations from the AD and FTD Mutation Database (https://

uantwerpen.vib.be/) to assess the CADD scores of putatively deleterious variants in GRN 
(Supplementary Figure S1). Of the 171 mutations in the AD and FTD database, 78 (45%) 

were classified as “pathogenic” and 45 (26%) were considered “unclear”, with average 

CADD scores of 28.4 (±7.6) and 19.3 (±9.73) respectively. Thus, we used CADD≥20 to 

define pathogenic GRN loss of function, non-synonymous and splice variants mutations.

Table 1 shows the frequency of pathogenic GRN mutations in each dataset. Only summary 

level data were available from gnomAD and the total frequency of pathogenic variants was 

assessed as the sum of frequencies of individual variants (assuming that each variant was 

observed once in an individual). The population frequency of pathogenic GRN variants in 

gnomAD was 0.75%. In the EFIGA family cohort, a significant enrichment of pathogenic 

GRN mutations, although no significant differences were observed between clinical AD and 

unaffected family members. In the ROSMAP study, the frequency of GRN mutations in 

post-mortem AD cases was observed at 1.4% and 0.8% for controls cohort.

Association of GRN with neuropathological traits in ROSMAP:

We observed eight pathogenic GRN mutations at a MAF=1.4% in autopsy confirmed 

cases and 0.8% in controls. We assessed the correlation of GRN carrier status with 

neuropathological, behavioral and cognition-related traits (Table 2, Supplementary Figures 

S2–S3 and Supplementary Table S3). GRN mutations in both cases and controls was 

accompanied by an advanced Braak Stage (cor=0.06, p=0.04) and higher PHFtau tangle 

density (cor=0.08, p=0.008). Adjusting for age, sex and AD diagnosis, correlations with 

PHFtau tangle density was statistically significant (cor=0.065, p=0.02). The association 
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was significant after adjustment for APOE ε4 (cor=0.06, p=0.048). Upon further analysis 

of GRN and APOE ε4 (Supplementary Figures S2–S3), we found higher tangle density 

in AD patients and healthy individuals who carried both a GRN mutation and APOE ε4 

alleles. This observation was particularly strong in tangle density measured in the entorhinal 

cortex and the hippocampus. However, this pattern was observed in only had two unaffected 

individuals. There was no association of GRN variants with other neuropathological traits.

Of the 20 individuals in ROSMAP with a neuropathological diagnosis of AD and carrying 

a GRN mutation, 9(45%) showed TDP-43 inclusions that was either stage 2 (extension to 

hippocampus and/or entorhinal cortex) stage 3 (extension to the neocortex). Moderate to 

severe TDP-43 pathology was slightly higher in GRN mutation carriers with a confirmed 

neuropathological diagnosis of AD (45% vs. 39.5%). In addition, one patient with confirmed 

AD and a second individual without dementia but a carrier of a GRN variant had 

neuropathological characteristics of hippocampal sclerosis.

Common SNP, rs5848 in ROSMAP cohort:

SNP rs5848 (SNP) rs5848, located in the 3′-untranslated region of GRN, and predicted to 

be a binding site for the microRNA miR-659, is the most frequent GRN variant associated 

with frontotemporal dementia42. Several small independent and meta-analysis studies from 

several populations have reported association of the T allele of rs5848 with risk for clinical 

AD43. Recently, a large meta-analysis of genome-wide association studies (39,106 clinically 

diagnosed AD, 46,828 proxy-ADD cases and 401,577 controls) and replication in 25,392 

independent AD cases and 276,086 controls implicated rs5848 as a genome-wide significant 

locus for AD44.

We evaluated the association of rs5848 with neuropathological, behavioral and cognition 

traits (Table 3, Supplementary Table S4) using unadjusted and adjusted models for age, 

sex, AD diagnosis and APOE ε4 dosage. rs5848 was modestly associated with presence of 

hippocampal sclerosis (cor=0.09, p=3.07e-03) and TDP-43 pathology (cor=0.082, p=0.01) 

adjusting for age, sex and AD diagnosis. The association was significant after adjusting 

for APOE ε4 status. Within homozygous rs5848 carriers with pathological AD, 17.4% 

had concomitant hippocampal sclerosis and 68% exhibited some TDP-43 pathology (9.7% 

and 58% respectively for hippocampal sclerosis and TDP-43 respectively amongst rs5848 

non-carriers or heterozygotes) (Table 4, Supplementary Table S5).

GRN mutations in the autopsied cohort of NACC WES:

We used whole-exome sequencing data from the Alzheimer’s Disease Sequencing Project29 

and neuropathological measures obtained from NACC to evaluate the frequency of GRN 
variants. Overall, we identified 30 putatively deleterious GRN variants in the NACC cohort. 

Among 3,252 individuals, for whom autopsy information was available, 31 (1%) individuals 

carried a GRN mutation (MAF=0.0047) which is lower compared to the ROSMAP cohort. 

The low frequency here may be partially explained by the intersection of capture regions of 

the various exome kits used in the ADSP29, which could reduce the reliably of regions called 

within the gene. We evaluated the frequency of FTLD-tau using the variables specified in 

the NACC neuropathological dataset. Three out of fifteen individuals (20%) patients with 
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postmortem AD and carrying a GRN mutation showed criterion of FTLD (as described 

below). In patients with clinical AD who did not carry a GRN mutation, presence of FTLD 

neuropathological features was observed at 5.5% (p-value = 0.063).

Three patient examples reveal the variation in GRN related neurodegeneration. Patient A, 

with clinical AD, carried a GRN mutation and had the pathological hallmarks of AD 

including Braak Stage=5, Consortium to Establish a Registry for Alzheimer’s Disease 

(CERAD) C score of 2 (moderate neuritic plaques) and NIA-AA Alzheimer’s disease 

neuropathologic change (ADNC) of 3 (high and frequent diffuse plaques). The patient had 

little tau pathology (FTLD-tau) but TDP- 43 immunoreactive inclusions in the amygdala 

were observed. Patient B also had both clinical and pathological AD (Braak Stage=5, 

CERAD C score=3 and NIA-AA ADNC). Concomitantly, TDP-43 immunoreactive 

inclusions were widespread in the amygdala, hippocampus, inferior temporal cortex and 

neo-cortex. Interestingly both patients, carried the GRN p.Arg433Trp mutation. Patient C 

(p.Val8Met mutation), was diagnosed as clinical AD but did not have the pathological 

hallmarks of AD (Braak Stage=0, CERAD C score=0 (no neuritic plaques and no diffuse 

plaques) at autopsy. The patient had FTLD with parkinsonism, tau-positive or argyrophilic 

inclusions and tauopathy but without ubiquitin-positive (tau-negative) inclusions.

GRN mutations in families:

To investigate the clinical characteristics of AD in pathogenic GRN carriers, we compared 

the frequency of behavioral and other psychiatric manifestations in EFIGA families between 

carrier and non-carrier in living patients with AD. Presence of FTLD like behavioral 

symptoms were assessed on the ten-point Middelheim Frontality Score (MFS)40. Frequency 

of individuals with at least one behavioral symptom consistent with FTLD was compared 

between pathogenic GRN carriers and non-carriers. Medical record reviews were conducted 

in all GRN carriers and a similar number of randomly selected non-carriers to assess 

behavioral, mood and psychosis like symptoms.

In clinically diagnosed AD, there was no difference (Supplementary Table S1) in the 

presence of FTLD-like symptoms on the MFS scale between carriers and non-carriers of 

pathogenic GRN variants (9% in carriers vs 11% in non-carriers) or between carriers and 

non-carriers of the common rs5848 SNP (Supplementary Tables S1, S2). Interestingly, 

within unaffected family members, carriers of GRN variants and the common rs5848 were 

more likely to have behavioral symptoms, assessed using the MFS (5.4% in carriers vs 1.3% 

in non-carriers, p=0.03). We found that 3.7% of the individuals carrying a GRN mutation 

also displayed parkinsonism while it was absent in non-carriers. Four patients in one family 

with clinical AD (Supplementary Figure S4) and with a GRN splice variant (rs72824736) 

had learning disabilities and one patient carrying another splice variant (rs112873166) had 

progressive aphasia. These observations were not present among non-carriers.

Discussion

GRN mutations explain up to 20 percent of familial and 5 percent of sporadic FTLD but 

lead to a variety of clinical presentations, predominantly presenting as behavioral variant 

FTLD or progressive aphasia. Less frequently, variants in GRN are found in clinical AD 
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with or without parkinsonism. Among patients with clinical AD and not carrying mutations 

in PSEN1, PSEN2 and APP, 6.3% carried putatively pathogenic GRN mutations45. The 

authors recommended re-examination of clinical AD patients, particularly those who were 

diagnosed prior to identification of causal FTLD genes including GRN.

In this report, we systematically evaluated the frequency of putatively pathogenic GRN 
mutations in two large autopsy cohorts and one clinical cohort, and further examined 

the presence of concomitant tauopathy or other FTLD-like neuropathological or clinical 

presentations among patients with AD. In addition, we also examined the frequency of 

FTLD like symptoms in patients with AD carrying rs5848, the strongest variant linked to 

FTLD-TDP43 pathology.

We found higher than expected frequency of pathogenic GRN mutations among autopsied 

and clinically diagnosed AD compared to publicly available exome and genome datasets 

(GnomAD)46. In the ROSMAP cohort, we found an association between rs5848 and 

hippocampal sclerosis and TDP-43 pathology. It has been previously reported that up to 

25–50% of patients with AD have been found to have TDP-43 pathology at autopsy47, 

especially those with hippocampal sclerosis. However, in carriers of the rs5848 SNP, we 

found that 60% of pathologically confirmed AD patients exhibited TDP-43 pathology, and 

it increased to 67% if they were homozygous for the variant (Supplementary Table S5). 

Interestingly, 95% (41 out of 43) rs5848 positive, AD patients presenting with hippocampal 

sclerosis also had TDP-43 pathology. Among the collection of Hispanic families, we found 

learning disabilities and aphasia concomitant with clinical AD in GRN carriers, but this 

was absent in non-carriers. GRN variants are present in ~16% primary progressive aphasia 

(PPA), 7% of behavioral-FTLD and ~5% of AD with learning disabilities48,49 suggesting 

that increased language and behavioral deficits in the presence of GRN variants in clinically 

diagnosed AD.

There are some limitations of this study including the diverse ascertainment and 

neuropathological characterizations across the autopsy cohorts. The in-silico pathogenic 

classification of GRN variants requires additional validation. Patients with mixed AD and 

FTLD presentations that carry GRN mutations with incomplete penetrance or mutations in 

other genes such as MAPT and C9orf72 or would be missed in this analysis.

Progranulin levels in cerebrospinal fluid (CSF) is associated with the progression of early 

and late onset, clinically diagnosed AD10. In addition, progranulin levels are also associated 

with cortical thinning on brain MRI50 and AD neuropathology51. Future studies should 

attempt to relate CSF progranulin levels, GRN variants, neurofibrillary tangle pathology and 

Braak stage.

Taken together, the data presented here indicate that both rare and common GRN variants 

are associated with specific neuropathological findings in AD that are also present in 

FTLD. Postmortem data reveal that among neuropathologically diagnosed AD with GRN 
mutations, Braak stage and tau pathology exceeds what is normally present in AD. 

Interestingly, GRN variants in AD were not accompanied by the typical behavioral 

manifestations occurring in FTLD. While GRN variants are strongly associated with FTLD, 
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this report validates the numerous studies indicating that they can also be present in AD, 

but are not causal. As suggested earlier, it is possible that progranulin impacts AD, FTLD 

and other neurodegenerative disease putatively by its effect on lysosomal storage in neurons 

and microglia5. Progranulins mutations may also explain concomitant tauopathies or other 

manifestations in AD neuropathology.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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RESEARCH IN CONTEXT

SYSTEMATIC REVIEW:

Common variants and rare progranulin (GRN) mutations, typically associated with 

frontotemporal lobar degeneration, have been identified in genome wide arrays and 

genome wide sequencing of Alzheimer’s disease (AD). We sought to determine whether 

GRN variants were specifically associated with AD and establish their impact on the 

disease phenotype.

INTERPRETATION:

We found the frequency of GRN mutations among patients with AD ranged from 0.5% 

in unrelated individuals to 5% in families, but there was no specific association with 

clinical or pathological AD. Between carriers and non-carriers there were no statistical 

difference in behavioral manifestations. Compared with non-carriers at autopsy, patients 

with AD and GRN mutations had advanced Braak stages, increased tangle density, 

TDP-43 pathology and evidence of other tauopathies.

FUTURE DIRECTIONS:

GRN mutations are not associated with an increased risk of AD, but when present in 

neuropathological AD alters the phenotype by increasing the burden of tau-related brain 

pathology.
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