
Magnetic Nanoparticle-Mediated Heating for Biomedical 
Applications

Elyahb Allie Kwizera,
Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA

Samantha Stewart,
Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA

Md Musavvir Mahmud,
Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA

Xiaoming He*

Fischell Department of Bioengineering, University of- Maryland, College Park, MD 20742, USA

Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, 
Baltimore, MD 21201, USA

Abstract

Magnetic nanoparticles, especially superparamagnetic nanoparticles (SPIONs), have attracted 

tremendous attention for various biomedical applications. Facile synthesis and functionalization 

together with easy control of the size and shape of SPIONS to customize their unique properties, 

have made it possible to develop different types of SPIONs tailored for diverse functions/

applications. More recently, considerable attention has been paid to the thermal effect of SPIONs 

for the treatment of diseases like cancer and for nanowarming of cryopreserved/banked cells, 

tissues, and organs. In this mini-review, recent advances on the magnetic heating effect of SPIONs 

for magnetothermal therapy and enhancement of cryopreservation of cells, tissues, and organs, are 

discussed, together with the non-magnetic heating effect (i.e., high Intensity focused ultrasound or 

HIFU-activated heating) of SPIONs for cancer therapy. Furthermore, challenges facing the use of 

magnetic nanoparticles in these biomedical applications are presented.
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Introduction

Superparamagnetic iron oxide nanoparticles (SPIONs) have attracted a great deal of interest 

due to their unique properties such as their large surface area to volume ratio, long-term 

stability, easy manipulation with a magnet, high magnetization, and high saturation field [1–

6]. The stability of SPION is affected by the balance of different attractive interactions such 

as magnetic, dipolar, and van der Waals interactions [7]. Therefore, bare SPIONs tend to 

aggregate together which affects their magnetic properties. To prevent this aggregation, they 

are often surface modified with protective shell(s) to stabilize them by either electrostatic 

or steric repulsion [8,9]. Therefore, SPIONs for biomedical applications often consist of a 

magnetic core and an outer organic layer which facilitates convenient functionalization to 

form SPION conjugates [10]. It is worth noting that magnetic nanoparticles can also perform 

as an energy transfer mediator and as a mechanical force vector. Therefore, through repeated 

alignments of magnetic spins and relaxations via processes of Néel rotation and Brownian 

motion in response to the alternating magnetic field, thermal energy can be generated from 

the magnetic nanoparticles [3,11–14].

SPIONs are mainly made of magnetite (Fe3O4) and maghemite (γ-Fe2O3) [15,16]. Different 

transition metal ions such as manganese[17], nickel [18], copper [19], and cobalt [20] can 

be mixed with the iron oxides to form SPIONs. The unique magnetic characteristics of 

SPIONs give them the ability to be rapidly heated upon exposure to an alternating-current 

(AC) magnetic field, achieving a uniform heating throughout a large sample due to the 

large wavelength (at least a few meters) of the magnetic wave [21,22]. Therefore, magnetic 

induction heating (MIH) is advantageous to traditional heating methods such as microwave 

oven or water bath heating for which the heating is often heterogeneous and relies on 

thermal conduction [23–25].

This process, in which SPIONs are heated by an AC magnetic field (AMF) that is created 

by a few hundred (100 to 400 kHz) frequency AC passing through a solenoid coil, has 
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quickly become an attractive method for various technological and biomedical applications 

[26,27]. When SPIONs are exposed to AMF inside the solenoid coil, there is a conversion of 

electromagnetic energy into thermal energy through the mechanisms of Brownian relaxation, 

Néel relaxation, and hysteresis losses [28–30]. The SPION heating efficiency is affected 

by the applied magnetic field frequency, nanoparticle size, nanoparticle anisotropy, and 

their collective behavior [31]. With their unique magnetic properties, SPIONs have been 

used in magnetic-based targeted drug delivery [32,33], cell differentiation [34,35], magnetic 

resonance imaging (as contrast agents) [36,37], biosensing [38–40], biological separation 

[41,42], and tissue engineering [43]. In this mini-review, we will focus on the most 

recent use of SPIONs for heating in biomedical applications specifically in magnetothermal 

therapy [44], nanowarming of cells, tissues, and organs [45–47], and high intensity focused 

ultrasound-mediated heating [48,49].

Magnetothermal Therapy

Magnetic induction heating is a non-contact method, for which an external magnetic field 

is applied throughout the sample that is placed within a solenoid coil for heating [24,27]. 

This magnetic field is generated at frequencies typically below 30 MHz where the dielectric 

losses are negligible compared to resistive losses [50]. A transformer/generator is used for 

generating the desired AC current that is input into a solenoid coil to create an AC magnetic 

field in the coil (Fig. 1a) [14,51]. Under the AC magnetic field, heat may be generated 

within the SPIONs through mainly Néel and Brownian relaxations, together with hysteresis 

losses (Fig. 1b) [28–30,52].

Magnetothermal therapy is a type of thermal therapies, which uses the aforementioned 

magnetic induction heating for treating diseases like cancer. With this approach, a diseased 

tissue (e.g., tumor) is exposed to a magnetic field for heating to a high temperature (usually 

> 43 °C) in the presence of magnetic nanoparticles, to kill diseased cells/tissues [53–56]. 

Studies have shown that high temperatures can result in irreversible damage to cancer cells 

in less than a minute to a few tens of minutes dependent on specific temperature and 

cell type [57–63]. The increase in temperature leads to inactivation and denaturation of 

cellular proteins which lead to the dysfunction of cellular activities and eventually cell death 

[64–66]. Traditionally, cancer cells and tumors can be fatally heated through microwave 

(high-frequency electromagnetic wave) irradiation with [67–69], optical laser irradiation 

[70,71], or ohmic heat generation [72–75]. However, due to the nonspecific nature of 

heating (for microwave and ohmic heating) and the limited tissue penetration depth of laser, 

these techniques are difficult to use for thermal therapy of deep-seated tumors, especially 

within the principal body cavities such as in the abdomen, thorax, and skull, often yielding 

recurrent tumor growth [24]. Another major disadvantage of traditional electromagnetic 

heating techniques is their nonspecific nature: both the diseased tissue and the neighboring 

healthy tissues may be heated directly [68,76], which may cause undesired dismal side 

effects if the healthy tissue performs critical functions. As a result, research has been 

focused on the use of targeted/specific thermal therapy methods to eliminate the cancerous 

cells by heating while minimizing damage to the surrounding healthy tissue.
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One way to address the aforementioned challenge associated with conventional thermal 

therapies is magnetothermal therapy using SPIONs to convert the magnetic energy carried 

by the AC magnetic field into thermal energy, which can then increase the temperature in a 

well-defined area of the tumor containing the SPIONs [77,78]. This has been a major focus 

of studies regarding SPIONs for magnetothermal therapy of cancer. For example, Kossatz 

et al. synthesized functionalized SPIONs for targeted magnetothermal therapy in a breast 

cancer xenograft model [79]. Through a combination of a tumor-specific cell internalization 

moiety (N6L) and an anti-cancer drug (doxorubicin: DOX) on the SPIONs surface, MDA-

MB-231 breast cancer cells internalized the SPIONs and were then subcutaneously injected 

on the rear backside of the nude mice for hyperthermic treatment. The mice were exposed 

to a 435 kHz frequency AMF, generating hyperthermic temperatures in the tumor, which led 

to a 40% reduction in tumor volume, compared to the untreated control. However, despite 

the uniformity of the SPIONs in the tumor, maintaining hyperthermia inside the tumor 

remains a challenge due to different thermoregulatory conditions of the human body [80]. 

Therefore, factors that play important roles in SPIONs-mediated magnetic heating, such as 

the structural and magnetic properties of the SPIONs and the applied magnetic field, need to 

be further optimized [81].

A clinical study conducted by Dutz et al. concluded that the solenoid coil size can be 

optimized to generate an external magnetic field customized for the study [82]. When a 

small coil of 10 cm in diameter is used to generate an external magnetic field, patients were 

found to withstand the treatment for more than one hour without any major discomfort if 

the product of AC amplitude and frequency of 5·109 Am−1 s−1 was not exceeded during 

magnetothermal therapy to minimize the eddy currents in healthy and/or in tumor tissue 

(which heats the normal and diseased tissue directly). A few years earlier, Johannsen et 

al., using an AMF with a frequency of 100 kHz and a variable field strength ranging 

from 2.5–18 kA/m, tested SPIONs in 10 prostate cancer patients [83]. Magnetothermal 

heating of SPIONs allowed the tissue to reach temperatures of up to 55 °C, resulting in 

a tumor reduction of up to 70%. However, this high temperature in the tumor due to the 

magnetic heating caused nonspecific heating to neighboring tissues (as a result of thermal 

diffusion) and localized discomfort in patients during magnetothermal treatments. SPIONs 

biodistribution studies can also provide information on the effective design of a better 

system for magnetic heating. Pham et al. investigated the ex vivo biodistribution of two 

block copolymer-coated SPIONs in several organs of both healthy and sarcoma transplanted 

Swiss mice delivered via an intravenous injection [84]. They showed that many of the 

SPIONs accumulated in the liver while the least was found in the kidney after 24 hours 

of SPION injection. The heating of the tumor was accomplished using a 5 kW power 

transformer or generator with an AC magnetic field of a 170–240 kHz, showing that a better 

heating is correlated to a higher SPION concentration.

Previous work has also focused on the modification of the physiochemical, structural, 

size, composition, and surface properties of the SPIONs to control the biodistribution, 

pharmacokinetics, and enhancing their heating efficiency at the tumor site [85–87]. Giustini 

et al. observed up to ~91% intracellular uptake of SPIONs after coating the nanoparticles 

with dextran [88]. Using sub-5 nm SPIONS, Wang et al. improved both the delivery 

and intratumoral distribution of these small SPIONs, demonstrating that they can easily 

Kwizera et al. Page 4

J Heat Transfer. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



extravasate from the tumor vasculature and readily diffuse into the tumor tissue [89]. 

This was followed by self-assembling in the acidic tumor microenvironment to limit their 

possibility of re-entering the blood circulation. In this study, it was found that the improved 

passive targeting, intratumoral delivery, and increased tumor retention of SPIONs are due 

to their easy extravasation into the tumor and restricted intravasation of clustered SPIONs. 

More recently, there has been an increasing interest in developing SPIONs that can be 

used for both magnetothermal therapy and magnetic resonance imaging of the tumor [90]. 

Du et al. developed an image-guided magnetothermal therapy using SPIONs to generate a 

well-distributed and high enough temperature to kill malignant tumor cells [91].

It is worth noting that intratumoral injection of SPIONs during magnetothermal therapy 

requires multiple injections at various sites of the tumor to increase SPION concentration 

and homogeneity of SPION distribution [92]. SPIONs were prepared and functionalized 

with CREKA (Cys-Arg-Glu-Lys-Ala), a pentapeptide that presents high affinity to fibrin-

fibronectin complexes in the tumor, through a standard 1-ethyl-3-(3-dimethylamino propyl) 

carbodiimide hydrochloride/ sulfo N-Hydroxysuccinimide (EDC/sulfo-NHS)-coupling 

reaction [91]. SPIONs were synthesized and then intratumorally injected into orthotopic 

4T1 tumor-bearing mice and placed under the AMF for hyperthermic treatment. The 

magnetic heating treatment was performed by applying an AMF at 400 kHz and 20 A 

for 10 min every 2 days for a total of 3 treatments. The functionalized SPIONs showed an 

improved targeting and SPION delivery uniformity, which resulted in a uniform increase 

of temperature and the total destruction of tumor. Intratumoral injection has been a 

preferred method for delivering SPIONs due to its ability to achieve a higher concentration 

of nanoparticles in tumor [93]. However, to improve tumor accumulation/retention and 

specificity, antibody/ligand conjugated SPIONs have been used to target various cancer-

specific antigens for magnetothermal therapy [94,95]. For example, hyaluronic acid [96], 

Trastuzumab [97], Herceptin [94], transferrin, and TAT (YGRKKRRQRRR) peptide [98] 

conjugated SPIONs have been used to target various receptors on tumor cells. Interestingly, 

magnetic heating of SPIONs is useful for not only hyperthermic applications but also in the 

low-temperature field as discussed in more details below.

Nanowarming

Long-term organ and tissue banking would revolutionize current approaches to 

transplantation and regenerative medicine by providing critical improvement to donor-to-

donor organ supply and transport that would improve short- and long-term graft function 

[99–101]. Cryopreservation, a method used to preserve cell and tissues in a living state of 

suspended animation at cryogenic temperatures (below −60 °C) for a considerable period of 

time [59,102], may provide better cell, tissue and organ transplantation outcomes as well as 

an extended window for organ/tissue assessment, recovery, and allocation [99,101,103,104].

Fundamentally, cryopreservation can be categorized into (1) slow freezing, in which the 

biological samples are loaded into a low temperature-resistant container and cooled at 

1–2 °C/min to a low temperature usually between −40°C and - 80°C before transferring 

into a liquid nitrogen (at −196°C) tank for long-term storage [101,105,106], and (2) 

vitrification, in which biological samples are rapidly transformed from a liquid state into 
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an amorphous glassy state through non-equilibrium cooling to minimize or eliminate ice 

formation [101,107,108]. Unlike slow freezing, the vitrification process requires a high 

cryoprotective agent (CPAs) concentration (5–8 M) and/or a high cooling rate (as high 

as 106 °C/min depending on the CPA concentration) [108–110]. It is worth noting that 

to facilitate cryopreservation while minimizing different adverse effects that come with 

freezing (e.g., ice formation), CPAs like dimethylsulfoxide (DMSO) that affects the rate of 

water transport, ice nucleation, and ice crystal growth are commonly used [111], [104].

Vitrification has garnered much attention as a better alternative to slow freezing due to its 

ability to bypass the formation of ice crystals which may reduce/eliminate freezing injury 

and improved cell survival [46,112,113]. For effective vitrification, the critical warming rate 

(CWR), needed to thaw the organ for transplantation, must exceed the respective critical 

cooling rate (CCR), the lowest rate that allows a solution to vitrify, by one to three orders of 

magnitude [114–116]. This is to ensure vitrification during cooling and avoid devitrification 

(which can lead to cell injury) during warming [117–119]. Unfortunately, it is difficult to 

achieve a high warming rate. For example, the overall warming rates achievable by the 

most commonly used heating in 37 °C water bath are only 10–100 °C min−1 depending on 

the sample size. Furthermore, the conventional water bath-based heating relies on thermal 

conduction from the boundary into the sample, which means nonuniform heating with 

large temperature gradient that creates thermal stress inside the sample, a major cause of 

mechanical damage to cryopreserved tissues and organs [120–122].

One potential solution to the challenges associated with the warming step of 

cryopreservation is SPION-based nanowarming [119]. SPIONs can be used to achieve a 

relatively uniform distribution within tissues and organs due to their small nanoscale size, 

compared to micro- and macro-scale tissues [123,124]. A combination of SPIONs and AMF 

of hundreds of kHz has generated a great interest in cryopreservation because it may provide 

uniform and rapid heating, which may reduce thermal-mechanical stresses and prevent 

recrystallization during the warming phase of cryopreservation [46,121,125]. It is worth 

noting that SPIONs heating under AMF is attributed to the dominant Néel relaxation mode 

and ferromagnetic hysteresis losses (Fig. 1b) [29,126].

Etheridge et al. presented a new approach for rapidly and uniformly warming a 

cryopreserved artery tissue sample of 1 ml via magnetic heating of SPIONs with an AMF of 

20 kA/m at 360 kHz and 1 kW generated using a 2.75-turn water-cooled copper coil [21]. 

They demonstrated that heating rates as high as 300 °C/min could be generated with their 

SPION-based heating approach, which may minimize devitrification in the cryopreserved 

biospecimen. Moreover, Wang et al. looked at the effect of magnetic heating of SPIONs 

on cryopreservation of 200 μL of suspension of human umbilical cord matrix mesenchymal 

stem cells loaded in a plastic straw by vitrification (Fig. 2a) [125]. They found that magnetic 

heating of SPIONs can improve the heating rate during warming the cell sample, resulting 

in significantly improved cell viability post-warming. Further studies have shown that the 

cryopreserved cells can retain their stemness and functional capability of multi-lineage 

differentiation after warming. Of note, it is essential to employ SPIONs that are colloidally 

stable to maintain their heating ability. To improve stability and minimize aggregation of 

SPIONs in suspension, Gao et al. synthesized silica coated SPIONs [127]. In this study, the 
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authors introduced 10 mg Fe mL−1 of SPIONs suspended in the VS55 solution, a widely 

used vitrification solutions with high concentration of CPAs for vitrification, in a stepwise 

manner into the rat kidney through the kidney infrarenal aorta. The vitrified biospecimen in 

a 1.75 ml Eppendorf tube was magnetically warmed in a 2.75-turn copper coil at 20 kA m−1, 

360 kHz, and 1 kW, to create a warming rate of 130 °C min−1. The results showed a 85.3% 

kidney cell viability after the magnetic nanowarming despite a heterogeneous distribution of 

the SPIONs in the biospecimen.

Subsequently, Manuchehrabadi et al. designed a system that demonstrates that SPIONs-

mediated heating can improve the viability of tissue and prevent physical failure during 

cryopreservation of 1 to 80 ml of samples of cryopreserved porcine arterial and heart valve 

tissues [46]. Coupling of a relatively low radiofrequency (RF) AC (60 kA/m alternating at 

175 kHz on a 15 kW RF system) magnetic field and mesoporous silica-coated SPIONs, 

was employed to rapidly heat porcine carotid tissue samples after vitrification. In this 

study, silica-coated SPIONs were dispersed in CPA solutions before the AMF heating was 

used to enable highly uniform and rapid heating of the vitrified sample. After cooling 

and warming back, the viabilities of the sample with nanowarming (~90 °C/min) were 

found to be much higher than that with conventional water-bath heating (~7 °C/min). To 

achieve a high energy conversion while reducing the SPION dosages, Pan et al. designed an 

electromagnetic warming system in which low concentrations of SPIONs were added into 

the CPA solution [128]. They reported the addition of SPIONs generated rapid warming of 

the bulk cryopreserved sample at >200 °C min−1. Chiu-Lam et al. synthesized polyethylene 

glycol (PEG)-coated SPIONs that are stable in the VS55 solution for cryopreservation by 

vitrification and used them for nanowarming of vitrified whole rat hearts [103]. In their 

study, they reported that these PEG-coated SPIONs can achieve high warming rates of 

up to 321 °C/min under an AMF of 42.5 kA/m alternating at 278 kHz. The SPIONs can 

be successfully perfused uniformly into the whole rat heart and be efficiently washed-out 

using histidine-tryptophan-ketoglutarate (HTK) solution after cooling, cryostorage in liquid 

nitrogen, and nanowarming. It is worth noting that despite efficient heating of the SPIONs, 

cells that are in their proximity may have the risk of overheating [83,129–131], and some 

studies have reported on the toxicity of high concentrations of SPIONs to the neighboring 

cells [132,133].

To overcome this challenge, recent studies have focused on developing systems in which 

cells do not have any direct physical contact with the SPIONs [134,135]. In these studies, 

SPIONs are suspended in the CPA solution outside the alginate hydrogel-cell constructs 

(Fig. 2b). Stem cells can be encapsulated inside the alginate hydrogel construct and avoid 

physical contact with the SPIONs to eliminate their potential toxicity, if any, to the cells. 

After nanowarming with SPIONs under an AMF generated by a 6-turn coil at 375 kHz, 

>80% cell survival was observed for encapsulated stem cells, due to the protection of the 

cells from ice crystal formation by the alginate hydrogel and nanowarming. This was in 

contrast to the < 27% cell survival for non-encapsulated cells where most of the cells were 

killed by ice formation (i.e., devitrification) during conventional warming with a water bath. 

It is worth noting that the mechanisms of nanowarming on inhibiting devitrification/ice 

recrystallization during warming may be attributed to both the global (due to Fourier 

diffusive heating in the cryopreservation solution) and local (due to ballistic heating within 
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and in the vicinity of the SPIONs) inhibition mechanisms (as illustrated in Fig. 2c). The 

former is due to the enhanced overall warming rate of the entire sample to surpass the CWR 

for inhibition of devitrification (via suppression of nucleation) and/or ice recrystallization 

(via suppression of both nucleation and growth) globally in the entire sample during 

warming. The latter is due to the thousands to millions and billions (depending on the 

concentration of SPIONs in the sample) discrete hot spots adjacent to the SPIONs in the 

sample, which may inhibit ice recrystallization (mainly via suppression of ice nucleation) 

locally since ice nucleation is also a discrete stochastic event [101]. Magnetic heating of the 

SPIONs to generate hotspots in the vicinity of the SPIONs is possible, because the size of 

the size of the SPIONs is similar to the mean free path of the materials in them, leading to 

ballistic thermal transport in the nanoscale particles that is much less efficient as the Fourier 

condition/diffusion of heat in bulk materials [136–141].

SPIONs-embedded hydrogels can also be used to suppress ice recrystallization with both 

enhanced warming and microscale thermal disturbance. Cao et al. made alginate-based 

hydrogel constructs with embedded graphene oxide (GO)-Fe3O4 nanocomposites capable 

of inhibiting ice recrystallization by infrared irradiation that generates heat via GO and 

magnetic field for generating heat via Fe3O4 [142]. They evaluated both the photothermal 

and magnetothermal effects of stem cell-laden hydrogel constructs under near-infrared laser 

and AMF. Further studies showed that after warming, stem cells inside the hydrogel retain 

their original structure with high viability (> 80%) after long-term culture (7 days).

SPION-based nanowarming has demonstrated the potential to be a revolutionary technology 

for the field of cryopreservation, which is invaluable for cell, tissue, and organ banking. 

The SPIONs-based magnetothermal effect has also been utilized in other biomedical areas 

such as glucose regulation [143,144]. For instance, Stanley et al. decorated a modified 

temperature-sensitive channel, TRPV1, with antibody-coated SPIONs which were heated 

with a low-frequency magnetic field to regulate the protein production [145]. In this study, 

the heating of SPIONs led to an increase in temperature rise at the TRPV1 calcium gate, 

which subsequently led to the synthesis and release of insulin to lower the blood glucose 

level in mice. Interestingly, SPIONs not only can be heated by magnetic field, but also others 

like the acoustic field with mechanical wave as summarized below.

Enhancement of HIFU Heating

High-intensity focused ultrasound (HIFU) is a minimally invasive ablation technique that 

uses both heat and acoustic cavitation to destroy diseased cells and tissues including tumors 

[146–148]. HIFU-mediated heating is comprised of two major elements as shown in Fig. 

3: an ultrasound generator and a piezoelectric transducer [149]. The operating mechanism 

centers around the generation of a focused ultrasound field by the piezoelectric transducer. 

This transducer is able to generate ultrasound waves with a frequency ranging from 1 to 7 

MHz [150]. The acoustic energy is generated and detected using piezoelectric crystals that 

function as an interface between electrical and mechanical energy [151]. These ultrasound 

waves can travel through the tissue and converge at one focal point, where their energy is 

converted into thermal energy. The temperature at the focal point could reach more than 

60–95 °C within seconds, causing instantaneous cell death [48]. It is worth noting that an 
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additional coupling medium such as water is placed in between the transducer and the target 

tissue surface to minimize acoustic loss [152]. The HIFU beam focusing minimizes the 

possibility of thermal damages to non-targeted tissue [153]. For this reason, it has emerged 

as a promising technology that can be employed as either a standalone treatment method or 

an adjuvant method that can enhance the effectiveness of other available treatments due to its 

noninvasive nature [154,155].

However, despite its great potential in clinical treatments of various cancers (e.g., breast 

[156], kidney [157], liver [158], and prostate [159] cancers, together with soft tissue sarcoma 

[160], there have been many challenges in using acoustic energy for tumor treatment 

[48,161]. The assumption that there is a linear attenuation of the acoustic energy in the 

soft tissues between the transducer and the target might not always be accurate because the 

soft tissues are heterogeneous and might attenuate acoustic energy differently [162,163]. 

This has led to unablated cells in certain areas of the tumor as well as damage to normal 

tissue due to high acoustic power [164]. Furthermore, due to the high level of acoustic 

energy required during HIFU for ablating a large tumor, skin burns and other adverse 

effects stemming from high acoustic energy and long sonication time such as overheating of 

surrounding healthy tissue, have been observed in certain treatments [165,166].

To overcome these challenges, various exogenous absorbers such as porphyrin, xanthene, 

and microbubbles that can enhance the thermal ablation by increasing the attenuation and 

dissipation of acoustic energy, leading to lower ultrasound power, have been explored 

[161,167]. More recently, SPIONs have emerged as effective sonosensitizers for focused 

ultrasound therapy [30]. SPIONs increase the attenuation of the acoustic wave within the 

local tumor area, which may lead to the heating by the ultrasound while sparing the 

surrounding healthy tissues [168]. For this reason, they have been used to facilitate and 

enhance HIFU thermal ablation.

Ho et al. investigated the advantages of SPIONs in combination with HIFU to destroy HeLa 

multicellular tumor spheroids [169]. The HIFU transducer was operated with a frequency of 

1.1 MHz, pulse repetition frequency of 1.67 kHz, and peak negative focal pressure of 7.2 

MP for 10 sec. After exposing the cells to both SPIONs and HIFU, there was a significant 

increase in the HIFU induced inertial cavitation which led to the enhancement of the rate of 

destruction of tumor spheroids. Subsequently, Ahmad et al. used SPIONs to locally enhance 

heating at low powers during HIFU ablation [170]. In this study, the transducer with a focal 

length of 6.26 cm, an inner diameter of 2.2 cm, and an outer diameter of 6.4 cm operating at 

a frequency of 1.025 MHz was used to test various SPIONs concentrations (0% as control, 

1%, and 3% w/v) at three distinct acoustic powers (5.2, 9.2, and 14.3 W), which resulted in 

higher thermal doses for lower acoustic power. They found that when SPIONs are used, the 

required power to obtain an efficient thermal dose that can cause cell necrosis in tumors can 

be reduced substantially.

More recently, Devarakonda et al. examined the temperature rise, thermal dose, and the 

lesion volume of tumor after HIFU with/without SPIONs [164]. Using different SPION 

concentrations (0% for control, 0.0047%, and 0.047% w/v) that are at least 20 times lower 

than those previously used in the literature [170], they found that by using only 0.047% 
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SPIONs to enhance HIFU ablation, it was possible to decrease the power required to obtain 

a tumor lesion volume of 13 mm3 by half. Kaczmarek et al. assessed the utility of SPIONs in 

ultrasound hyperthermia by enhanced heating in low-power ultrasound [168,171]. SPIONs 

with the various concentration (0.26–0.35% w/w) were used. The acoustic power of the 

transducer was set to 2.5 W with a frequency of 1 and 3.5 MHz. It was found that the 

simultaneous use of the SPIONs and the HIFU lead to a synergistic increase of temperature 

during ultrasound heating and enabled more precise control over the heating process. In an 

effort to investigate the heating process of SPION-enhanced HIFU, Sadeghi-Goughari et al. 

used the principle of conservation of energy for heat transfer mechanism to derive a set of 

HIFU equations that govern the temperature variation during thermal ablation [161]. In this 

study, a numerical model was developed to simulate the absorption mechanism of HIFU in 

the presence of SPIONs which leads to the temperature rise during the sonication period. 

Moreover, a series of experiments were performed to verify the accuracy of the model. 

They found that the temperature rise during HIFU sonication emanates from the transport 

process that takes place at the boundaries between SPIONS and the surrounding medium. 

Additionally, they reported that the effects of SPION heating can be improved by amplifying 

the acoustic power and the SPION concentration.

With their multifunctional properties, SPIONs can also be used as contrast agents for both 

HIFU and magnetic resonance imaging [172]. Sun et al. successfully integrated SPIONs into 

poly(lactic-co-glycolic acid) (PLGA) microcapsules to simultaneously enhance ultrasound 

cancer imaging and the HIFU ablation in a rabbit-bearing breast cancer model [173]. 

Shortly after, Zhou et al. developed PLGA-SPION microspheres for dual imaging and HIFU 

ablation of liver tissue in rabbits [174]. The focal length of the piezoelectric transducer 

in this study was 145 mm with a diameter of 220 mm and an operating frequency of 

0.94 MHz while a 3.5–5 MHz ultrasound transducer was applied for imaging. The PLGA-

SPION microspheres were introduced through intravascular injection followed by HIFU 

ablation. The targeted tissue was then subjected to pathological examination to determine its 

structural changes and showed that PLGA-iron oxide microsphere could enhance ultrasound 

imaging and efficiently enhance HIFU ablation of liver tissue in rabbits. Given these 

findings, the use of SPIONs during HIFU tumor ablation has the potential to reduce 

damage to healthy tissue and reduce the HIFU power needed to destroy tumors. Moreover, 

magnetic resonance imaging, when combined with HIFU, would provide image guidance by 

identifying tumors for targeting and for tracking the ablation lesion with greater resolution.

Summary and Outlook

In this mini-review, different biomedical applications of SPION-based heating and their 

respective mechanisms are discussed. A summary of the various types of SPIONs together 

with the methods of their synthesis and the major results of their use for the three different 

biomedical applications discussed in this work, is given in Table 1. The future of SPION-

based magnetic induction heating in biomedical applications truly holds great potential, 

especially in cancer therapy and in nanowarming/cryopreservation of cells, tissues, and 

organs. To date, magnetic heating has been explored to treat many different malignancies 

[175,176]. However, despite progress made to achieve efficient magnetic heating of SPIONs 

and use it in both therapeutic and cryopreservation applications, there is still more work 
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that needs to be done to fully integrate these methods in a clinical setting. Different 

studies and reports have shown that magnetic heating of SPIONs depends not only on 

their size and other physical properties but also on the frequency and the heating power 

used during the process. For these reasons, it is imperative to standardize and establish a 

clinically acceptable SPION size, composition, shape, and surface-functionalization that can 

be acceptable for clinical applications. Moreover, the nonuniformity of the magnetic field 

and the difference in its absorption and dissipation by different tissues in organs have proven 

to be a hurdle in generating a uniform warming [127]. Therefore, a standardized frequency 

and heating power appropriate for efficient magnetic heating need to be established.

Furthermore, there is still difficulty in synthesizing SPIONs with special properties such 

as negligible cellular uptake and cellular association, which would allow their maximum 

removal after nanowarming for cryopreservation applications. Hence, further studies are 

needed to generate SPIONs that are colloidally stable to maintain their heating potential 

while being able to be perfused in and out of the vasculature of the tissue/organ 

conveniently. Certain hurdles such as the overheating of SPIONs that lead to the destruction 

of neighboring tissues have also been raised [76]. However, this can be avoided by 

functionalizing the SPIONs with targeting moieties which allow them to bind to the target 

only for increasing the SPIONs localization to the targeted tissues/cells before applying the 

magnetic field [16,78].

Additional technologies in which external energy (e.g., near-infrared laser radiation) is 

coupled to the SPIONs to increase intratumoral temperatures should be explored more [177]. 

The combination of therapy and diagnostics (theragnostic) including the combination of 

HIFU and SPIONs has garnered significant attention due to their ability to introduce a 

targeted treatment and monitor the response to the therapy. Moreover, the simultaneous use 

of the SPIONs and HIFU has proven very efficient in reducing the amount of acoustic power 

necessary for the tissue targeting while enhancing the heating at the local region of the 

tumor and allowing more precise control over the heating process.

Despite this feat, the use of HIFU-SPIONs mediated heating has been developing relatively 

slower than other applications such as MRI, or magnetothermal therapy. Even though HIFU 

is a U.S. Food and Drug Administration (FDA)-approved method for the treatment of 

various diseases [178–181], there are still challenges that are associated with the use of 

SPIONs. These include the effective delivery of stable SPIONs into the target area of the 

tumor. The tumor microenvironment contains different barriers, such as a thick stroma, high 

interstitial fluid pressure, and macrophage uptake that might hinder the efficient and uniform 

accumulation of the SPIONs into the tumor [182,183]. Additionally, unlike the leaky 

vasculature in mouse models, the vasculature of human tumor has fewer openings with a 

slower growth rate, which might limit SPION accumulation into the tumor [184]. Therefore, 

clinical studies on humans are needed to advance this technology. Other new techniques and 

methods that combine both magnetic heating and imaging should be explored to facilitate 

more targeted heating via guidance by imaging for therapeutic applications [91,185,186]. 

Recently, new emerging technologies such as artificial intelligence may be used to predict 

the efficiency of SPIONs heating based on their size, composition, and frequency before the 
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actual use [187]. This technology may also be used to design and optimize different types of 

SPIONs, or other magnetic nanoparticles customized for different medical uses [188,189].

It is worth noting that with the increasing biomedical applications of SPIONs, there has 

been also an increase in public concerns about their biosafety, long-term biodistribution, 

and clearance from the body. However, these concerns have been assuaged by a few 

recent FDA approvals of SPION-based nanomedicines for human use. These include 

Feraheme® (ferumoxytol), a non-stoichiometric poly glucose sorbitol carboxymethyl ether 

capped SPION used for the treatment of iron deficiency associated with chronic kidney 

disease [190], together with Ferumoxtran-10, Ferucarbotran (Resovist®), and Feridex® 

(ferumoxides) which are approved for use as magnetic resonance imaging contrast agents 

[191]. These recent FDA approvals cement the biosafety of SPIONs and their efficacy 

in treating different diseases. It is anticipated that more SPIONs formulations will be 

developed and used soon for different biomedical applications. This may include SPION-

based treatment of diseases in hard-to-reach deep organs (e.g., glioblastoma multiforme and 

Parkinson’s and Alzheimer’s diseases in the brain) [192,193]. Furthermore, SPION-based 

nanowarming studies so far have been focused on smaller samples. Scaling this technology 

to larger samples like organs (e.g., heart, liver, and lung) would provide a game-changing 

and lifesaving technology in the organ transplantation field.
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Fig. 1. Magnetic heating of SPIONs for magnetothermal therapy.
a), the Induction heater consists of a transformer/generator to input an alternating current 

(AC) into a solenoid coil to generate an AC magnetic field (AMF) for heating SPIONs. b), 

a schematic illustration of the mechanisms of AMF heating of SPIONS. SPIONs perform as 

an energy transfer mediator and as a mechanical force vector. Through repeated alignments 

of magnetic spins and relaxations via Néel (spin rotation) and Brownian (particle rotation) 

relaxations, in response to the AC magnetic field, thermal energy can be generated from the 

magnetic nanoparticles. Heat can also be generated due to the hysteresis loss. Reproduced 

with a permission from Ref. [14] (Copyright 2011 American Chemical Society), with 

modification.
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Fig. 2. Magnetic heating of SPIONs for nanowarming.
a), a schematic illustration of the procedure of preparing human umbilical cord matrix 

mesenchymal stem cells (hUCM-MSC) for cryopreservation by vitrification using a plastic 

straw with SPION-mediated magnetic induction heating for warming, b), a schematic 

illustration of using hydrogel microencapsulation of cells to eliminate direct contact 

between cells and SPIONs for warming the cryopreserved hydrogel-cell constructs, and c) 

a schematic illustration of the hot spot generated around a SPION during magnetic heating, 

due to ballistic thermal transport within the nanoparticle and Fourier diffusive heating in 

the adjacent medium. The sketches in a) and b) are reproduced with permission from 

Refs. [125] (Copyright 2016 Acta Materialia Inc. by Elsevier) and [134] (Copyright 2018 

American Chemical Society), respectively, with modification.
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Fig. 3. HIFU heating of SPIONS-laden biospecimen.
A high intensity focusing ultrasound (HIUF) system is comprised of a function generator, 

a gain-variable power amplifier, a transducer, a water tank, an HIFU imaging probe, and a 

thermal sensor. The transducer creates an ultrasound beam which is focused to a focal point 

in the target tissue. The kinetic energy of the ultrasound beam is converted into thermal 

energy, which may cause instantaneous damage to diseased cells and tissues. This heating 

process may be enhanced by using SPIONs delivered in the biospecimen.
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Table 1.

A summary of the various types of SPIONs together with the methods of their synthesis and the major results 

of their use for the three biomedical applications discussed in this review

Type Synthesis method Major result Ref.

Magnetothermal therapy

MF66 MNP Co-precipitation of Fe2+ and Fe3+ followed by 
dimercaptosuccinic acid stabilization

Magnetic hyperthermia of breast cancer led 
to a 40% tumor reduction [79]

Magforce NPs Magforce AG company Thermal therapy of cancer tumor [83]

Copolymer coated Fe3O4 

nanoparticles

Co-precipitation of Fe2+ and Fe3+ followed by 
polystyrene-co-polyacrylic acid, polylactide acid 
and polyethylene glycol coating

Magnetic inductive heating of organs of 
mouse models [84]

mPEG coated 
Fe3O4nanoparticles

Solution-phase thermal decomposition of Fe(acac)3 

in oleic acid and benzyl ether
high performance magnetic hyperthermia [85]

Anionic Iron Oxide 
Nanomagnets

Alkaline coprecipitation of iron (III) and iron salts 
followed by citrate stabilization

Colloidal Mediators for Magnetic 
Hyperthermia [86]

Oxide Nano-octopods
Nonhydrolytic thermal decomposition of Fe(acac)3 

in the presence of oleic acid and oleylamine
Magnetic hyperthermia treatment [87]

Cys-Arg-Glu-Lys-Ala modified 
MFNPs

High-temperature thermal decomposition of 
Fe(acac)3 in the presence of oleic acid

Combined hyperthermia and MRI/MPI of 
malignant tumor [91]

Magnetic multicore 
nanoparticles (MCNP)

co-precipitation of Fe2+ and Fe3+ followed by 
carboxymethyl dextran coating

Tumor heating within 60 seconds [194]

Water-Dispersible Sugar-
Coated Iron Oxide 
Nanoparticle

Thermal decomposition of Fe(acac)3 followed by 
sugar coating

Relaxometry and magnetic hyperthermia [195]

AEH-Fe2O3 nanomagnetic 
beads

Magnetic iron oxide particles encapsulated within 
a coating formed from a polyester of valeric and 
butyric acids

Treated tumors decreased in volume by 50 
to 94% [196]

PVP coated Magneto-
plasmonic nanoparticles 
(MagPlasNPs)

Co-precipitation of Fe2+ and Fe3+ followed by gold 
seeding

Photothermia with magnetic hyperthermia 
of cancer [197]

CoFe2O4@MnFe2O4

MnFe2O4@ CoFe2O4

Thermal decomposition of MnFe2O4 onto the 
surface of CoFe2O4

Antitumor therapeutic heating [198]

Zn0.4Fe2.6O4MNP Magnetic nanoparticles are coated with SiO2 and 
then amine-functionalized with geldanamycin

Resistance-Free Apoptotic Hyperthermia [199]

Fe3O4 nanoparticles Oxidation of pentacarbonyl iron followed by 
purification process Selective inductive heating of lymph nodes [200]

Biomimetic magnetic 
nanoparticles (BMNPs)

The precipitation of inorganic magnetite, followed 
by an oxidation of a strong base (NaOH) Targeted magnetic hyperthermia [201]

Magnetosome chains Extracted from magnetotactic bacteria Efficient penetration and maximum cell 
destruction [202]

DOX/PLGA-Fe MNP Dispersion of Fe powder into DOX/PLGA solution 
by stirring

Chemo- magnetic-hyperthermia- induced 
synergistic tumor eradication [203]

Oleic acid functionalized 
Fe3O4

Co-precipitation of FeSO4 and FeCl3 followed by 
NH4OH

Tumor growth inhibition by apoptosis and 
Hsp90/AKT modulation [204]

mAb-guided bioprobes
Polyethylene glycol-iron oxide-impregnated 
dextran nanoparticles functionalized with 
dodecanetetraacetic acid

Thermoablative therapy for human Breast 
cancer in mice results in tumor reduction [205]

PEGylated Mn-Zn ferrite 
nanocrystals

Thermal decomposition of Fe(acac)3 in presence 
of Zn(acac)2 and manganese (II) acetylacetonate 
followed by oleylamine coating

Induce the apoptosis of tumor cells, inhibit 
the angiogenesis of tumor vessels, and 
suppress the tumor growth

[206]
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Type Synthesis method Major result Ref.

Iron oxide nanocubes Thermal decomposition of Fe(acac)3

Magnetic hyperthermia and photothermal 
bimodal treatment leading to a complete 
apoptosis-mediated cell death

[207]

Poly (D, L-lactic-co-glycolic 
acid) encapsulated SPIONs

Chemical coprecipitation of Fe3+ and Fe2+ 

in ammoniacal medium followed by solvent 
evaporation for encapsulation

Cancer destruction within a short period of 
time (120 minutes) by initiating early and 
late apoptosis

[208]

MIONs
Thermal decomposition of Fe(acac)3 in a mixture of 
oleic acid, oleylamine, and long acyl chain diols in 
benzyl ether

Effectively heat tumor tissues at a minimal 
dose [209]

Nanowarming

Ferrotec EMG-308 solution
Fe3O4 nanoparticles coated with an anionic 
surfactant in aqueous suspension

Thawing of a cryopreserved artery tissue 
sample [21]

Silica coated EMG308, 
Ferrotec/sIONPs

EMG308, Ferrotec nanoparticles coated with 
mesoporous silica

Thawing cryopreserved porcine arterial and 
heart valve tissues with improved viability [46]

Polyethylene glycol (PEG)-
coated SPIONs

chemical coprecipitation of Fe3+ and Fe2+ followed 
by PEG coating

Successful perfusion of vitrified whole rat 
hearts [103]

Fe3O4 nanoparticles Chemical coprecipitation of Fe3+ and Fe2+ followed 
by aqueous ammonia mixture

Significantly facilitates rewarming and 
improves the cryopreservation outcome of 
human umbilical cord matrix mesenchymal 
stem cells

[125]

Amine group functionalized 
Fe3O4

Fe3O4 nanoparticles purchased from Ocean 
Nanotech LLC, San Diego, CA, USA

Rewarming of bulk sample [128]

Fe3O4 NPs Chemical coprecipitation of Fe3+ and Fe2+ Low-Cryoprotectant Vitrification of Stem 
Cell-Alginate Hydrogel Construct [134]

Fe3O4 NPs Chemical co-precipitation of Fe2+ and Fe3+ ions
Massive-Volume Vitrification of 
Stem Cells with Low-Concentration 
Cryoprotectants

[135]

Graphene oxide (GO)-Fe3O4 

nanocomposites
GO is added to the mixture of acetate stabilized 
Fe3O4

inhibit ice recrystallization by infrared 
irradiation that generates heat via GO 
and magnetic field for generating heat via 
Fe3O4

[142]

DP6+sIONP
Fe3O4 nanoparticles coated with a silica layer and 
functionalized with polyvinyl pyrrolidone

Warming of cryopreserved sample [210]

Mesoporous silica coated 
Fe3O4 nanoparticles

PVP coated nanoparticles are coated with silica 
shell followed by stabilization of PEG-TMS

Nanowarming of a cryopreserved rat 
kidney infrarenal aorta with preserved 
morphology and good viability at the 
cellular level

[211]

CP-DMSA- MNPs Chemical co-precipitation of Fe2+ and Fe3+ ions 
followed by dimercaptosuccinic acid coating

Multi-Hot-Spot Induction and Sequential 
Regulation

[212]TD-PMAO- MNPs
Thermal decomposition of Fe(acac)3 followed by 
polymaleic anhydride-alt-1-octadecene coating

Multi-hot-spot induction and Sequential 
Regulation

OP-PAA-MNPs
Oxidative precipitation of FeSO4 by NaOH followed 
by a coating of polyacrylic acid

Multi-hot-spot induction and Sequential 
Regulation

Magnetoliposomes
Surrounding the iron-oxide nanoparticles (Fe3O4) 
with phospholipid bilayer

Magnetic Fluid Hyperthermia Efficacy on 
Pancreatic Tumor Cell reached 95% tumor 
cell death

[213]

HIFU-activated heating

MNPs Not available (purchased from U.S. Research 
Nanomaterials, Inc.)

NPs play the major role in the temperature 
rise during HIFU sonication [161]

Magnetic nanoparticles 
(mNPs) Purchased as EMG705 series, Ferrotec (USA)

Reduced damage to healthy tissue, and 
reduced the procedure time, during tumor 
ablation using HIFU

[164]
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Type Synthesis method Major result Ref.

Magnetite (Fe3O4) nanoparticle 
agglomerates

Chemical co-precipitation of Fe2+ and Fe3+ ions 
with ammonia solution

Magnetite nanoparticle agglomerates 
enhance the efficacy of HIFU in 
destruction of tumor spheroids

[169]

mNPs (Fe3O4)) Purchased as EMG705 series, Ferrotec (USA) significantly reduce the time for HIFU 
thermal ablation [170]

SPION
Chemical coprecipitation using ferric and ferrous 
salts in alkali medium followed by sodium oleate 
coating

The presence of SPION increases the 
absorption of ultrasound energy leading to 
increased temperature

[171]

Multifunctional PFH/
DOX@PLGA/Fe3O4-FA 
nanocomposites

Double-emulsion

Demonstrated to efficiently suppress the 
tumor growth based on the enhanced 
and synergistic chemotherapy and HIFU 
ablation

[172]

Superparamagnetic PLGA-iron 
oxide microcapsule

Double emulsion (water/oil/water) evaporation 
process

Dual-modality US/MR imaging and high 
intensity focused US breast cancer ablation [173]

uSPIO/PLGA microspheres
A double emulsion evaporation method was used 
to synthesize ultraminiature superparamagnetic 
PLGA–iron oxide microcapsules

Significantly enhance dual-modality 
US/MR imaging and HIFU synergistic 
therapy with an intravenous administration 
method

[174]

AEH: arterial embolization hyperthermia, mPEG: methoxy polyethylene glycol, acac: acetylacetonate, PVP: polyvinyl pyrrolidone, GO: graphene 
oxide, TMS: trimethyl (TM) and succinimide ester, DMSA: dimercaptosuccinic acid, PMAO: polymaleic anhydride-alt-1-octadecene, PAA: 
polyacrylic acid, CP: Chemical co-precipitation, TD: thermal decomposition, OP: oxidative precipitation
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