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Abstract

Two in every three Alzheimer’s disease diagnoses are females, calling attention to the need 

to understand sexual dimorphisms with aging and neurodegenerative disease progression. 

Dysfunction and damage to the vasculature with aging are strongly linked to Alzheimer’s disease. 

With aging there is an increase in stiffness of the large elastic arteries, and this stiffening is 

associated with cerebrovascular dysfunction and cognitive impairment. However, it is unclear 

how the deleterious effects of arterial stiffness may differ between females and males. While 

environmental, chromosomal, and sex hormone factors influence aging, there is evidence that 

the deficiency of estrogen post-menopause in females is a contributor to vascular aging and 

Alzheimer’s disease progression. The purpose of this mini review is to describe the recent 

developments in our understanding of sex differences in large artery stiffness, cerebrovascular 

dysfunction, and cognitive impairment, and their intricate relations. Furthermore, we will focus on 

the impact of the loss of estrogen post-menopause as a potential driving factor for these outcomes. 

Overall, a better understanding of how sex differences influence aging physiology is crucial to the 

prevention and treatment of neurodegenerative diseases.
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1 Introduction

Advancing age is the biggest risk factor for late-onset Alzheimer’s disease (AD), suggesting 

that elements of the aging process initiate or contribute to AD. In the United States, 

two-thirds of patients with AD are females (1) and the progression from mild cognitive 

impairment to AD is quicker in females than males (2). However, the causes of the increased 

AD risk in females are not entirely clear. The contribution of the aging vascular system in 

AD onset and progression is supported by recent evidence (3). Therefore, sex differences in 

vascular aging represent a potential source of the greater AD risk in females.
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A primary characteristic of vascular aging is the stiffening of the large elastic arteries. 

This age-related increase in arterial stiffness is related to cognitive impairment and AD, 

and it is hypothesized that cerebrovascular dysfunction links these phenomena (4). While 

arterial stiffness increases with age in both sexes, there is a stronger association between 

arterial stiffness and mortality in females compared with males (5). Less is known about 

sex differences in the relations between arterial stiffness and cerebrovascular dysfunction 

and cognitive impairment. Sexual dimorphisms in age-related arterial stiffening, and the 

consequences of this stiffness, may explain the sex differences in AD risk, and potentially 

identify the need for individualized treatment. The goal of this mini review is to highlight 

the importance of sex differences in vascular aging and the related onset of cerebrovascular 

dysfunction and AD. Importantly, we will identify the major gaps in knowledge remaining. 

The impact of sex differences in vascular aging affects a broad range of neurological 

diseases. Although this mini review focuses on AD, most of the underlying physiological 

processes discussed have implications for other neurological diseases.

2 Sex Hormones

Sex differences in AD risk are likely driven by sex hormones, genotype (XX vs. XY), 

and sociocultural factors. In particular, the low estrogen in post-menopausal females is a 

contributor to vascular dysfunction when compared to pre-menopausal female and/or their 

male counterparts. Estrogen stimulates genomic and nongenomic cell signaling cascades by 

activation of estrogen receptors (ER) α and β, and the G-protein coupled receptor, GPER1 

(or GPR30) (6,7). These receptors are found on vascular cells as well as other cells in the 

brain (8,9). Progesterone and androgens also decrease with age, while follicle stimulating 

hormone and luteinizing hormone increase (10,11). In this review, we will specifically focus 

on the low estrogen state in post-menopausal females given the preponderance of evidence 

for its importance.

3 Large Artery stiffness

The stiffness of the large elastic arteries increases with age in both males and females; yet 

there are important sex differences in the causes and rate of progression of this stiffening. 

The term large arteries, or large elastic arteries, refers to the aorta and carotid arteries. These 

large arteries have a very distensible wall and a high content of elastin protein. At young 

ages, females tend to have more compliant large arteries compared with males, but this 

trend reverses in old age with older females generally having stiffer large arteries compared 

with males (5,12,13). These trends result in females experiencing a more rapid increase in 

arterial stiffness with aging than males, as found in humans (14) and rodents (15). This rapid 

period of increases in arterial stiffness occurs at ~55–75 years of age in human females, 

corresponding to the early post-menopausal period and the reduction of estrogen. Hormone 

replacement therapy with estradiol typically improves arterial stiffness in post-menopausal 

females (16). In summary, age-related increases in large artery stiffness are more rapid in 

females, likely due to declining estrogen post-menopause.

In general, the sources of age-related large artery stiffening are decreased elastin content, 

increased elastin fragmentation, increased collagen content and crosslinking, and increased 
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vascular tone (17,18). However, most of these mechanisms were studied in males and 

little is known about the causes of increased arterial stiffness in females. In animal 

studies, females have age-related increases in large artery collagen content and advanced 

glycation end-products, contributing to collagen cross-linking (15,19). Estrogen decreases 

collagen deposition by cultured smooth muscle cells (20), and thus, post-menopausal 

females may suffer from a loss of the inhibitory actions of estrogens on arterial collagen 

production. In addition to differences in structural proteins, age-related arterial stiffening 

in females is caused by increases in arterial tone from a reduction in nitric oxide (NO) 

bioavailability (16). Interventions known to improve NO bioavailability also reduce stiffness 

in post-menopausal females, such as treatment with antioxidants (21) and endothelial NO 

synthase (eNOS) co-factor tetrahydrobiopterin (22). Furthermore, sympathetic nerve activity 

increases with age in females and has been related to large artery stiffness, potentially due 

to increased arterial tone or blood pressures (23,24). Lastly, signaling by smooth muscle 

mineralocorticoid receptors contributes to increased age-related aorta stiffening, but the 

mechanisms appear to be different between male and female mice (15). The causes of sex 

differences in large artery stiffness have been more thoroughly reviewed by Moreau and 

Hildreth (25) and DuPont et. al. (26).

4 Blood Flow and Pressure Pulsatility

As large artery stiffness increases, there is greater pulsatility of blood pressure and blow 

flow (27). At young ages, the large arteries are highly compliant and dampen the pulse of 

blood ejected from the heart. The cerebral vasculature is also protected from highly pulsatile 

pressure and flow due to a partial reflection of the pressure wave before it reaches the brain. 

This partial reflection of the reflected wave results from the mismatch of stiffness between 

the highly complaint aorta and the stiffer muscular arteries (27). As the aorta stiffens with 

age, there is less pressure wave reflection and a higher transmission of pulsatile energy to 

small arteries, arterioles, and capillaries in the brain (27). It is thought that the resulting 

increased pressure and flow pulsatility in the cerebral vasculature leads to damage and 

dysfunction (28). While young females have lower cerebral artery blood flow pulsatility 

compared with young males (29), this protection does not persist into old age. In fact, the 

rate of increase in middle cerebral artery blood flow pulsatility with aging is greater in 

females than in males (29), corresponding to the more rapid increase in large artery stiffness 

in aging females. Older females also have less pulsatile dampening between the carotid and 

cerebral arteries compared with older males, (30) further illustrating a higher transmission of 

pulsatile energy into the brain of older females. These findings suggest that the female brain 

at young ages is protected from high pulse pressures, but is exposed to a rapid increase, 

greater than males, in pulse pressure with aging.

5 Cerebrovascular Endothelial Dysfunction

The age-related increase in pulse pressure in the cerebral vasculature is thought to cause 

endothelial cell dysfunction. The endothelium is an integral regulator of cerebral blood flow 

and blood brain barrier (BBB) permeability, thus age-related dysfunction of the cerebral 

endothelium can lead to impairment in the brain. Endothelial cells react to stimuli by 

releasing several substances that cause dilation or constriction of blood vessels. At the 
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arteriole and capillary level, a properly functioning endothelial layer is needed to coordinate 

the vascular, immune, and neural cells that comprise the neurovascular unit (31). A key 

function of endothelial cells is to produce NO that signals smooth muscle cells and pericytes 

for relaxation (32). During aging, decreased NO bioavailability is caused by increased 

oxidative stress, specifically via the reaction of superoxide with NO (33). This reduction in 

NO bioavailability with aging can lead to an imbalance of vasodilation and vasoconstriction 

signals and poses a major issue for the tight regulation of cerebral blood flow.

The BBB protects the brain from circulating pathogens and is composed of endothelial 

cells joined together by tight junction proteins (31). The health of endothelial cells, as 

well as other cells of the neurovascular unit, is important to maintaining a functional 

barrier. Furthermore, brain endothelial cells can tightly regulate transcytosis, limiting 

vesicle-mediated movement of solutes in and out of the brain (31). Dysfunction of the BBB 

contributes to AD by allowing the entrance of substances (e.g., neurotoxins, immune cells) 

that result in increased inflammatory signaling and oxidative stress, stimulating amyloid-β 
(Aβ) production (34). A dysfunctional BBB will also lead to impaired clearance of Aβ from 

the brain, and this impaired clearance is thought to be the primary cause of Aβ plaque 

deposition in AD (35). Thus, age-related dysfunction of endothelial cells contributes to 

impaired cerebral blood flow and a dysfunctional BBB.

Estrogen acts favorably on the cerebral vasculature by improving the function of endothelial 

cells (36), a phenomenon that is lost post-menopause. The endothelium has widely 

expressed ERα, and binding to this receptor results in increased eNOS expression and 

activation via phosphorylation, leading to greater endothelial dependent vasodilation (37). 

Estrogen also decreases oxidative stress by reducing mitochondrial superoxide production 

(38) and increasing endogenous antioxidants (39). In post-menopausal females, there is 

decreased ERα expression in the vasculature (40) and post-menopausal females have 

marked impairments in endothelial function compared with pre-menopausal females (41). 

See Robinson et. al. for a more thorough review of this topic (42)

The cerebral vasculature appears to be particularly susceptible to the damaging effects of 

increased large artery stiffness and pulse pressure. High pulse pressures applied to cerebral 

arteries ex vivo, as well as circumferential stress of cultured endothelial cells, leads to 

increased oxidative stress (43–45). Greater large artery stiffness in a rodent model leads to 

impaired cerebral artery endothelium-dependent vasodilation by increased oxidative stress 

and decreased NO bioavailability (46). Increased large artery stiffness also leads to a 

more permeable BBB in rodents (47). However, these mechanistic studies have yet to be 

performed in females. It is reasonable to assume that young females are doubly protected 

against this phenomenon owing to lower arterial stiffness and the protective effects of 

estrogens directly on the endothelium. The endothelium of older females may be more 

susceptible to the negative consequences of large artery stiffness, but this is an area that 

requires more investigation.
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6 Cerebral Blood Flow

Cerebral endothelial cell dysfunction will disturb the tight regulation of blood flow in the 

brain. Young females have greater cerebral blood flow compared with males; however, 

the declines in cerebral blood flow with aging are greater in females, such that at old 

ages there are no differences in cerebral blood flow between females and males (48–50). 

More important than global cerebral blood flow is the ability for local blood flow to 

change in response to stimuli and to be directed to working regions of the brain, indicated 

by cerebrovascular reactivity. Cerebrovascular reactivity declines with advancing age to 

a greater extent in females than males, and hormone replacement therapy can preserve 

cerebrovascular reactivity in post-menopausal females (51). The sex differences in cerebral 

blood flow and reactivity with aging, as well as the mechanisms, are extensively reviewed in 

Barnes and Charkoudian (52).

While sex differences in cerebral blood flow and reactivity are extensively investigated, less 

is known about the relation of sex differences and large artery stiffness. The association 

between large artery stiffness and reduced cerebral blood flow or cerebrovascular reserve 

has been demonstrated in human subjects, but this was independent of sex (50) or was 

not analyzed for sex differences (53). Rodent models of induced large artery stiffness 

demonstrate the cause-and-effect relation between large artery stiffness and reduced cerebral 

perfusion (47,54) but these studies were performed in only male rodents. Thus, a crucial area 

for future research is to understand the impact of sex and sex hormones on the relation of 

large artery stiffness and cerebral blood flow regulation, as well as the potential modulation 

of this relation by other factors.

7 Neuropathology

Endothelial dysfunction, BBB permeability, and reduced cerebral blood flow are key 

mechanisms leading to other pathologies in the brain. For example, large artery stiffness 

is related to cerebral small vessel disease, a disease that is characterize by hyperintensities, 

cerebral microbleeds and lacunar infarcts (55–59). Aortic augmentation index, an indicator 

of arterial stiffness, is also related to white matter hyperintensities in post-menopausal 

females (60). However, no other studies have examined sex differences in the relation 

between cerebral small vessel disease and arterial stiffness.

Large artery stiffness is also related to lower brain volumes abnormalities and amyloid-

β deposition (55,59). The causative nature of increased large artery stiffness on 

neurodegeneration and neuroinflammation was demonstrated in rodents (61). There is a 

suggestion that these relations between peripheral pulse pressure and neuropathology may 

have sex differences, as it was found that females had a stronger correlation between 

brachial pulse pressure and white matter microstructure changes (62). Notably, this strong 

correlation in females is only true early post-menopause and is not found for the group 

over 75 years of age (62), corresponding to the period of more rapid stiffening of the 

large arteries. Thus, studies indicate an association between large artery stiffness and 

neuropathology, but the knowledge of how sex and sex hormones effect these relations 

is very limited.
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8 Cognitive function

Large artery stiffness, and the resultant cerebrovascular dysfunction, will potentially impact 

the brain, leading to cognitive impairment. The literature regarding sex differences in 

cognitive function in older adults is inconsistent. This is partly due to sex differences in 

the specific types of cognitive function that change with age. Older females typically score 

better on verbal tasks than males, while older males score better on visuospatial and motor 

coordination than females (63). An important sex difference is that older females experience 

a more rapid cognitive decline, with the transition from mild cognitive impairment to 

AD occurring faster compared with age-matched males (2). There are numerous studies 

demonstrating a correlation between greater large artery stiffness and cognitive impairment. 

While most of these studies controlled for sex in their analyses, none of them report analysis 

specifically for sex differences in these relations (59,64–68) except the study by Singer et 

al. In that study of subjects 70–90 years of age, a relation between large artery stiffness and 

memory was found in males, but not females (69). However, as the rapid progression of 

arterial stiffness occurs from 55–75 years of age in females, this study may have missed the 

key time for relations in females. In rodents, induced carotid stiffening leads to cognitive 

impairment, but these studies are limited to male rodents to date (47). The sex differences 

in the relation of arterial stiffness and cognitive decline are likely more complex than 

just differences in sex hormones. For example, history of pregnancy and childbirth may 

contribute as hemodynamic properties of the aorta are associated with cognitive function 

in post-menopausal females, but a history of preeclampsia influences this association for 

some cognitive abilities (70). Therefore, more research is needed to understand how sex may 

influence the effects of large artery stiffness on cognitive function.

9 Perspectives: a two-hit hypothesis for female brain aging and remaining 

gaps in knowledge

The current hypothesis is that an age-related increase in large artery stiffness and pulse 

pressure leads to cerebrovascular and cognitive impairment. As the age-related stiffening of 

the large arteries is slower to progress in males, this may allow time for adaptation of the 

cerebral vasculature to elevated pulse pressure. In females, post-menopause, there is a more 

rapid increase in arterial stiffness, and this coincides with the loss of estrogen’s protective 

effects on endothelial cells. Thus, early post-menopausal females are susceptible to two-hits 

simultaneously that can lead to cerebrovascular and cognitive impairment, and this may 

explain the increased AD risk in females.

A few factors have led to the paucity of data regarding sex differences in the effects of 

large artery stiffness on AD-related outcomes, such as the historical exclusion of females 

from studies and the treatment of sex as a confounding variable rather than an important 

contributor to physiology. In addition, ovariectomy is often used to induce a menopause-like 

state in young rodents matching human surgically induced menopause; however, this is 

distinctly different from natural human menopause as 1) the effects of estrogen deficiency 

may impact young and old females differently, and 2) human menopause typically does not 

have a sudden onset of estrogen loss (71). Lastly, differences in the age of subjects may 
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contribute to inconsistencies, as the rapid increase in arterial stiffness and cognitive decline 

are typically only found before the age of 75 years in females. Therefore, future studies need 

to include females in peri- and early post-menopause to understand these key physiological 

changes.

10 Conclusions

Age-related increases in large artery stiffness are associated with cerebral endothelial cell 

dysfunction, reduced cerebral blood flow, neuropathology, and cognitive impairment. As 

females experience a more rapid increase in large artery stiffness with aging, coinciding 

with menopause, they could be more susceptible to these damaging effects, and this may 

explain their increased risk for AD (Figure 1). These deleterious effects of increased large 

artery stiffness in older females likely contribute to other neurological diseases in addition 

to AD. Numerous efforts, in both human and animal studies, are needed to close the gaps in 

knowledge about the effects of vascular aging on the female brain.
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Figure 1: 
Hypothesized mechanisms linking large artery stiffness and cognitive impairment. Above: 

In premenopausal females, the large arteries are compliant and cerebral pressure and 

blood flow pulsatility is low. This is associated with functional cerebral endothelial 

cells, a functional blood brain barrier, adequate cerebral blood flow, and an absence of 

neuropathology. Below: In postmenopausal females, there is greater large artery stiffness 

and higher cerebral pressure and blood flow pulsatility. This is associated with dysfunction 

of the cerebral endothelial cells, a more permeable blood brain barrier, neurovascular 

uncoupling, reduced cerebral blood flow, and increased neuropathology. Figure created with 
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