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Abstract

Background: Prostate cancer risk stratification using single-nucleotide polymorphisms (SNPs) 

demonstrates considerable promise in men of European, Asian, and African genetic ancestries, 

but there is still need for increased accuracy. We evaluated whether including additional SNPs 

in a prostate cancer polygenic hazard score (PHS) would improve associations with clinically 

significant prostate cancer in multi-ancestry datasets.

Methods: In total, 299 SNPs previously associated with prostate cancer were evaluated for 

inclusion in a new PHS, using a LASSO-regularized Cox proportional hazards model in a training 

dataset of 72,181 men from the PRACTICAL Consortium. The PHS model was evaluated in four 

testing datasets: African ancestry, Asian ancestry, and two of European Ancestry—the Cohort of 

Swedish Men (COSM) and the ProtecT study. Hazard ratios (HRs) were estimated to compare 

men with high versus low PHS for association with clinically significant, with any, and with fatal 
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prostate cancer. The impact of genetic risk stratification on the positive predictive value (PPV) of 

PSA testing for clinically significant prostate cancer was also measured.

Results: The final model (PHS290) had 290 SNPs with non-zero coefficients. Comparing, for 

example, the highest and lowest quintiles of PHS290, the hazard ratios (HRs) for clinically 

significant prostate cancer were 13.73 [95%CI: 12.43–15.16] in ProtecT, 7.07 [6.58–7.60] in 

African ancestry, 10.31 [9.58–11.11] in Asian ancestry, and 11.18 [10.34–12.09] in COSM. 

Similar results were seen for association with any and fatal prostate cancer. Without PHS 

stratification, the PPV of PSA testing for clinically significant prostate cancer in ProtecT was 

0.12 (0.11–0.14). For the top 20% and top 5% of PHS290, the PPV of PSA testing was 0.19 

(0.15–0.22) and 0.26 (0.19–0.33), respectively.

Conclusions: We demonstrate better genetic risk stratification for clinically significant prostate 

cancer than prior versions of PHS in multi-ancestry datasets. This is promising for implementing 

precision-medicine approaches to prostate cancer screening decisions in diverse populations.

Introduction

Identification of men at greatest risk of developing prostate cancer remains an important 

challenge. Risk stratification using common genetic markers, such as single-nucleotide 

polymorphisms (SNPs), shows promise toward more effectively identifying men at greatest 

risk of developing aggressive or fatal prostate cancer1,2. Analyses of benefit, harm, and cost-

effectiveness support use of genomic risk stratification to guide prostate cancer screening3,4. 

Ensuring these tools perform well in diverse populations is important to ensure risk 

stratification is optimal for all men and avoid exacerbating existing health disparities5,6.

We previously developed a polygenic hazard score (PHS) and demonstrated in an 

independent European dataset that the PHS was associated with age at diagnosis of clinically 

significant prostate cancer1. Risk stratification with this score also improved the accuracy 

of PSA testing7,8. We then validated the PHS model (with 46 SNPs) for association with 

age at diagnosis and with prostate-cancer specific mortality in a dataset that included 

men of diverse descent, including European, African, and Asian ancestry2. We have also 

improved performance in men of African ancestry by searching for SNPs within that 

subpopulation9,10.

Recent meta-analyses have identified over 200 SNPs associated with prostate cancer, 

including some identified through subset analyses in men of non-European ancestry11,12. 

Given the increasing number of SNPs associated with prostate cancer, we evaluated whether 

including more SNPs in a prostate cancer PHS would improve associations with clinically 

significant prostate cancer in multi-ancestry datasets.

Methods

Participants

Genotype and phenotype data, all de-identified, were obtained from the PRACTICAL 

consortium. Participants had previously been genotyped via the OncoArray13 or the 

iCOGs14 chips; 90,638 men were available for this analysis.
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The available data were split into a training dataset and four testing datasets, taking into 

account prior power analyses and PHS association results7,15,16. The training dataset for the 

model included 72,181 men of European genetic ancestry genotyped via OncoArray (24,010 

controls and 48,171 cases). The four testing datasets included: 1) men of African ancestry 

(n=6,253: 3,013 controls and 3,240 cases), 2) men of Asian ancestry (n=2,378: 1,184 

controls and 1,194 cases), 3) the Cohort of Swedish Men (COSM) population-based cohort 

with long-term outcomes17 (n=3,279: 1,116 controls, 2,163 cases, and 278 prostate cancer 

deaths), and 4) the ProtecT population-based prospective trial with screening (prostate-

specific antigen, PSA) and biopsy outcomes for both cases and controls (n=6,411: 4,828 

controls and 1,583 cases)18.

Polygenic Hazard Score Model Development using LASSO regularization

We sought to develop an optimal, integrated PHS model with candidate SNPs chosen from 

those used in the prior PHS and from those identified as susceptibility loci for prostate 

cancer in a genome-wide trans-ancestry meta-analysis11. Candidate SNPs included the 46 

from the original PHS development and 269 from the meta-analysis. A machine-learning, 

LASSO-regularized Cox proportional hazards model approach was used to objectively select 

SNPs and estimate weights, as described previously8.

There were 299 unique candidate SNPs associated with prostate cancer consistent across the 

training and testing datasets used in the present work. We first identified SNP pairs (among 

the 299 candidates) that were highly correlated (r2>0.95). Each of these paired, correlated 

SNPs was tested in a univariable Cox proportional hazards model for association with age 

at prostate cancer diagnosis; the SNP with the larger p-value was eliminated from inclusion 

in the model. All other (unpaired) SNPs were included as candidates for the present PHS 

model.

The R (version 4.0.1) “glmnet” package was used to estimate the LASSO-regularized Cox 

proportional hazards model19,20. Age at prostate cancer diagnosis was the time to event, 

and the predictor variables included the genotype allele counts of candidate SNPs and 

first four European ancestry principal components. Controls were censored at age of last 

follow-up. The LASSO-regularized model’s hyper-parameter (lambda) was selected using 

10-fold cross-validation19,20. The final form of the LASSO model was estimated using the 

lambda value that minimized the mean cross-validated error.

Association with Prostate Cancer

We evaluated the association of the adapted PHS with clinically significant prostate cancer, 

as well as any prostate cancer, via Cox proportional hazards models in each of the four 

testing datasets. Clinically significant prostate cancer was defined to be a prostate cancer 

case with Gleason score ≥7, PSA ≥10 ng/mL, T3-T4 stage, nodal metastases, or distant 

metastases21.

As the COSM dataset had long-term follow up data available17, we additionally evaluated 

the adapted PHS for association with age at prostate cancer death16. There were 278 deaths 

from prostate cancer in the COSM dataset.
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Hazard Ratio Performance

Hazard ratios between the top 5% and middle 40% (HR95/50), top 20% and middle 40% 

(HR80/50), bottom 20% and middle 40% (HR20/50), and top and bottom 20% (HR80/20) 

were estimated for any, for clinically significant, and for fatal prostate cancer. Percentiles 

of genetic risk were determined within the controls the training set with age less than 70 

years1,2,7,8.

Family History

Given that family history of prostate cancer is currently one of the most useful clinical 

risk factors for the development of prostate cancer, we used Cox proportional hazards 

models to assess family history for association with any, with clinically significant, or with 

fatal prostate cancer. Family history of prostate cancer was defined as presence or absence 

of a first-degree relative diagnosed with prostate cancer. Multivariable models using both 

family history and the adapted PHS were compared to using family history alone via a 

log-likelihood test with α=0.01. HRs were calculated for each variable: HRs for PHS in the 

multivariable models were estimated as the HR80/20 in each testing dataset (e.g., men in the 

highest vs. lowest quintile of genetic risk by PHS). HRs for family history of prostate cancer 

were estimated as the exponent of the beta from the multivariable Cox regression. As done 

previously1,7, p-values were truncated at <10-16.

Positive Predictive Value Performance

Positive predictive value (PPV) performance of PSA testing was calculated using data 

from the population-based ProtecT screening study18 (prostate biopsy results were available 

for both cases and controls with a positive PSA [≥3 ng/mL]). To estimate the PPV and 

confidence intervals, we generated 1,000 bootstrap samples using ProtecT participants with 

positive PSA, while maintaining the 1:2 case:control ratio in the ProtecT dataset. PPV was 

calculated as the proportion of PSA-positive participants who were diagnosed with clinically 

significant prostate cancer on biopsy, looking at those participants in the top 5 (PPV95) or 

top 20 percentiles (PPV80) of PHS genetic risk.

Cumulative incidence curves for PHS

Genetic-risk-stratified cumulative incidence curves for prostate cancer were derived using 

previously described methods7,8. Briefly, age-specific population data from the United 

Kingdom (Cancer Research UK7) were used to estimate prostate cancer incidence for 

men aged 40–70 years. Data from the population-based Cluster Randomized Trial of PSA 

Testing for Prostate Cancer (CAP) trial7 were used to adjust this population incidence curve 

to reflect the age-specific cumulative incidence of clinically significant and non-clinically-

significant prostate cancer. Genetic-risk-stratified cumulative incidence curves were then 

calculated for men in the upper 5 and 20 percentiles of PHS genetic risk by multiplying the 

prostate-cancer-specific cumulative incidence by the mean value of HR95/50 and HR80/50 in 

the testing dataset, respectively.
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Results

A total of 290 SNPs returned non-zero SNP coefficients using the regularization-weight 

selection and were included in the final model, called PHS290 (Supplementary Material).

HR performance of PHS290 demonstrates risk stratification across percentiles of genetic 

risk (Table 1). Comparing the top and bottom quintiles of genetic risk for clinically 

significant prostate cancer, men with high PHS had HRs of 13.73 [12.43–15.16], 7.07 

[6.58–7.60], 10.31 [9.58–11.11], and 11.18 [10.34–12.09] in the ProtecT, African, Asian, 

and COSM datasets, respectively. Similar risk stratification was seen when evaluating risk 

of any prostate cancer. Finally, when comparing the top and bottom quintiles of genetic risk 

in the COSM dataset, men with high PHS had a HR of 7.73 [6.45–9.27] for prostate cancer 

death.

Family history and PHS290

Family history data based on self-report and were available for 89%, 89%, 43%, and 75% of 

individuals in the ProtecT, African, Asian, and COSM datasets, respectively; 7%, 18%, 9%, 

and 14% of individuals, respectively, reported having a first-degree relative diagnosed with 

prostate cancer. The combination of family history and PHS performed better than family 

history, alone, for clinically significant prostate cancer (and for any prostate cancer) in each 

of the four testing datasets (log-likelihood p<10−16; Table 2). Additionally, family history 

and PHS together performed better than family history, alone, for fatal prostate cancer in the 

COSM dataset (log-likelihood p<10−16).

Positive predictive value performance of PHS290

The PPV of PSA testing for clinically significant prostate cancer was 0.19 (0.15–0.22) for 

the top 20% of genetic risk (PPV80) and 0.26 (0.19–0.33) for the top 5% of genetic risk 

(PPV80; Figure 1). Both were greater than the overall PPV of PSA alone, which was 0.12 

(0.11–0.14).

Cumulative incidence curves for PHS290

Genetic-risk-stratified cumulative incidence curves for clinically significant and non-

clinically significant prostate cancer demonstrate greater prostate cancer incidence with 

higher genetic-adjusted risk (Figure 2).

Discussion

The improved PHS (PHS290) demonstrates excellent genetic risk stratification, including for 

clinically significant prostate cancer. This was true in four separate testing sets of varied 

genetic ancestry (Asian, African, European). Additionally, PHS290 was associated with 

lifetime prostate-cancer-specific mortality in a population-based cohort16. Hazard ratios with 

PHS290 are larger for each of these associations than those reported for previous versions 

of PHS2,8, demonstrating the value of incorporating SNPs from genome-wide meta-analysis 

and fine-mapping. The improvements demonstrated here are promising for implementing 

personalized approaches to prostate cancer screening decisions in diverse populations.
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Health disparities are a major problem in prostate cancer. Given the exclusion of non-

European data in most genome studies5,22–24, it is important that the pool of candidate SNPs 

here included those identified from a recent trans-ancestry meta-analysis11. Testing and 

improving performance of genomic risk scores in diverse populations is critical to equitable 

implementation of these new tools and important for avoiding exacerbation of existing 

disparities. PHS290 still performs better in men of European genetic ancestry—an expected 

result, given the much greater data availability in that population. Further genomic studies in 

diverse populations are essential, as diversity in model development improves performance 

in diverse populations9,10.

The intersection of social constructs like race/ethnicity and genomics also raises interesting 

and entangled challenges. Even availability of genomic data is only part of the problem, 

as disparities in health outcomes are rooted in systemic racism and inequities in access to 

healthcare25,26. Genotypic ancestry may be a step toward biology, but the continental groups 

still represent an oversimplification of genetic diversity and a pre-determined assumption 

that socially defined categories have biological meaning in all contexts. We have previously 

shown that agnostic genetic clusters are informative for subgroup analyses2, and this 

approach may be a better way forward, provided the genomic diversity of the whole 

population is represented in the available data. Here, we have used genotypic ancestry to 

evaluate the potential differential performance in groups historically excluded from large-

scale genomic studies. We also note that local ancestry may be a critical consideration in 

admixed populations. We have found previously that PHS performance can vary by the 

makeup of a region of the genome, beyond what is explained by global ancestry categories 

assigned for an individual’s entire genome10. Despite these challenges and opportunities for 

future improvement, the current results demonstrate PHS290 does provide meaningful risk 

stratification in diverse datasets.

The cumulative incidence of clinically significant prostate cancer is heavily influenced by 

age-specific genetic risk, as demonstrated by genetic-risk-stratified cumulative incidence 

curves (Figure 2). As men with high PHS290 age, the incidence curve for clinically 

significant prostate cancer increases dramatically, prominently separating from the incidence 

for non-clinically-significant prostate cancer. This effect is driven by the high HR for 

clinically significant prostate cancer in these men, combined with increasing incidence 

specifically of more clinically significant cancers as men age7,27. Furthermore, we found 

that risk stratification with PHS290 improved accuracy of PSA testing, as assessed by 

probability of a positive PSA test leading to a diagnosis of clinically significant cancer on 

biopsy. Consistent with a prior study8, this improvement in PPV of PSA testing was not 

better when using PHS290 than when using PHS46 in this dataset2. PPV analyses in larger 

datasets could permit finer granularity for age-specific genetic risk to assess whether the 

increased HRs of PHS290 might translate to better performance of PSA testing than that 

achieved already with PHS46.

The HRs reported here suggest clinical relevance for PHS290. Predictive tools in routine 

clinical use for other diseases (e.g., breast cancer, diabetes, and cardiovascular disease) 

have reported HRs of approximately 1–3 for endpoints of interest28–31. Current guidelines 

recommend earlier and more frequent consideration of prostate cancer screening for men 
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with a family history of prostate cancer or African ancestry, citing an elevated risk 28–80% 

above that of men without these risk factors32–34. Guidelines more strongly recommend 

earlier and more frequent screening in men with germline mutations in BRCA2, which 

are rare but are estimated to infer up to 3-fold increased risk33–35. In the present study, 

men in the top 20% for PHS290 (compared to men with average risk) had HRs for 

clinically significant prostate cancer of approximately 2.8 to 3.9. For men in the top 5% 

for PHS290, those HRs increase to 4.3 to 6.9, depending on ancestry. While individuals 

with high polygenic risk may also develop low-grade prostate cancer in their lifetime, the 

time-to-event analysis applied here shows that high genetic risk confers a greater hazard for 

prostate cancer death. This finding is consistent with prior reports, though the effect size is 

larger with PHS2902,16,33.

Family history data were not uniformly available across source studies or testing datasets 

and were notably less available in the Asian dataset (43%, compared to ≥75% in the other 

testing datasets). The proportion of individuals with positive family history—among those 

with available family history data—also varied across datasets, ranging from 7% (ProtecT) 

to 18% (African). The interplay of family history and polygenic risk warrants further 

investigation in more complete cohorts. It is also worth noting that family history availability 

is not always available (or reliable) in clinical practice. Nonetheless, both family history and 

polygenic risk appear important for assessing individual risk of prostate cancer. Possibly, 

family history represents not only inherited genetic risk but also shared environmental 

exposures.

If this technology is to be implemented in clinical practice, it is important to consider 

reliability. Genotype arrays are known to have excellent reproducibility, with concordance 

of 99.40–99.87% on repeat testing with the same array36. Concordance across genotyping 

platforms is also excellent at 98.80%36.

Our work has some limitations. First, the weights were calculated in men of European 

genetic ancestry alone, although SNP candidate selection was performed in multi-ancestry 

analyses. Future studies evaluating PHS for prostate cancer risk stratification will include 

non-Europeans in SNP weight calculations. The available data did not permit testing of PPV 

or association with fatal disease in non-European populations. Moreover, the cumulative 

incidence curves here are specific to the UK, where we had the most robust population 

age-specific incidence data for clinically significant prostate cancer. The testing sets used 

in the present study did represent a very small proportion of the data used for candidate 

SNP identification in the prior genome-wide association meta-analysis (as opposed to the 

development of PHS46, which was performed in a dataset completely independent of the 

validation dataset) 2 11. However, the training and testing sets were kept separate in the 

present study, and the use of the LASSO-regularized Cox model reduces over-fitting37.

The PHS290 described here has the strongest reported association with prostate cancer 

in men of European, African, and Asian genetic ancestry. The score was also associated 

with lifetime prostate-cancer-specific mortality in a population-based cohort. A performance 

gap remains between genetic ancestry groups that might be closed through development 

using more data from men of Asian or African ancestry. Nonetheless, the results here 
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suggest PHS290 may improve prostate cancer risk-stratification efforts in multi-ancestry 

populations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
PPV performance in the ProtecT dataset for clinically significant prostate cancer, estimated 

using 3 approaches: standard (not using PHS), top 20% of PHS values (PPV80), and top 5% 

of PHS values (PPV95). Error bars are 95% bootstrap confidence intervals.
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Figure 2. 
Genetic-risk-adjusted cumulative incidence curves for PHS290. Curves are shown for the 

upper 5th (>95th) and upper 20th (>80th) percentile of PHS290 for clinically significant 

and non-clinically-significant prostate cancer. The reference curves represent the overall 

population average from the UK.
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Table 1.

Hazard ratio (HR) performance in the four testing datasets. HRs are shown with mean sample-weight-

corrected values and 95% confidence intervals. Calculations were done using age at diagnosis of any or 

of clinically significant prostate cancer across all datasets, respectively, and also with age at prostate cancer 

death for the COSM dataset.

Dataset Prostate Cancer Type
HRs and 95% CI

HR20/50 HR80/50 HR95/50 HR80/20

ProtecT n=6,411
Any 0.31 [0.30–0.32] 3.47 [3.36–3.58] 5.93 [5.67–6.21] 11.16 [10.48–11.88]

Clinically significant 0.28 [0.27–0.30] 3.86 [3.67–4.06] 6.91 [6.42–7.44] 13.73 [12.43–15.16]

African n=6,253
Any 0.43 [0.42–0.45] 2.58 [2.50–2.67] 3.69 [3.52–3.86] 5.95 [5.59–6.34]

Clinically significant 0.40 [0.39–0.41] 2.82 [2.72–2.93] 4.33 [4.10–4.57] 7.07 [6.58–7.60]

Asian n=2,378
Any 0.34 [0.33–0.35] 2.99 [2.89–3.08] 5.08 [4.85–5.33] 8.75 [8.21–9.32]

Clinically significant 0.31 [0.30–0.33] 3.24 [3.12–3.36] 5.66 [5.46–5.98] 10.31 [9.58–11.11]

COSM n=3,279

Any 0.33 [0.32–0.34] 3.54 [3.42–3.65] 5.77 [5.51–6.04] 10.87 [10.21–11.57]

Clinically significant 0.32 [0.31–0.33] 3.59 [3.45–3.75] 5.91 [5.58–6.26] 11.18 [10.34–12.09]

Fatal 0.38 [0.35–0.42] 2.95 [2.68–3.25] 4.49 [3.93–5.13] 7.73 [6.45–9.27]
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Table 2.

Multivariable Cox models with both PHS and family history of prostate cancer (defined as ≥1 first-degree 

relative affected) for association with any prostate cancer, with clinically significant prostate cancer, and with 

fatal prostate cancer. Analyses were limited to participants with known family history. Beta and z-scores refer 

to the overall association (within the multivariable Cox regression) with the endpoint of interest, within the 

corresponding testing dataset. The p-values reported are two-tailed from the multivariable Cox models.

Dataset Variable
Any Prostate Cancer

beta z-score p-value HR

ProtecT (iCOGs), n=5,703
PHS 2.11 72.1 <10−16 8.13

Family history 0.06 1.7 0.1 1.07

African (OncoArray), n=5,557
PHS 1.64 53.8 <10−16 5.03

Family history 1.13 46.6 <10−16 3.09

Asian (OncoArray); n=1,028
PHS 1.99 68.5 <10−16 7.64

Family history 0.45 13.1 <10−16 1.56

COSM (OncoArray), n=2,453
PHS 2.13 71.2 <10−16 8.71

Family history 0.53 19.0 <10−16 1.70

Dataset Variable
Clinically Significant Prostate Cancer

beta z-score p-value HR

ProtecT (iCOGs), n=5,703
PHS 2.32 49.8 <10−16 10.01

Family history −0.01 −0.2 0.82 0.99

African (OncoArray), n=5,557
PHS 1.67 37.4 <10−16 5.19

Family history 1.17 33.2 <10−16 3.22

Asian (OncoArray), n=1,028
PHS 1.89 50.4 <10−16 6.90

Family history 0.13 2.5 0.012 1.14

COSM (OncoArray), n=2,453
PHS 2.13 56.9 <10−16 6.90

Family history 0.45 12.6 <10−16 1.57

Dataset Variable
Fatal Prostate Cancer

beta z-score p-value HR

COSM (OncoArray), n=2,453
PHS 1.68 19.8 <10−16 5.51

Family history 0.43 5.0 4.7×10−7 1.53
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