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Abstract

Archived metabolomics data represent a broad resource for the scientific community. However, 

the absence of tools for the meta-analysis of heterogeneous data types makes it challenging to 

perform direct comparisons in a single and cohesive workflow. Here we present a framework 

for the meta-analysis of metabolic pathways and interpretation with proteomic and transcriptomic 

data. This framework facilitates the comparison of heterogeneous types of metabolomics data from 

online repositories (e.g., XCMS Online, Metabolomics Workbench, GNPS, and MetaboLights) 

representing tens of thousands of studies, as well as locally acquired data. As a proof of concept, 

we apply the workflow for the meta-analysis of i) independent colon cancer studies, further 

interpreted with proteomics and transcriptomics data, ii) multimodal data from Alzheimer’s 

disease and mild cognitive impairment studies, demonstrating its high-throughput capability 

for the systems level interpretation of metabolic pathways. Moreover, the platform has been 

modified for improved knowledge dissemination through a collaboration with Metabolomics 

Workbench and LIPID MAPS. We envision that this meta-analysis tool will help overcome the 

primary bottleneck in analyzing diverse datasets and facilitate the full exploitation of archival 
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metabolomics data for addressing a broad array of questions in metabolism research and systems 

biology.
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Introduction

Metabolites are the prime drivers of biological activity as they regulate enzyme reactions1, 

protein activation and gene/protein expression2. Ultimately, metabolites provide an 

accessible functional readout for the activity of the system and in themselves modulate 

the phenotype3. In line with this, the meta-analysis of untargeted high-resolution mass 

spectrometry (MS) metabolomic data obtained from distinct studies can be used to 

obtain a better understanding of the altered metabolic processes and active endogenous 

metabolites affecting the system over a broad population of samples. This type of analysis 

requires the generation and/or recollection of multiple metabolomic data sets across several 

independent studies, to provide a more comprehensive picture than an individual study. 

In some cases, the data sets required for the meta-analysis have already been generated 

and made available on public databases. In this regard, several data storage infrastructures 

have been recently developed to address the raising call for metabolomics data sharing 

and currently encompass more than 500 untargeted high-resolution data sets. Emerging 

open-access ecosystems include MetaboLights4, MetabolomicsWorkbench5, Metabolonote6, 

Global Natural Products Social Molecular Networking (GNPS)7 and metabolomic data 

aggregation services, such as metabolomeXchange8 (http://www.metabolomexchange.org/

site/) and Omics Discovery Index (http://www.omicsDI.org)9. In addition, the LIPID MAPS 

service provides a link into MetabolomicsWorkbench to support the direct deposition of 

lipidomics data (www.lipidmaps.org).10,11

These publicly available datasets can reduce the workload for data re-collection as well as 

foster transparency and collaboration between researchers. However, owing to the absence 

of tools for their cohesive meta-analysis and to the heterogeneity of the stored data, that 

are often obtained by different types of mass spectrometry-based metabolome profiling 

workflows, each study remains only partially utilized for comparative analyses.

Currently, the meta-analysis of metabolomic pathways is carried out by comparing and 

analyzing the results reported in published papers (e.g., fold change comparison, absolute 

concentrations from targeted studies), thus ignoring the total content of information on 

metabolites contained in the raw profiling data. Moreover, the interpretation of the meta-

analysis findings in the context of proteomic and transcriptomic dysregulations remains a 

manual task as no systems level data interpretation tool currently provides this functionality. 

For example, depending on data type, there are many tools for integration of multi-omics 

data available including correlation analysis, multivariate comparison, regression/machine 

learning for sample classification.
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Here we report MetaXCMS framework, to enable the meta-analysis of heterogeneous 

types of archived untargeted, high-resolution MS data across metabolomics, proteomics, 

transcriptomics, and genomics. The XCMS Online metabolomics platform12,13 is an 

environment for the direct re-analysis and comparison of data from transcriptomics and 

metabolomics repositories and/or acquired locally, to gather insights into the dysregulated 

active metabolites and pathways over independent studies and populations of subjects/

samples. We deploy this workflow by integrating and interpreting at systems level 

archival data sets from two independent colon cancer studies obtained from the XCMS 

Online Public repository.14 In addition, we tested this framework in the meta-analysis of 

archival multimodal metabolomics data acquired from plasma samples from patients with 

Alzheimer’s disease, mild cognitive impairment and cognitive normal patients, from the 

MetabolomicsWorkbench.15

Results

Workflow for the meta-analysis of archival metabolomic data and systems level 
integration.

We developed Meta XCMS framework for the meta-analysis and interpretation of archival 

metabolomics data by developing and combining different bioinformatic modules to be 

facilitated with the XCMS Online platform (Figure 1).

In the meta-analysis workflow, the raw MS data sets from individual studies can be uploaded 

in XCMS Online to perform data processing and analysis, including peak detection, 

retention time alignment, putative annotation and statistical significance testing, to a final 

list of detected and dysregulated metabolic features.13 At this level, the user can set the 

processing and statistical parameters depending on the analytical platform employed for 

metabolome profiling and on the statistical test needed for that study. The processed jobs 

can then be selected and downloaded to be inputted into the Meta XCMS framework 

for further analysis. Multiple metabolomic analysis (analytical modalities) for a given 

study can be combined together for comprehensive coverage, for example, on lipid and 

central carbon metabolism (e.g., combining data obtained by reversed phase chromatography 

coupled with positive electrospray ionization (ESI) MS, and hydrophilic interaction liquid 

chromatography in negative ESI-MS, etc.).16,17 Moreover, metabolomics data sets obtained 

from high-resolution untargeted studies archived in the Metabolomics Workbench can be 

directly uploaded for meta-analysis, and the user interface also supports the upload of 

metabolomics data-sets in text/tsv format, obtained through alternative data pre-processing 

workflows.

The Meta XCMS framework code is based on mummichog version 2.0.717,18 and leverages 

itself on this open source platform. Briefly, the mummichog algorithm performs a Fisher’s 

exact test on the number of metabolites jointly dysregulated in the studies as opposed 

to the total metabolites in the pathway, to predict active pathways directly from putative 

metabolic features. To allow for a multi-file input the code and algorithm was adjusted. 

Using either data from the Metabolomics Workbench or XCMS Online data is read into 

the system via convenient tsv/csv peak list file formats. Data read into the system is first 

parsed, each feature is tagged to its input file to allow for tracing throughout the system. 
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Several possible adducts combinations are calculated onto the feature masses. These features 

are queried against the pathway database, each file is processed separately and ranked on 

their corresponding p-value score to statistically eliminate false positives. Once a list of 

possible hits is obtained, features that match the neutral mass in the pathway, they are 

merged between the different files. This is done such that any compound that is seen in more 

than one file is merged together and the best p-value score is taken. This method allows for 

the expanded coverage and keeps the statistical validation. Next, the regular mummichog 
process continues with the statistical validation of the matched pathways. Finally, the output 

is processed to simply future analyses.

For each individual study included in the meta-analysis, the user can set a specific 

significance threshold (p-value), m/z tolerance for metabolite putative annotation, and filter 

the metabolic feature list according to a specified intensity threshold. We recommend to 

carefully choose these parameters considering the size of each individual study and the type 

of metabolomics platform used.

Notably, lipids comprise around a third of all metabolites, but they require distinct 

processing approaches for accurate annotation and pathway prediction. In particular, 

removing spurious MS signals is critical to improve statistical power, especially for lipids 

where multiple forms of the same molecule can be detected/exist. LipidFinder19 has been 

recently developed at LIPID MAPS11 to alleviate these artefacts. Here, we suggest using 

LipidFinder post processing of XCMS outputs. This helps to further the broaden the 

output of lists of putative structures and their categories for more accurate meta-analysis 

of lipidomics data.

As part of the Meta XCMS framework we suggest performing multi-omic data 

integration by superimposing user-uploaded transcriptomic and proteomic data sets onto 

the dysregulated pathways. Using a list of dysregulated genes (as gene symbols or loci) 

and proteins (as UniProt accession IDs or gene symbols) obtained from studies targeting 

a given biological question users can generate improved confidence on the pathway hits. 

The integration with proteomics and transcriptomics results offers the possibility to gauge a 

systems level mechanistic understanding of pathways dysregulation and metabolite activity 

in the investigated biological system.20

The downloaded “metabolite results” table reports the list of all the overlapping dysregulated 

metabolites detected in the studies included in the meta-analysis and used for pathway 

prediction.

The “pathway results” table showcases the output for the metabolic pathways jointly 

dysregulated in the studies. For each metabolic pathway, it reports the number of 

overlapping dysregulated metabolites detected in different studies with respect to the total 

number of metabolites in the pathway. By clicking on the number of “shared metabolites” 

the complete list of metabolic features is shown. Entries can be further filtered based on the 

adduct type, study group or pairwise job group. Moreover, this table reports the overlapping 

dysregulated genes and proteins from the uploaded proteomics and transcriptomics data for 
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each metabolic pathway, thus providing a rapid glance on the biological process from a 

system-wide perspective.

Expanding the capability of XCMS Online for the meta-analysis of archived data.

To allow the meta-analysis of metabolomics data sets obtained from disparate sources, we 

enabled easy parsing file options of tsv/csv in Meta XCMS framework (Figure 1 and Figure 

2). First, the user can select studies processed in the XCMS Online private space or in 

the XCMS Online Public. These data are then easily downloaded to be parsed into the 

Meta-XCMS framework. Alternatively, the Metabolomics Workbench data can also be used. 

On many of the studies there are already existing outputs of identified metabolites or feature 

lists. In these instances where a metabolite is already identified it will be read into the 

system and used as a confirmed metabolite of the pathway analysis.

This strategy is aimed at fostering data dissemination and at actively promoting the full 

exploitation of archived metabolomics data through stimulating further meta-analysis for 

results validation or for generating novel hypothesis.

Analysis of archived metabolomics data.

We tested the workflow in the systems level meta-analysis of two independent colon 

cancer tissue metabolomics data sets by leveraging archival data from the XCMS 

Online Public repository, and for the meta-analysis of Alzheimer’s disease and mild 

cognitive impairment studies in plasma, including heterogeneous profiling data from the 

Metabolomics Workbench.

Colon Cancer.—Several previous studies have pinpointed the multifaced metabolic 

reprogramming underlining colon cancer.14,24,25 Here we performed the meta-analysis of 

archived untargeted metabolomics data from a study investigating the role of bacterial 

biofilms in colon cancer14 (Study A) and a second colon cancer study, recently performed 

in our laboratory (Study B) (Figure 3A). Study A involved 30 subjects diagnosed with colon 

cancer from stage 3 to 4 (18 females and 12 males, 61–88 years old) and was available in the 

XCMS Online Public repository14, while Study B involved 19 subjects diagnosed with colon 

cancer (13 females and 6 males, 62–92 years old). More details on study design and samples 

collection are available in the Supporting Information, Table S1. Both studies used similar 

platforms for metabolome profiling (reversed phase chromatography coupled with ESI(+)-

quadrupole time-of-flight (Q-TOF) mass spectrometry) and sample preparation protocols, 

therefore we expected comparable metabolome coverage and overlapping dysregulations 

(excluding inter-population heterogeneity).

First, raw data from study B were uploaded in XCMS Online and processed as a paired job. 

This job and the archival job (Study A) were then selected as input for meta-analysis in meta 

XCMS framework (Figure 3A). The results unveiled the presence of 30 metabolic pathways 

with at least ten dysregulated putative metabolic features across study A and B (Table 

S2, Figure 4A), among these glycerophospholipids metabolism, aspartate and asparagine 

metabolism, glycine, serine and alanine metabolism, carnitine shuttle, tyrosine metabolism, 

steroidal hormones and bile acids. The dysregulation of the glycerophospholipid metabolism 
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has been previously confirmed correlating with altered viability, proliferation and colorectal 

cancer development.26 The meta-analysis also highlighted the dysregulation of the aspartate 

and asparagine pathway which includes spermine/spermidine biosynthesis and degradation 

(polyamine pathway) where N1-acetylspermidine, N1-acetylspermine, spermidine and 

N1,N12-diacetylsperimine, spermidine dialdehyde, spermic acid were found jointly up-

regulated, a finding consistent with previous work (Figure 4C).14,30 Of note, in the bile acids 

biosynthesis pathway taurine and taurochenodeoxycholate were upregulated (Figure 4B). 

Increased levels of conjugated bile acids have been previously reported to highly associate 

with colon cancer.27 In particular, taurochenodeoxycholate can be hydrolyzed releasing 

taurine, a sulfur amino acid further transformed by the gut microbiota to form compounds 

with genotoxic activity (e.g., H2S), and colon tumor promoters (deoxycholic acid).28,29

To Interpret this evidence in light of the variations occurring at proteomic and transcriptomic 

level, colon cancer data sets obtained from The Cancer Genome Atlas24 and The CPTAC 

Proteomics Data Portal32 were uploaded and processed in meta XCMS framework. 

Approximately 90% of the up-regulated metabolic pathways were further supported by 

dysregulated proteins and gene transcripts (Table S3). For instance, both polyamines and 

bile acids pathway dysregulations were confirmed (Figure 3A).

Alzheimer’s disease.—Alzheimer’s disease (AD) is a progressive neurodegenerative 

disorder of unknown etiology.33 AD and dementia patients are usually subject to a long 

pre-AD period known as mild cognitive impairment (MCI). Here we used public available 

metabolomics data obtained from previous longitudinal studies performed at the Mayo 

Clinic Study of Aging (MCSA) and Mayo Clinic Alzheimer Disease Research Center 

(ADRC).15 Plasma samples were from AD, MCI and cognitive normal (CN) subjects (15 

individuals/group). The metabolomics data sets and meta-data were publicly available in the 

Metabolomics Workbench and formerly generated by LC-Q-TOF MS in four analytical 

modalities (hydrophilic interaction liquid chromatography (HILIC) and reversed phase 

liquid chromatography (RP), in both positive and negative ESI modes) for comprehensive 

metabolome coverage. We downloaded the raw data sets from the Metabolomics Workbench 

repository and uploaded them in the XCMS Online for processing and statistical analysis 

to extract significant metabolic variations in AD vs CN and MCI vs CN. The resulting 

XCMS Online jobs were then used as input for the Meta XCMS framework to detect shared 

metabolic changes at different disease stages.

Meta XCMS framework predicted 24 dysregulated metabolic pathways with at least ten 

metabolic features dysregulated in the AD vs CN and the MCI vs CN groups, over a total of 

101 paths (Table S4). We manually compared the output with the dysregulated pathways 

reported in the original publication.15 Our development predicted the dysregulation 

of tyrosine, glycerophospholipid, aspartate and asparagine, glycine, serine and alanine 

metabolism, urea cycle, tryptophan, purine metabolism, together with the other pathways 

reported in Table S4. The original work reported 50 total dysregulated pathways, of which 

nine were consistently predicted across AD vs CN and MCI vs CN (Figure 5). Our approach 

predicted a total of 101 dysregulated pathways, of which 24 pathways were reported in 

the original publication, demonstrating the efficiency of the workflow in identifying jointly 

dysregulated metabolic pathways from heterogeneous archived metabolomic data.
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Discussion

Archived metabolomics data are a rich source of information for second-order analysis 

by the scientific community. However, the heterogeneity of the data and the lack of tools 

for their cohesive re-analysis and interpretation hinders their full utilization. To address 

this, we developed a framework for archival data re-processing, analysis, integration and 

interpretation at systems level. The workflow moves from the metabolomics tools available 

in the XCMS Online, further combining them with a bioinformatic development specifically 

designed for the meta-analysis of heterogeneous metabolomics data.

A key aspect of the workflow is the use of a pathway-centric approach to the meta-

analysis, which allows the direct prediction of the dysregulated metabolic pathways from 

putative metabolic features jointly detected in the archived data / studies. This is performed 

through the embedment of a recently developed tool for metabolic pathway prediction from 

putative annotations of metabolic features extracted from different types of metabolomics 

data sets.17,18 This tool allows for higher confidence in the putative pathway enrichment 

results by estimating the probability of a pathway being dysregulated on the basis of 

the total number of dysregulated metabolites detected. It is also worth noting that, when 

attempting to re-analyze archival metabolomics data, the physical samples are not directly 

accessible and often no longer available. This makes it unfeasible to perform further 

mass spectrometry fragmentation experiments and metabolite identity confirmation. In this 

scenario, performing direct pathway prediction analysis represents a practical strategy to 

bypass this limitation and directly formulate biological hypothesis from the archived data, to 

be later tested through independent targeted studies or biochemical assays.

The use of a pathway-centric approach also streamlines the interpretation of the 

metabolomic data by superimposing the dysregulated proteins and transcripts to each 

metabolic pathway. This provides a rapid glance on the system in the light of other omics 

regulatory levels, introducing the possibility for the orthogonal confirmation of the insights 

extracted from the archived metabolomics data.

Despite recent efforts aimed at standardizing metabolome profiling and reporting,21,35,36 

a widely-adopted consensus on untargeted MS-based workflows in the perspective of 

meta-analysis is still missing.37,38 The metabolic profiles are indeed usually acquired by 

a variety of different analytical solutions,16,39–41 thus introducing heterogeneity in the type 

of available data. For example, Metabolomics Workbench5 currently stores > 190 untargeted 

high-resolution MS studies, for a total of ~ 400 different analyses (i.e., different analytical 

modalities including ESI positive and negative acquisition modes), while Metabolights4 

stores ~350 among GC- and LC-MS based studies. This heterogeneity complicates 

the development of bioinformatics solutions for the automated meta-analysis, as each 

different metabolomics platform calls for specific data processing and metabolite annotation 

pipelines. To circumvent this limitation, we designed the workflow in a modular fashion: 

each study can be processed as pairwise XCMS Online job using different processing and 

statistical settings and the resulting jobs can be used as input for further meta-analysis. This 

allows the use of raw data acquired by different metabolomics platforms and modalities. 

For example, the user can upload both lipidomics and metabolomics data obtained by 
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different chromatographic or ionization modes for comprehensive metabolome coverage 

and improved pathway prediction.17 This, together with the ability to perform multi-omics 

data integration, represents a fundamental advantage over our previous development for the 

meta-analysis of metabolomics data.42,43

Besides raw data sets, the workflow also supports the direct comparison of untargeted 

studies already processed and available in the XCMS Online Public cloud and in the 

Metabolomics Workbench. Of note, several data sets currently archived in public databases 

are not compliant with the ISA guidelines for meta-data reporting, unearthing the need 

of harmonized and more pragmatic guidelines for metabolomics data sharing in public 

repositories.37

The meta-analysis of metabolomics data sets and their interpretation at systems level 

has the potential of streamlining different types of study comparisons. For example, a 

meta-analytical approach can be used for i) providing further validation of metabolite 

dysregulations in the context of independent set of samples (e.g., in biomarker studies); 

ii) stimulating the generation of biological hypothesis from the re-analysis of archived 

untargeted studies; iii) streamlining the exclusion of experimental artifacts to reduce the list 

of dysregulated metabolites before performing time consuming structural elucidation42; iv) 

excluding metabolic dysregulations due to physiologic heterogeneity in different populations 

of subjects, therefore taking a step towards the identification of therapeutic targets and 

biomarkers of broad applicability. In particular, in biomarker discovery the automatic 

integration of multiple archival metabolomics studies can be a cost-effective strategy to 

minimize the inter-study bias introduced by genetic and environmental factors.44–46 This 

strategy is not limited to archived data, since the difficulty in cross-laboratory comparison 

has impeded the biomedical applications of metabolomics. In an emergency situation like 

the current COVID-19 pandemic, the pathway-centric meta-analysis can be important for 

identifying scientific consensus in a timely manner.

As proof of concept, we demonstrated the utility of the workflow in two meta-analytical 

studies. First, we leveraged archival data sets from a previous study available in the 

XCMS Online Public,14 for the autonomous comparison with a colon cancer study recently 

performed in our laboratory. The workflow allowed a rapid glance on metabolic pathways 

jointly dysregulated and validation at systems level (e.g., the bile acid and the polyamine 

pathways). In the second example, we applied the workflow for the re-analysis of archival 

biomarker studies obtained from the Metabolomics Workbench database. The workflow 

permits the streamlined and autonomous prediction of metabolic pathways changed in both 

AD and MCI patients in plasma (pre-AD) in agreement and beyond the results previously 

obtained by manual meta-analysis.15

In summary, there are many challenges in the analysis of diverse datasets including 

variability in experimental designs as well as information types that are largely platform 

dependent. However, by combining a fully automated workflow with an enhanced strategy 

for data storage and direct connection to the Metabolomics Workbench data repository, 

the described approach can provide a solution for meta-analysis, with the ultimate goal of 

maximizing the usage and dissemination of information-rich archival metabolomics data. 
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With the growing number of metabolomics, proteomics and genomics data generated to 

cover a wide range of biological questions, this workflow paves the way to unlock biological 

insights in the era of “big data” and “open science”.

Materials and Methods

Meta analysis framework.

The system has been built on a local based Flask system with code based on mummichog 

version 2.0.7 running on python 2.7.18 Several files were altered to allow for a multi-file 

input and hosting on a web frontend. Metabolomics Workbench data is processed using 

either csv/tsv formats directly into the software or via XCMS processing to csv/tsv files. 

Once the data is read each feature is processed against all possible adducts for search 

masses. Using the mummichog algorithm, the search masses are searched against the 

pathway database, each file is processed separately and ranked on their corresponding 

p-value score. Once a list of possible hits is obtained, they are merged between the different 

files such that any compound that is seen in more than one file is merged together and 

the best p-value score is taken. Now, the regular mummichog process continues with the 

statistical validation of the altered pathways. Finally, the output is processed to make further 

analysis simpler and result are downloaded by the user. Framework code has been made 

available via github at - https://github.com/hpbenton/archive-mummi

Metabolomics profiling data.

The colon cancer study A was available in the XCMS Online Public Space as a processed 

job. The raw MS data from high-resolution metabolome profiling for the colon cancer study 

B were archived in our laboratory, and previously obtained as part of a pilot colon cancer 

study (Study B). Both profiling studies were performed in RP-ESI(+)-Q-TOF profiling. 

More details on study A and B experimental setup can be found in previous published 

work.14,17 Metabolome profiles for AD, MCI, and CN plasma samples were downloaded 

from the Metabolomics Workbench repository,5 uploaded and re-processed in the XCMS 

Online. These studies were performed at the Mayo Clinic Study of Aging ((MCSA) and 

Mayo Clinic Alzheimer Disease Research Center (ADRC) and more details on study design 

and experimental procedures are available in previous published work.15

Data processing and re-analysis.

Raw archival data sets were uploaded as .mzXML files in the XCMS Online and processed 

as pairwise jobs. Before processing, the profiling data were manually examined for assessing 

the quality and the parameters for further processing and analysis. Colon cancer study A was 

already processed and available in the XCMS Online Public. The XCMS jobs were used 

for further meta-analysis in the Meta XCMS framework. P-value, intensity and ppm error 

settings are reported in the Supporting Information, Text S1.

Proteomics and Transcriptomics data.

Transcriptomics data were obtained from The Cancer Genome Atlas (TCGA)31 in the frame 

of a previous colon cancer study involving 22 subjects (22 colon cancer tissue samples vs 22 

paired normal tissues). Dysregulated genes were selected based on a p-value cut off of 0.01 
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and fold change > 4. A total of 7138 dysregulated transcripts were included in the final data 

set for upload in the XCMS Online as gene symbols. Proteomics data were obtained by the 

Clinical Proteomic Tumor Analysis Consortium (CPTAC), involving 90 patients affected by 

colon cancer (90 colon cancer tissue samples and 90 paired normal tissues). Dysregulated 

proteins were filtrated by p-value < 0.01 and fold change >2, obtaining a total of 2545 

dysregulated proteins uploaded in the XCMS Online as UniProt accession IDs for multiomic 

analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Workflow for the meta-analysis of heterogenous metabolomics data in XCMS Online: 

metabolomics data sets from public repositories are uploaded in the XCMS Online database 

and processed for metabolic features detection and statistical analysis. The jobs are then 

used as input for meta-analysis and integration with proteomics and transcriptomics data in 

Meta XCMS framework. Results can be shared in the XCMS Online cloud for knowledge 

dissemination.
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Figure 2. 
Developments of the meta XCMS framework to enhance archival metabolomics data 

processing, archiving and sharing for meta-analysis and systems level interpretation.
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Figure 3. 
a) Meta-analysis of colon cancer metabolomics studies, and systems level interpretation 

with proteomics and transcriptomics data; b) cohesive re-analysis of heterogeneous archival 

metabolomics data from AD and MCI, compared with CN.
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Figure 4. 
Meta-analysis across independent colon-cancer studies predicts 30 dysregulated metabolic 

pathways (A), including bile acids biosynthesis (B) and polyamine metabolism (C).
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Figure 5. 
Meta-analysis across AD vs CN and MCI vs CN studies in plasma predicts 101 dysregulated 

metabolic pathways.
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