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Summary

Several dynamic borrowing methods, such as the modified power prior (MPP), the commensurate 

prior, have been proposed to increase statistical power and reduce the required sample size in 

clinical trials where comparable historical controls are available. Most methods have focused 

on cross-sectional endpoints, and appropriate methodology for longitudinal outcomes is lacking. 

In this study, we extend the MPP to the linear mixed model (LMM). An important question is 

whether the MPP should use the conditional version of the LMM (given the random effects) or 

the marginal version (averaged over the distribution of the random effects), which we refer to as 

the conditional MPP and the marginal MPP, respectively. We evaluated the MPP for one historical 

control arm via a simulation study and an analysis of the data of Alzheimer’s Disease Cooperative 

Study (ADCS) with the commensurate prior as the comparator. The conditional MPP led to 

inflated type I error rate when there existed moderate or high between-study heterogeneity. The 

marginal MPP and the commensurate prior yielded a power gain (3.6%–10.4% vs. 0.6%–4.6%) 

with the type I error rates close to 5% (5.2%–6.2% vs. 3.8%–6.2%) when the between-study 

heterogeneity is not excessively high. For the ADCS data, all the borrowing methods improved 

the precision of estimates and provided the same clinical conclusions. The marginal MPP and 

the commensurate prior are useful for borrowing historical controls in longitudinal data analysis, 

while the conditional MPP is not recommended due to inflated type I error rates.
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1 | INTRODUCTION

Longitudinal studies are common in clinical settings where health-related outcomes are 

repeatedly measured over time. Randomized clinical trials often have a longitudinal nature 

in the sense that outcomes are measured before and after the intervention. The primary 
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analysis of clinical trials is typically based on a single clinical endpoint, but the analysis of 

longitudinal outcomes may yield more precise estimates and statistical power.

When analyzing the current clinical trial, it may be sensible to borrow information from 

similar historical clinical trials to gain more statistical power without increasing the required 

sample size. Fortunately, information from previous studies is often available in clinical 

trials. The reason is that clinical trials focusing on the same disease may have a variety of 

target treatments, but the control arms are often similar to each other1. It is appealing to 

borrow information from a historical control arm, which may allow researchers to save trial 

resources on the current control arm and obtain more accurate estimates, increased statistical 

power and reduced type I error rate2. However, it is obvious that simply pooling the current 

study and the historical control arm is not appropriate. Several statistical methods have been 

proposed to downweight information from the historical control arm, including the power 

prior, the commensurate prior, and the meta-analytic-predictive (MAP) method3,4,5.

The power prior proposed by Ibrahim and Chen raises the likelihood of historical data 

(historical likelihood) to a specific power α to generate a downweighted prior with historical 

information6. There are two versions of the power prior. The first type is to fix the power 

parameter in advance7,3, and the other is to estimate the power parameter based on observed 

data6,8,9. The modified power prior (MPP) method discussed in this paper belongs to the 

second category, where the power parameter can be estimated in a fully Bayesian way9. 

In the commensurate prior method, the parameters of the current study have a distribution 

centered on the corresponding historical parameters4. For the MAP, the parameters from the 

historical and current study are assumed to be exchangeable, i.e., they originate from the 

same distribution5.

The MPP has been implemented for univariate (binary, Gaussian, survival) 

endpoints8,9,10,11, but the developments for longitudinal endpoints are quite limited. Neelon 

et al.7 have applied the power prior with a prespecified power parameter in a longitudinal 

pediatric study. However, it is unclear how to specify the amount of historical information 

to be borrowed before knowing the level of compatibility between the historical data and 

the current data. The MPP method, which is a dynamic borrowing method that takes the 

observed data into account when determining the amount of historical borrowing, appears to 

be more reasonable.

The objective of this paper is to extend the MPP to the analysis of longitudinal studies, 

such as RCTs, and to evaluate its performance in this setting via a simulation study and a 

real-life data analysis study. The MPP approach will be illustrated using the data from the 

Alzheimer’s Disease Cooperative Study (ADCS), a large-scale Alzheimer’s disease research 

network based in the United States.

The paper develops as follows. Section 2 introduces the linear mixed model for longitudinal 

studies, with a focus on RCTs. Section 3 provides an overview of Bayesian borrowing 

methods. Section 4 describes the implementation of the MPP method in a longitudinal data 

analysis. Section 5 presents the implementation of an alternative method in longitudinal data 

analysis. Section 6 discusses the design and the results of the simulation study. Section 7 
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illustrates the implementation of the MPP in the analysis of the ADCS data. In the final 

section, we further discuss our findings and provide some general conclusions.

2 | THE LINEAR MIXED MODEL IN CLINICAL TRIALS

Consider a longitudinal study with Gaussian responses based on n subjects, where the ith 

subject (i = 1,2, …, n) has mi repeated measurements. A linear mixed model (LMM) to fit 

such data can be formulated as

yi = Xiβ + Zibi + ϵi, (1)

where yi is the mi × 1 vector of responses of the ith subject, Xi is a mi × p design matrix of 

fixed effects for the ith subject where p is the number of fixed effects, β is a p × 1 vector of 

fixed effects. Zi denotes a mi × q design matrix of random effects for the ith subject, q is the 

number of random effects, bi denotes a q × 1 vector of random effects for the ith subject and 

bi ~ N(0, G) where G is a q × q covariance matrix of the random effects. ϵi is the random 

error for the ith subject, ϵi ~ N(0, Ri), and Ri often has the form σ2Imi.

In an RCT, patients are randomized at baseline, and hence at baseline there is no difference 

in mean response between the treatments. Often we assume a linear evolution over time in 

which case the LMM takes the form:

yit = β0 + β1 × timeit + β2 × trti × timeit + b0i + b1i × timeit + ϵit, (2)

where yit is the response of the ith subject at time point t, and timeit denotes time since 

baseline, β0 is the intercept, β1 is the time effect, β2 is the interaction between treatment and 

time, b0i is the random intercept for the ith subject, b1i denotes the random slope of time 

for the ith subject, and ϵit is the error term. The model is a constrained longitudinal data 

analysis (cLDA) model with the baseline outcome measure included in the response vector 

and the baseline mean constrained to be the same across treatment groups12, and additional 

covariates can be also included in the above model.

In the analysis of clinical trials, the LMM can also be fitted with time treated as categorical, 

and the treatment effect is then typically tested at the last visit. The borrowing methods 

considered in this study are also applicable in this setting.

3 | THE POWER PRIOR: A BRIEF REVIEW

Ibrahim and Chen6 suggested to downweight the historical information by raising the 

historical likelihood to a power parameter, which generates the so-called “power prior”. 

One possibility is to fix the power in advance, the posterior distribution of the parameters in 

the analysis model is then given by

p θ ∣ y, y0, α ∝ L(θ ∣ y)L θ ∣ y0
αp0(θ), (3)

where θ is the set of parameters in the model, y denotes the current data, y0 stands for the 

historical control data, and α is the power parameter. L(θ | y) is the current likelihood, L(θ 
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| y0) is the historical likelihood, and p0(θ) is the prior for θ. The power parameter can be 

regarded as a weight parameter of the historical data and is restricted to the interval [0, 1], 

i.e., 0 ≤ α ≤ 1. The value of α determines the amount of historical data to be borrowed in 

the analysis of the current data. When α = 0, the power prior will not rely on the historical 

data, i.e., no incorporation of the historical data, whereas the historical data has the same 

weight as the current data if α = 1. The power parameter allows to control the influence of 

the historical data on the analysis of current data. In practice, one can evaluate the impact 

of choosing a particular fixed power by conducting a sensitivity analysis with different fixed 

power values.

Alternatively, one can treat the power parameter as a random variable and give it also a 

prior. Duan et al. proposed the MPP where the power prior distribution is normalized with a 

scaling constant9. The general formulation of the posterior distribution in the MPP is

p θ, α ∣ y, y0 ∝ L(θ ∣ y) L θ ∣ y0
αp0(θ)

∫ L θ ∣ y0
αp0(θ)dθ

p0(α), (4)

where the power prior is normalized with the scaling constant ∫ L θ ∣ y0
αp0(θ)dθ to satisfy 

the likelihood principle9,13.

Until now, the MPP has mostly been implemented for univariate endpoints. For instance, 

Duan et al. implemented the MPP in water quality comparison between sites involving 

binary and Gaussian outcomes8,9. The method was later implemented in survival 

outcomes10. In this paper, we will extend the MPP to longitudinal data analysis based on 

linear mixed models.

4 | THE IMPLEMENTATION OF THE MPP IN LONGITUDINAL DATA 

ANALYSIS

In this section, the motivation of the MPP implementation for a longitudinal data analysis 

and the technical details of its implementation in the LMM are discussed.

4.1 | Motivation

There are two versions of the linear mixed model. The first is the hierarchical version, 

which specifies the distribution of the Gaussian response in two stages: the distribution of 

the response given the random effects and the distribution of the random effects. This leads 

to the conditional version of the LMM likelihood, so it is the likelihood of the observed 

data given the random effects, i.e., yi | bi ~ N(Xiβ+Zibi, Ri). This conditional version of the 

LMM is extensively used in Bayesian software, because the data augmentation algorithm 

(augmenting the data with the latent random effects) is straightforward. The second version 

is the LMM likelihood integrated over the random effects. For the LMM, the integration 

leads to an analytical expression, i.e., yi N Xiβ, ZiGZi
T + Ri , which is called the marginal 

likelihood. Because of the existence of an analytical expression of the marginal likelihood, 

this method is easy to implement in any kind of software, Bayesian or frequentist. In 

classical frequentist software one makes use of the marginal likelihood. These two versions 
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of the LMM, the conditional (or hierarchical) and the marginal14, lead to two different 

implementations of the MPP with either the conditional likelihood or the marginal likelihood 

raised to the power parameter.

Different implementations of the power prior in the generalized linear mixed model 

(GLMM) were first described by Ibrahim and Chen, albeit without the scaling constant to 

normalize the posterior6. They pointed out that the power prior can be constructed by either 

exponentiating the historical likelihood given the random effects or the marginal historical 

likelihood after integrating out the random effects. In our study, the implementation of the 

MPP in the LMM is of particular interest.

For a fixed power parameter α, the power prior generated by raising the historical likelihood 

given the random effects to the power parameter is given by

p θ ∣ y0, α ∝ ∫ L θ, b0 ∣ y0
αp b0 ∣ θ db0p0(θ), (5)

where θ includes regression coefficients (β), the covariance matrix of the random effects 

(G), and the error variance (σ2), b0 denotes the historical random effects. The power prior 

constructed with the marginal historical likelihood is

p θ ∣ y0, α ∝ ∫ L θ, b0 ∣ y0 p b0 ∣ θ db0
α
p0(θ) . (6)

It is also possible to define two versions of the MPP for LMMs depending on how we 

deal with the random effects, and we refer to these versions as the conditional MPP and 

the marginal MPP. The details of their implementation are discussed in the following 

subsections.

4.2 | The conditional MPP

In the conditional MPP for a LMM, the power prior is obtained by raising the conditional 

historical likelihood to α, which is given by

p θ, b0, α ∣ y0 = L θ, b0 ∣ y0
αp b0 ∣ θ p0(θ)

∬ L θ, b0 ∣ y0
αp b0 ∣ θ p0(θ)db0dθ

p0(α) . (7)

The calculation of the scaling constant requires integration with respect to both θ and b0, 

and an algorithm that facilitates its calculation is described in Section 4.4.

Suppose that there are n subjects in the current data with mi repeated measures in the ith 

subject, and n0 subjects in the historical control arm with m0i′ repeated measures in the i′th 

subject. The joint posterior distribution of model parameters and the power parameter based 

on model (1) is
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p βC, βT , G, σ2, b, b0, α ∣ y, y0 ∝ ∏
i = 1

n
p yi ∣ βC, βT , bi, σ2 p bi ∣ G p0 βT

×
∏i′ = 1

n0 p y0i′ ∣ βC, b0i′, σ2 αp b0i′ ∣ G p0 βC p0(G)p0 σ2

∬ ∏i′ = 1
n0 p y0i′ ∣ βC, b0i′, σ2 αp b0i′ ∣ G p0 βC p0(G)p0 σ2 db0dθ

p0(α),

where βC is a (p−1)×1 vector of fixed effects including common fixed effects in both the 

current data and the historical control arm, for instance, the intercept, the time effect, and βT 

is the treatment effect only in the current data, b = (b1, …, bn) denotes the current random 

effects, b0 = b01, …, b0n0  is the historical random effects, y = (y1, …, yn) stands for the 

current data, y0 = y01, …, y0n0  is the historical data, θ denotes model parameters including 

βC, G, and σ2.

The conditional MPP is an example of a partial discounting power prior in that the historical 

likelihood p(y0i′ | βC, b0i′, σ2) is downweighted whereas the distribution of the subject-

specific random effects p(b0i′ | G) is not3. The difference between the partial discounting 
power prior in Ibrahim et al’s paper3 and the conditional MPP in this study is that the 

historical random effects b0 are not integrated out in this study due to the lack of closed-

form solution. Instead, the conditional MPP treats b0 as model parameters.

4.3 | The marginal MPP

In the marginal MPP, the power prior constructed with the discounted marginal historical 

likelihood is given by

p θ, α ∣ y0 = ∫ L θ, b0 ∣ y0 p b0 ∣ θ db0
αp0(θ)

∫ ∫ L θ, b0 ∣ y0 p b0 ∣ θ db0
αp0(θ)dθ

p0(α) . (8)

The joint posterior distribution of model parameters and the power parameter in the marginal 

MPP is then given by

p βC, βT , G, σ2, α ∣ y, y0 ∝ ∏
i = 1

n
p yi ∣ βC, βT , G, σ2 p0 βT

×
∏i′ = 1

n0 p y0i′ ∣ βC, G, σ2 α
p0 βC p0(G)p0 σ2

∫ ∏i′ = 1
n0 p y0i′ ∣ βC, G, σ2 α

p0 βC p0(G)p0 σ2 dθ
p0(α),

where p(y0i′ | βC, G, σ2) is the marginal distribution of y0i′ averaged over the historical 

random effects b0i′. The implementation of the marginal MPP in linear mixed models can 

be straightforward, while its implementation in generalized linear mixed models can be 

computationally intractable because the integration with respect to the random effects is 

required in every iteration.
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Unlike the conditional MPP, the marginal MPP is not a partial discounting power prior 
because the subject-specific random effects are integrated out, and the whole marginal 

likelihood is discounted using the power parameter.

In the above implementation of the conditional MPP and the marginal MPP, the estimation 

of βT is not directly informed by its enhanced prior because only the historical control arm 

is considered. However, its estimation could still be improved with the power prior of other 

model parameters.

Moreover, a theoretical comparison between the conditional MPP and the marginal MPP 

for LMMs was conducted, but no closed-form expressions for the marginal posterior of 

the power parameter are available to our knowledge. In a simplified comparison assuming 

known covariance matrix for random effects, G, and error variance, σ2, the conditional MPP 

tends to borrow more than the marginal MPP given the same power value, which implies 

that two equal power values in both approaches have different downweighting for the 

historical information in this case. Please refer to Section 1 in the supplementary document 

for more details.

4.4 | Estimation

According to the above formulations, posterior sampling in both the conditional MPP 

and the marginal MPP can be done only if the scaling constant is calculated. In data 

with univariate Gaussian or binary response, the scaling constant has a closed-form 

expression7,15,11. However, there is no closed-form for the scaling constant in Cox models 

and LMMs.

For a proportional hazards model, van Rosmalen et al. have adopted a path sampling 

algorithm to calculate the scaling constant10,16. We have adapted this path sampling 

algorithm to the LMM. In short, the implementation of the MPP for a LMM can be divided 

into two steps as follows.

• Step 1: calculate the scaling constant using the path sampling algorithm

In this step, scaling constants corresponding to a grid of fixed power values are 

calculated via a path sampling algorithm.

• Step 2: sample from the posterior based on scaling constants calculated in Step 
1 Since the power parameter is continuous in [0, 1], the scaling constants for 

powers not belonging to the grid are obtained via linear interpolation.

Sampling was conducted with Hamiltonian Monte Carlo (HMC) in Stan17, details of the 

estimation procedure and the Stan syntax are given in the supplementary material.

Furthermore, the efficiency of the sampler in Step 2 of the conditional MPP is relatively low 

due to a large number of historical random effects to be sampled, which brings difficulty to 

the convergence of model parameters. To improve the efficiency of the sampler, we proposed 

a new sampler that can avoid sampling the historical random effects because they are not 

parameters of primary interest after all. Considering only linear mixed models are involved 

in the study, the historical random effects (b0) can still be integrated out from the power 
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prior after the historical likelihood, L(θ, b0 | y0), raised to the power parameter. Based 

on results of preliminary results, the new sampler is more efficient than the sampler with 

historical random effects in terms of (1) computational time and (2) number of iterations 

required to achieve convergence. The details of the new sampler in Step 2 of the conditional 

MPP can be found in Section 3 of the supplementary document.

According to the results of preliminary simulations, we have found that there may exist a 

bimodal posterior of the power parameter with certain level of between-study heterogeneity 

in the conditional MPP. To achieve geometric ergodicity of the bimodal posterior, we set 

different random initial power values for the MCMC chains and a high target average 

proposal acceptance probability in Stan’s adaptation period (from the default 0.8 to 0.95). 

The geometric ergodicity can be achieved with the above initialization strategy according to 

diagnostic statistics including Bayesian fraction of missing information, number of divergent 

transitions, and the Gelman-Rubin convergence diagnostic R18,17,19. The bimodality can 

make the convergence of the sampler difficult, thus researchers should be wary of 

distinguishing a convergence problem from a genuine bimodal posterior of the power 

parameter when implementing the conditional MPP.

5 | ALTERNATIVE BORROWING METHODS IN LONGITUDINAL DATA 

ANALYSIS

Although relatively few alternative methods are available for historical borrowing in 

longitudinal settings, here we consider an application of the commensurate prior, as well 

as ignoring or pooling the historical data. Details of these methods are presented below.

Hobbs et al. proposed the commensurate prior that allows for the commensurability 

(comparability) between the historical and current data to determine the amount of historical 

information to be borrowed in the LMM2,4.

Unlike the MPP, the commensurate prior allows for different parameters for the historical 

and current data. The assumption of the commensurate prior is that the parameters of 

interest in the current study (θ) come from a multivariate normal distribution centered on the 

corresponding parameters in the historical control arm (θ0), i.e., θ ~ MVN(θ0, Σ) where Σ is 

the covariance matrix of θ given θ0. The multivariate normal distribution can determine the 

amount of historical data to be incorporated in the current analysis4.

The LMMs for the current study and the historical control arm can be formulated as

yi = XiβC + diβT + Zibi + ϵi, (9)

and

y0i′ = X0i′β0C + Z0i′b0i′ + ϵ0i′, (10)

where Xi is the design matrix of fixed effects for the ith subject in the current study and X0i′ 
is the design matrix of fixed effects for the i′th subject in the historical control arm, and βC 

and β0C are the vector of fixed effects for the current study and the historical control arm 
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respectively. di is the treatment assignment of the ith subject in the current study (di = 1 for 

treatment group, and di = 0 for the control group). In Hobbs’ paper, di is the main treatment 

effect, whereas di is the interaction between treatment and time in this study to be consistent 

with the model used in the MPP. Zi is the design matrix of random effects and bi denotes 

the vector of random effects for the ith subject in the current study, bi ~ N(0, G) where 

G is the covariance matrix of the current random effects. Z0i′ denotes the design matrix 

of random effects and b0i′ denotes the vector of random effects for the i′th subject, b0i′ ~ 

N(0,G0) where G0 is the covariance matrix of the historical random effects. ϵi N 0, σ2Imi  is 

the random error for the ith subject in the current study, and ϵ0i′ N 0, σ0
2Im0i′  is the random 

error for the i′th subject in the historical study.

Based on the above two LMMs, the posterior distribution of model parameters for the 

commensurate prior is given by

p βC, β0C, βT , G, G0, σ2, σ0
2, ΣβC ∣ y, y0 ∝ ∏

i = 1

n
p yi ∣ βC, βT , G, σ2 p βC ∣ β0C, ΣβC

∏
i′ = 1

n0
p y0i′ ∣ β0C, G0, σ0

2 × p0 β0C p0 βT p0(G)p0 G0 p0 σ2 p0 σ0
2 p0 ΣβC ,

where p βC ∣ β0C, ΣβC  is the multivariate normal commensurate prior for βC, ΣβC is a (p − 

1) × (p − 1) covariance matrix of βC given β0C. Note that the marginal likelihood of the 

LMM is used in the above model as Hobbs et al. did. The conditional likelihood could also 

be used in the commensurate prior, but this option was not explored in this study.

There are also two other choices to deal with the historical control arm when analyzing 

the current data, which are no borrowing and pooling. In our study, the no borrowing and 

pooling method use the same Bayesian LMM, and the posterior distributions of the model 

parameters is given by

p βC, βT , G, σ2 ∣ y ∝ ∏
i = 1

n
p yi ∣ βC, βT , G, σ2 p0 βC p0 βT p0(G)p0 σ2 , (11)

where the priors of the parameters, i.e., p0(βC), p0(βT), p0(G), p0(σ2), are typically chosen to 

be noninformative20.

6 | SIMULATION STUDY

The simulation study was conducted to assess the performance of the conditional MPP and 

the marginal MPP in a longitudinal data analysis and to compare with the abovementioned 

alternative methods. In the remainder of the section, the generation of the simulated data, 

the settings and details of the simulation study, e.g., the analysis model, the priors for the 

parameters, execution of the simulation, and simulation results are presented.
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6.1 | The generation of the simulated data

The simulation study was based on a two-arm RCT with longitudinal outcomes, where one 

historical control arm was available. The analysis model in the simulation study is given by

yitj = β0 + β1 × timeitj + β2 × trtij × timeitj + b0ij + b1ij × timeitj + ϵitj, (12)

where yitj is the outcome of the ith subject at time point t for the jth study (j = 1 for the 

current study, j = 2 for the historical control arm), β0 is the intercept, β1 is the time effect, 

β2 is the interaction between treatment and time, trtij = 0 or 1 when j = 1 depending on 

the treatment allocation, and trtij = 0 when j = 2. b0ij is the random intercept for the ith 

subject at the jth study, b1ij is the random slope for time trend for the ith subject in the jth 

study, and bij ~ N(0, G), ϵitj is the error term, and ϵitj ~ N(0, σ2). For the MPP, the subjects 

have a common intercept (β0) and time effect (β1), and subjects in the current treatment 

arm also have a treatment effect (β2). The subject-specific random effects parameterize 

the between-subject heterogeneity. In the commensurate prior, the parameters including the 

regression coefficients, the covariance matrix and the error variance are allowed to differ 

between studies. Note that the treatment effect is not included in the historical likelihood in 

that only information from the historical control arm is considered.

In the simulation study, we sampled the historical and the current control parameters from 

a common multivariate normal distribution. The reason for sampling control parameters 

was that we want to evaluate the performance of different approaches averaged over a 

range of historical parameters instead of a particular fixed historical trial. This type of 

data generating process was also used in previous studies that assess different historical 

borrowing methods10,11,21. Therefore, in the simulation of the data, we have included 

study-specific random effects for the intercept (β0) and the time effect (β1) to represent 

the between-study heterogeneity. The simulated data sets were generated according to

yitj = β0 + β1 × timeitj + β2 × trtij × timeitj + b0ij + b1ij × timeitj + d0j + d1j
× timeitj + ϵitj, (13)

where d0j is the study-specific intercept and d1j is the study-specific time effect to model the 

between-study heterogeneity, and dj ~ N(0,T) where T is a 2 × 2 covariance matrix for the 

study-specific random effects, which models the between-study heterogeneity.

In the simulation study, T was chosen to be a diagonal matrix with diagonal elements 

as σd0
2  and σd1

2 . Seven scenarios with four levels of between-study heterogeneity were 

considered, we considered them to be no heterogeneity σd0
2 = σd1

2 = 0 , low / moderate / 

high heterogeneity with only a between-study random intercept σd0
2 ≠ 0, σd1

2 = 0  and 

low / moderate / high heterogeneity with between-study random intercept and slope 

σd0
2 ≠ 0, σd1

2 ≠ 0 . Different T matrices corresponding to different levels of the between-

study heterogeneity are listed in Table 1. The levels of between-study heterogeneity 

were abbreviated as “No”, “RI+Low”, “RI+Moderate”, “RI+High”, “RIS+Low”, 

“RIS+Moderate”, and “RIS+High” respectively where “RI” represents that there is only 
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between-study random intercept and “RIS” represents that there are between-study random 

intercept and slope.

The number of subjects per arm for historical and current data was 100, and the number of 

repeated measurements was six. We let the time variable vary from 0 to 1 with increments of 

0.2. The parameters in the data generation model are: β0 = 2, β1 = 1, σb0
2 = 0.25, σb1

2 = 0.25, 

σb0, b1 = 0, σϵ2 = 1. The interaction is zero (β2 = 0) for scenarios without treatment effect, and 

β2 = 0.36 for scenarios with treatment effect. A full factorial simulation study that combines 

seven different levels of between-study heterogeneity with two choices of treatment effect 

(i.e., fourteen scenarios in total) was conducted.

Five methods including 1) no borrowing of the historical data, 2) the conditional MPP, 

3) the marginal MPP, 4) the commensurate prior based on the marginal LMM, and 5) 

the pooling analysis were compared and evaluated with 500 replications. All simulations 

were conducted with the software Stan version 2.19.1. When simulating the methods: 

no borrowing, pooling and the commensurate prior, four chains were initiated, and 2000 

iterations were run with 1000 burn-in iterations per chain. For the conditional MPP and the 

marginal MPP, the fixed power values in Step 1 ranged from 0 to 1 with an increment of 

0.02. Each power value had one chain with 100 iterations, and the posterior sampling in Step 
2 was based on four chains, each chain had 2000 iterations with 1000 burn-in iterations.

The priors of the parameters in the simulation were taken as follows. The prior for the 

regression coefficients is the g-prior, i.e., N(0, gσ2(XT X)−1) with g equals the number of 

observations in the current study20. The covariance matrix of the random effects (G) is 

decomposed into a vector of standard deviations of the random effects (τ) and a correlation 

matrix (Ω), i.e., G = diag(τ) × Ω × diag(τ). The prior for the components in τ is half-

normal(0, 1) and the prior for the correlation matrix is LKJ(η) with η = 122. Note that 

the prior for G in this simulation study differs from the inverse Wishart prior used by 

Hobbs et al. in the commensurate prior, but the modification is unlikely to change the 

estimation of the treatment effect. The prior for the standard deviation of the error term 

is half-normal(0, 4). Additionally, the covariance matrix of βC conditional on β0C in the 

commensurate prior ΣβC  was also decomposed into a vector of standard deviations (σβ0, 

σβ1) and a correlation matrix. The prior for standard deviations is half-normal(0, 1) and the 

prior for the correlation matrix is again LKJ(1). The prior for the power parameter is Beta(1, 

1) for both the conditional MPP and the marginal MPP.

The parameter of interest is the treatment effect, i.e., the interaction between treatment and 

time. The methods were evaluated in terms of hypothesis testing and effect estimation. The 

treatment effect β2 is statistically significant if the 95% credible interval does not contain the 

value 0. The type I error rate and statistical power were defined based on the above decision 

rule. Bias, posterior standard deviation (SD), and mean squared error (MSE) of the estimated 

treatment effect for different methods were computed to measure effect estimation.
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6.2 | Results of the simulation study

All methods in the simulation achieved good convergence under the above settings with R
in all simulated data sets less than 1.05. The conditional MPP is the most time-consuming 

among the methods, which took approximately 9 minutes for each simulated data set with 

the above setting. The computational time of the marginal MPP was about 3 minutes for 

each simulation.

The type I error rates and statistical powers of the methods considered in the simulation are 

visualized in Figure 1, where the dashed line in Figure 1A is the nominal 5% type I error 

rate and the dash line in Figure 1B is the average of statistical powers of “No borrowing” 

method in different scenarios.

Pooling the current data and historical control arm yielded a power gain of 11.2% compared 

to “No borrowing” when there was no between-study heterogeneity. However, the method 

had a type I error rate ranged from 7.2% to 42.2% in different scenarios with between-study 

heterogeneity, which was higher than the nominal type I error rate of 5%. The conditional 

MPP borrowed the most historical information among the dynamic borrowing methods. This 

method led to a type I error rate from 7.8% to 10.4% with moderate or high between-study 

heterogeneity, although it had a power gain (9.4%−11.0%) with no or low between-study 

heterogeneity. The marginal MPP had a type I error rate of 8.8% in the “RIS+High” 

scenario, but the method yielded a power gain (3.6%−10.4%) in scenarios other than 

“RIS+High” with the type I error rate ranging from 5.2% to 6.2%. A McNemar test was 

conducted to test the difference of type I error rates in the conditional and the marginal 

MPP in each scenario because the same 500 simulated data sets were analyzed using the two 

approaches, and statistically significant difference was found in “RI+Moderate”, “RI+High”, 

“RIS+Moderate”, and “RIS+High” scenarios. The commensurate prior had the type I error 

rate close to the nominal 5% rate with different levels of between-study heterogeneity (3.8%

−6.2%). Although the approach yielded less power gain than the marginal MPP expect in 

“RIS+High” scenario (0.6%−4.6% vs. 3.6%−10.4%), it was the only borrowing method that 

had higher statistical power compared to “No borrowing” in all scenarios. The decreased 

statistical power for the conditional MPP and marginal MPP in “RIS+High” scenario shows 

that borrowing an excessive amount of information from highly heterogeneous historical 

controls may harm the statistical power. The exact values of type I error rate and statistical 

power and the corresponding Monte Carlo standard errors (SEs) for all methods are shown 

in Table S1.

To improve the comparison of the statistical power, we calculated the “calibrated” power by 

fixing the type I error rate of all the methods to 5%, i.e., adjusting the coverage probability 

of the credible interval for hypothesis testing in scenarios without treatment effect. The 

calibrated power would allow fair comparison across different methods in terms of statistical 

power. Calibrated powers are presented in Figure 1C, where the dashed line is the average 

calibrated power of “No borrowing”method in different scenarios. As can be seen from 

the figure, the “Pooling” method performed poorly when the between-study heterogeneity 

was moderate to high. The conditional MPP also performed worse than “No borrowing” 

when the between-study heterogeneity was moderate to high, the difference was especially 
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large when the between-study heterogeneity was “RIS+Moderate” and “RIS+High”. The 

marginal MPP yielded more or comparable power compared to “No borrowing” except in 

“RIS+High” scenario, while the commensurate prior performed better than “No borrowing” 

in terms of power in all scenarios although its power gain was limited when the between-

study heterogeneity was low. The above conclusions drawn from Figure 1C validated those 

drawn from Figure 1A and Figure 1B.

Bias, posterior SD and MSE of the estimated regression coefficients along with the 

corresponding Monte Carlo SE in the simulation study are presented in Table S2–S4 in 

the supplementary material. Table S2 shows that all methods considered resulted in an 

unbiased estimated regression coefficient for treatment. Table S3 presents posterior SDs 

of the estimated treatment effect in the methods. The posterior SD depicts the precision 

of the estimated treatment effect, and we use this parameter as a measure of the amount 

of historical borrowing. As can be seen from the table, the conditional MPP borrowed 

most of the historical information, while the commensurate prior borrowed the least of 

the historical information in all scenarios. The average MSEs in Table S4 represent how 

much the estimation of the treatment effect can be improved by incorporating the historical 

information in these borrowing methods. In scenarios with no or low between-study 

heterogeneity, “No borrowing” had the highest MSE and thus borrowing historical data 

can improve the estimation. Pooling the current data and the historical controls produced 

the greatest MSE with moderate and high between-study heterogeneity. The MSE of the 

conditional MPP was similar to that for “No borrowing” in “RI+moderate” scenario, and 

the MSE for the approach was worse in “RI+High”, “RIS+Moderate” and “RIS+High” 

scenarios. The marginal MPP and the commensurate prior had similar MSEs as for “No 

borrowing” when the between-study heterogeneity was moderate or high, which means 

that not much gain can be expected in improving the estimation of the treatment effect. 

Monte Carlo SEs of the above performance measures are all acceptable, which indicates low 

simulation uncertainty and thus valid simulation results.

Distributions of five hundred posterior means of the power parameter for the conditional 

MPP and the marginal MPP in simulation scenarios without treatment effect are visualized 

with box plots in Figure 2, where the dots are means of the posterior means in different 

scenarios. Both MPP approaches can incorporate the historical information adaptively 

accounting for the difference between the current and historical data. Note that power 

parameters in the conditional MPP and the marginal MPP have different interpretations 

(see Section 1 of the supplementary document), the amount of borrowing can be quantified 

with the variability of the treatment effect in a more straightforward way. Medians and 

interquartile ranges (IQR) of the posterior means of the power parameter for these two 

approaches in all simulation scenarios are presented in Table S5. In addition, posterior 

modes of the power parameter in both the conditional MPP and the marginal MPP were 1 

with no between-study heterogeneity, which was in line with the finding in Duan et al.’s 

study9.

Due to inflated type I error rates yielded in the conditional MPP and the marginal MPP, we 

also conducted a sensitivity analysis for the MPP with a more skeptical prior, Beta(1, 2), for 

the power parameter. The estimates for the power parameter were lower than those obtained 
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from a Beta(1, 1) prior, and the type I error rates were slightly reduced in some scenarios. 

However, the Beta(1, 2) prior did not control the type I error rate either in scenarios that had 

inflated type I error rates with the uniform prior. Details of the sensitivity analysis can be 

found in Table S6–S7 of the supplementary document.

7 | THE MPP IN PRACTICE: THE ALZHEIMER’S DISEASE COOPERATIVE 

STUDY

In addition to the simulation study, it is also worthwhile to implement the dynamic 

borrowing methods in the analysis of real clinical trial data to further evaluate their 

performance in practice.

The motivating data sets were obtained from the University of California, San Diego 

Alzheimer’s Disease Cooperative Study (ADCS) Legacy database. The ADCS includes a 

series of clinical studies addressing treatments for both cognitive and behavioral symptoms 

in Alzheimer’s disease.

Among these clinical studies, two studies were chosen to be the historical and current data 

set respectively based on their similarity, namely ADC-016 and ADC-02723,24. Both studies 

are multicenter, randomized, double-blind, placebo-controlled trials, conducted in the United 

States, and the inclusion criteria for both of the studies were: age older than 50 years, 

and a Mini-Mental State Examination (MMSE) score25 within the range of 14 to 26. In 

ADC-016, the researchers evaluated the effects of high dose B vitamins on cognitive decline 

of Alzheimer’s disease, the primary outcome was the Alzheimer’s Disease Assessment 

Scale-Cognitive (ADAS-cog) score26, which was measured from baseline to month 18 every 

three months (7 repeated measurements). In the ADC-027 study, researchers investigated the 

effect of Docosahexaenoic Acid (DHA) supplement on Alzheimer’s disease with ADAS-cog 

score measured four times during the study period. The patients were examined at baseline 

and then every 6 months until month 18. The baseline characteristics of these two studies are 

shown in Table 2.

As can be seen from the baseline characteristics, the allocation ratio of ADC-027 is 3:2 with 

fewer patients randomized to the control arm, which makes it more appealing to borrow the 

historical control arm in the current analysis to supplement the number of subjects in the 

control arm.

The data were analyzed with a Bayesian LMM with ADAS-score as outcome, and the 

analysis was an intent-to-treat analysis including all randomized patients regardless of the 

missingness of the outcome as in the original paper. The model was also a cLDA model, and 

covariates included the model were baseline age, sex, years of education, baseline MMSE 

score, time, and the interaction between treatment and time (i.e., treatment effect). The 

main effect of treatment was excluded due to randomization. In addition, a subject-specific 

random intercept and a random linear time effect were included as random effects. The 

parameters of interest were the time effect and the interaction, and the statistical significance 

of these effects was also based on the 95% credible intervals. The chosen model is
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ADASitj = β0 + β1 × ageij + β2 × sexij + β3 × educationij + β4 × MMSEij + β5 × timeitj + β6 × treatmentij
× timeitj + b0ij + b1ij × time + ϵitj,

where ADASitj is the ADAS-cog score for the ith subject at time point t in the jth study (j = 

1 for the historical control arm and j = 2 for the current study).

The priors of the parameters, estimation method, and statistical software were the same as 

the settings in the simulation study, but each chain of the four chains had 5000 iterations 

with 2500 burn-in iterations (10000 post-warmup samples in total) to achieve convergence 

and get more precise estimates in this more complicated model. Parameter estimates 

(posterior means) of different borrowing methods and their 95% credible intervals (CI) are 

presented in Table 3.

The estimate of the time effect in the historical control arm is 0.410 (Posterior SD = 

0.029, 95% CI: 0.352–0.468). The time effect estimate based on the data of the ADC-027 

trial only is 0.521 (Posterior SD = 0.039, 95% CI: 0.444–0.596), while the time effect 

estimate is 0.459 (Posterior SD = 0.025, 95% CI: 0.411–0.508) by pooling the ADC-027 

and the control arm of the ADC-016. The time effect estimates in the dynamic borrowing 

methods lie between 0.459 and 0.521. The interaction between treatment and time is −0.022 

(Posterior SD = 0.051, 95% CI: −0.121–0.079) when based on the data of the ADC-027 

only and its estimate is 0.039 (Posterior SD = 0.040, 95% CI: −0.039–0.116) when pooling 

the data of the ADC-027 and the ADC-016. The estimates for the time effect and the 

interaction for the ADC-027 trial are slightly different from those in the original paper due 

to different covariates included in the model. The estimates of the interaction term from 

the dynamic borrowing methods also range between the estimates from the “No borrowing” 

and “Pooling” method. The estimates of the conditional MPP are closest to those from the 

pooling method, while the estimates of the commensurate prior are furthest to those from the 

pooling method, which indicates that the conditional MPP borrows the most of the historical 

information and the commensurate prior incorporates the least of it. The medians and IQRs 

of the power parameters in the conditional MPP and the marginal MPP are 0.67 (0.58, 0.76) 

and 0.41 (0.32, 0.53) respectively, and their distributions are visualized in Figure 3.

The posterior distributions of the time effect and the treatment effect in model (17) are 

presented in Figure 4. The posterior distributions of the parameters are in accordance with 

the results presented above. The conditional MPP borrows more historical information than 

other methods do, and the commensurate prior tends to incorporate the smallest amount of 

the historical information.

Including the historical information can change the direction of the treatment effect, as is 

shown in the results of the conditional MPP, the marginal MPP and the “Pooling” method. 

However, the treatment effect (β6) estimate is not statistically significant for any method. 

Our analyses confirm that DHA, the investigational treatment arm in ADC-027, has no 

significant effect on the cognitive function of Alzheimer’s disease patients, as also obtained 

with the original data24. Although the substantive conclusions would be unchanged, the 

dynamic borrowing methods improve the precision of the estimates.
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8 | DISCUSSION

Dynamic borrowing methods have seldom been implemented in the analysis of clinical trials 

with longitudinal outcomes. It can be desirable to take advantage of the merits of dynamic 

borrowing methods, e.g., increased statistical power, in longitudinal data analysis, and our 

study first implemented the MPP in this context. The results of the study have shown that 

the marginal MPP and the commensurate prior are viable methods to incorporate historical 

controls in the analysis of clinical trials with longitudinal outcomes, while the conditional 

MPP tends to borrow excessive historical information even if the historical and current study 

are rather incomparable. Pooling the current data and historical controls can inflate the type I 

error rate when there was between-study heterogeneity. The observed data typically provide 

only limited information on the amount of between-study heterogeneity, and the type I error 

rate tends to increase with the amount of heterogeneity. This means we should only adopt 

dynamic borrowing methods where a large level of heterogeneity can be ruled out a priori, 

based on comparability criteria, or alternatively we should use borrowing methods that give 

good results across a wide range of heterogeneity levels.

The conditional MPP increases the statistical power with at most a small increase of the 

type I error rates in scenarios with no or low between-study heterogeneity, however it 

yields a type I error rate higher than 7% when the between-study heterogeneity is moderate 

or high, which indicates that the conditional MPP cannot prevent the prior-data conflict 

efficiently. Both the marginal MPP and commensurate prior can yield type I error rates 

close to 5% if the between-study heterogeneity is not excessively high, but the marginal 

MPP has more power gain than the commensurate prior does in these scenarios. The 

commensurate prior yields the largest posterior SDs of estimated treatment effect, which 

indicates that the commensurate prior is more conservative than both the conditional MPP 

and the marginal MPP. The marginal MPP is a viable method to incorporate historical data 

if the between-study heterogeneity is not extra high, for instance, “RIS+High” in this study. 

The commensurate prior is a robust method for relatively heterogeneous historical controls, 

although its power gain is limited even with relatively low between-study heterogeneity. 

Note that the conclusion on the performance of the commensurate prior is drawn based on 

the specific prior for the between-study covariance matrix ΣβC , a more optimistic prior for 

ΣβC may lead to more power gain. Nonetheless the prior used for ΣβC in this study was 

sensible and realistic because it was specified based on the data. Besides, the commensurate 

prior did not incorporate information of (co)variance parameters, which may lead to 

less precise treatment effect estimate. Schmidli et al. has implemented the meta-analytic-

predictive approach to incorporate historical information of variance parameters27, it may 

also be possible to extend the commensurate prior to incorporate historical information of 

(co)variance parameters.

The major advantage of incorporating historical data in the analysis of the current data is the 

power gain compared to “No borrowing”. However, the power gain might be accompanied 

by potential increases of the type I error rate. In scenarios with no or low between-study 

heterogeneity, all dynamic borrowing methods can lead to the type I error rates close to 

5%. In scenarios with moderate or high between-study heterogeneity, the conditional MPP 
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leads to an inflated type I error rate, whereas the marginal MPP has type I error rate close 

to 5% and higher statistical power with that of “No borrowing”. Therefore it is desirable 

to assess the between-study heterogeneity before implementing the MPP to preclude a 

highly heterogeneous historical control arm using specific assessment tools28. Moreover, 

a more skeptical prior than the Beta(1, 2) prior used in the sensitivity analysis for the 

power parameter may be considered to control the type I error rate, which implies that the 

MPP especially the conditional MPP is excessively liberal in incorporating the historical 

information. Although inflation of the type I error rate is common in the context of historical 

borrowing methods, regulatory authorities such as FDA do not totally forbid the use of 

historical borrowing methods due to strict control of the type I error rate. Instead, it is 

stated in an official guidance issued by FDA that “When using prior information, it may be 

appropriate to control type I error at a less stringent level than when no prior information 

is used.”29. When there is a slightly inflated type I error rate using historical borrowing 

methods, researchers could still accept the inflation because the power gain may lead to 

benefits that outweigh the inflated type I error rate in a specific research situation30,31.

In the simulation of the study, there are also several points worth elaborating. First, unlike 

the previous studies, we modeled the between-study heterogeneity using the between-study 

covariance matrix T instead of a fixed bias. According to Spiegelhalter et al., there are 

different assumptions on the between-study heterogeneity, including equal but discounted, 

exchangeable, and biased32. The equal but discounted assumption is the assumption of the 

power prior but it is impossible to model the between-study heterogeneity based on this 

assumption. The exchangeable assumption assumes parameters from different studies are 

from the same distribution, which is the assumption of the meta-analytic-predictive and the 

commensurate prior approach. We used the exchangeable assumption to model the between-

study heterogeneity in this study. The biased assumption assumes there is a systematic 

bias between the current parameter and the historical parameter, which was widely used 

in previous studies2,1,3,33,21. Compared to the exchangeable assumption used in this study, 

the biased assumption is more realistic because the historical data is often available when 

researchers are choosing the historical borrowing method. Thus, the bias between the 

historical parameter and the current parameter is assumed to be fixed. However, it is hard to 

show the benefit of a historical borrowing method in that it is impossible to gain power with 

type I error rate controlled given the historical data30. The advantage of the exchangeable 

assumption is that it is more general, i.e. not limited to a specific historical data set, because 

the operating characteristics are derived by averaging over different simulated historical data 

sets, and it is more convenient to compare historical borrowing methods in terms of type 

I error rate and power based on the assumption. Yet researchers may need to be wary of 

the historical control that violates the exchangeable assumption, i.e. prior-data conflict. In 

practice, the exchangeable assumption is more appropriate if the evaluation of the methods 

is supposed to be generalized, while the biased assumption is preferred given the historical 

data. Second, we only considered equal sample sizes for the historical control arm and the 

current trial in the simulation. In practice, it is likely that the two trials have different sample 

sizes, so further research is of interest to evaluate how the sample size of the historical 

control arm could affect the operating characteristics.
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In addition to its implementation in longitudinal data analysis, the MPP could also be used 

to reduce the sample size in a new trial with a historical control arm available. However, the 

simulation results imply that the power gain is limited with the type I error rate controlled at 

the nominal 5% level. Therefore, the practical value of the MPP in sample size calculation 

may be limited, i.e., the required sample size would only be slightly reduced.

The conditional MPP might be the only feasible choice to implement the MPP in the 

generalized linear mixed models (GLMM) because no closed-form solution is available to 

integrate the random effects out of the historical likelihood in the GLMM. However, the 

sampler has difficulty in posterior sampling in terms of computational time and number 

of iterations required to achieve convergence in the implementation of this approach and 

the probable reason is that a large number of historical random effects need to be sampled 

with uncertain amount of historical borrowing. Moreover, the potential bimodality of the 

power parameter is an intrinsic property of the conditional MPP, which makes the method 

hard to sample and interpret. Finally, the results of the conditional MPP in LMMs have 

shown that the approach has borrowed extra historical information even with a relatively 

low between-study heterogeneity, which leads to an inflated type I error rate. Based on its 

unfavorable characteristics including low computational efficiency, bimodality of the power 

parameter, and excessive borrowing of historical information, the conditional MPP is not 

recommended to incorporate historical information in longitudinal data analysis. We are 

currently exploring what dynamic borrowing methods are best for the GLMM.

Furthermore, we implemented the MPP assuming the same set of covariates and same G 
matrix across studies, which was the initial assumption of the MPP. If the true underlying 

parameters in two trials do differ, the power parameter estimate will be low and the historical 

information will be greatly downweighted. In practice, it is also possible to implement the 

MPP with different sets of covariates or G matrices in different trials using the partial 
borrowing power prior3, which only borrows the shared parameters in the historical control 

arm and the current trial.

The ADCS data used in our study are ideal candidates to illustrate dynamic historical 

borrowing methods because they have (1) the same study design, (2) the same control 

arm treatment, (3) the same inclusion criteria, and (4) comparable baseline characteristics. 

Besides, they are consecutive clinical trials conducted by the same research group and 

even published in the same journal23,24. It then became natural to consider borrowing the 

historical control arm when analyzing the current data given the comparability between 

the historical and current data. Similarly, researchers who are interested in incorporating 

historical control arm in the current analysis using historical borrowing methods should 

also evaluate the compatibility between historical and current data beforehand. The criteria 

proposed by Pocock are common choices to accomplish the evaluation28,34. The results of 

the real-data analysis in this study were in accordance with those in the simulation study, 

and the conditional MPP borrowed the most among the dynamic borrowing methods and 

the commensurate prior borrowed the least. None of the dynamic borrowing methods find 

clear evidence that DHA supplementation slows the rate of cognitive decline in patients with 

Alzheimer’s disease. Although this conclusion is in line with the original publication of the 
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ADC027 trial24, the results of the dynamic borrowing methods provide a bit more precision 

on the potential treatment effect (reduce the posterior SD by 3.9%−19.6%).

In conclusion, the conditional MPP is not recommended for incorporating the historical 

controls in clinical trials with longitudinal outcomes because it tends to borrow an excessive 

amount of the historical data even the between-study heterogeneity is relatively high. On 

the contrary, the marginal MPP can yield more statistical power with the type I error rate 

close to 5%. Thus, it is sensible to further implement the marginal MPP in clinical trials 

with longitudinal normal responses. For instance, we may implement the marginal MPP 

to studies with multiple historical clinical trials because researchers often conduct clinical 

trials on the same disease with different investigational arms, such as ADAS for Alzheimer’s 

disease used in this study and ACTG for HIV/AIDS35. The MPP has been implemented in 

incorporating multiple historical trials with a single endpoint11,21, it is also worthwhile to 

extend the marginal MPP when multiple historical control arms with longitudinal outcomes 

are available in future studies. Furthermore, it is noteworthy that the commensurate prior 

outperforms the MPP in historical borrowing for highly heterogeneous data sets. Therefore 

the commensurate prior can be a viable choice to incorporate historical controls and prevent 

the data-prior conflict.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The type I error rate (A), statistical power (B), and calibrated power (C) of the estimated 

treatment effect for different methods based on 500 simulated data sets
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Figure 2. 
Box plots for the posterior means of the power parameter in the conditional MPP and the 

marginal MPP with different levels of between-study heterogeneity based on 500 simulated 

data sets
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Figure 3. 
Posterior distributions of the power parameters in the conditional MPP and the marginal 

MPP in the analysis of ADCS data
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Figure 4. 
Posterior distributions of the power parameters in the conditional MPP and the marginal 

MPP in the analysis of ADCS data
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TABLE 1

The covariance matrix of the between-study random effects for different between-study heterogeneity levels

Random effects Heterogeneity level σd0
2 σd1

2
Scenario

No No 0 0 No

Intercept Low 0.01 0 RI+Low

Intercept Moderate 0.09 0 RI+Moderate

Intercept High 0.16 0 RI+High

Intercept+Slope Low 0.01 0.01 RIS+Low

Intercept+Slope Moderate 0.09 0.09 RIS+Moderate

Intercept+Slope High 0.16 0.16 RIS+High
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TABLE 2

The baseline characteristics of the candidate studies

Study ADC-016 ADC-027

Number of subjects 409 (T: 240, P: 169) 402 (T: 238, P: 164)

Study period 2003–2006 2007–2009

Study duration (months) 18 18

Baseline age (Mean (SD)) 76.3 (8.0) 76 (8.7)

Sex (% of female) 56.0 52.2

Years of education (Mean (SD)) 13.9 (3.1) 14 (2.8)

Baseline MMSE (Mean (SD)) 21.0 (3.5) 20.7 (3.6)
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TABLE 3

Parameter estimates of the ADC-027 trial using different borrowing methods

Method
Time effect β5 Treatment effect β6

Posterior mean Posterior SD 95% CI Posterior mean Posterior SD 95% CI

No borrowing 0.521 0.039 (0.444, 0.596) −0.022 0.051 (−0.121, 0.079)

Conditional MPP 0.462 0.026 (0.411,0.514) 0.034 0.040 (−0.045,0.112)

Marginal MPP 0.477 0.032 (0.416, 0.542) 0.022 0.046 (−0.068, 0.109)

Commensurate prior 0.516 0.039 (0.441, 0.592) −0.015 0.050 (−0.117, 0.081)

Pooling 0.459 0.025 (0.411,0.508) 0.039 0.040 (−0.039, 0.116)
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