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Summary

False negative rates of SARS-CoV-2 diagnostic tests, together with selection bias due to 

prioritized testing can result in inaccurate modeling of COVID-19 transmission dynamics based 

on reported “case” counts. We propose an extension of the widely used Susceptible-Exposed-

Infected-Removed (SEIR) model that accounts for misclassification error and selection bias, and 

derive an analytic expression for the basic reproduction number R0 as a function of false negative 

rates of the diagnostic tests and selection probabilities for getting tested. Analyzing data from 

the first two waves of the pandemic in India, we show that correcting for misclassification and 

selection leads to more accurate prediction in a test sample. We provide estimates of undetected 

infections and deaths between April 1, 2020 and August 31, 2021. At the end of the first wave 

in India, the estimated under-reporting factor for cases was at 11.1 [95% CI: 10.7,11.5] and for 

deaths at 3.58 [95% CI: 3.5,3.66] as of February 1, 2021, while they change to 19.2 [95% CI: 

17.9, 19.9] and 4.55 [95% CI: 4.32, 4.68] as of July 1, 2021. Equivalently, 9.0% [95% CI: 8.7%, 

9.3%] and 5.2% [95% CI: 5.0%, 5.6%] of total estimated infections were reported on these two 

dates, while 27.9% [95% CI: 27.3%, 28.6%] and 22% [95% CI: 21.4%, 23.1%] of estimated total 

deaths were reported. Extensive simulation studies demonstrate the effect of misclassification and 

selection on estimation of R0 and prediction of future infections. An R-package SEIRfansy is 

developed for broader dissemination.
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1 | INTRODUCTION

The COVID-19 pandemic, caused by severe acute respiratory coronavirus 2 (SARS-CoV-2), 

first identified in Wuhan, China in December 2019, escalated to a global pandemic leading 

to more than 220 million cases and more than 4.5 million reported deaths worldwide as of 

September 6, 20211. While rapid testing for COVID-19 is an important component of non-

pharmaceutical intervention strategies2 using either a reverse transcription polymerase chain 

reaction (RT-PCR) test, rapid antigen tests (RAT) or the less frequently used CT imaging of 

the chest3, concerns about false negative test results remain a practical and methodological 

challenge. Evidence-based clinical understanding supported by robust statistical tools to 

identify such misclassification errors is a critical step for mitigating COVID-19 transmission 

risk through effective contact tracing and isolation4.

Extant literature on false negative results include Yang et al.5 who describe a study of 

213 hospitalized patients, where 11% of sputum-, 27% of nasal- and 40% of throat-based 

samples were declared false negatives after a week. Studying publicly available time-series 

data of laboratory tests, Burstyn et al.6 develop Bayesian methods for understanding 

misclassification errors. A systematic review7 of five studies (covering 957 patients) reports 

a false negative rate range of 2 to 29%. Existing studies focus more on false negative 

RT-PCR results because they might provide a false sense of security to truly infected and 

infectious individuals and lead to further spread of the disease. In addition, false positive 

rates of diagnostic tests appear to be much lower than the corresponding false negative 

rates8,9.

Models for infectious disease spread such as the ones proposed by the Institute of Health 

Metrics and Evaluation-University of Washington, Seattle (IHME)10 and the Imperial 

College London (ICL)11 have become widely popular as forecasting tools. Such multi-

compartment epidemiological models, based on the daily time series of infected, recovered 

and fatal cases, have been effectively used to model the full course of disease transmission 

owing to their generalizability, robustness and accuracy12. The extended SIR model13, 

building on the standard SIR14 model, provides a tool to directly incorporate various types 

of time-varying interventions. Another extension, the SAPHIRE model15, accounts for the 

infectiousness of asymptomatic16 and presymptomatic17 individuals in the population, time-

varying ascertainment rates, transmission rates and population movement. Despite these 

extensions, there is essentially no statistical methodology to formally address the key issue 

of false negatives in tests in these mechanistic models, which could lead to a larger number 

of unreported cases, bias the model estimates and subsequent inference.

An additional concern surrounding testing is the selection bias resulting from prioritized 

testing for individuals or sub-groups, driven by a combination of severity of symptoms 

and types of occupation as a requirement prior to undergoing medical procedures, travel 
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requirements or pre-existing health conditions. As a result, predicted case-counts and 

estimated parameters deviate from the population truth. Estimating the underlying selection 

model and sensitivity analyses are feasible when we have extensive information available 

on why someone got tested18,19. In the context of COVID-19 testing, such biases impact 

estimates of disease prevalence and the effective reproduction number unless a random 

sample of the population is tested and/or testing becomes abundantly available for everyone. 

Moreover, false positive/negative rates of tests interact with selection bias in complex ways: 

Dempsey20 notes the inability of current methods to simultaneously account for selection 

bias and measurement error, and makes several suggestions on addressing these two issues.

In this paper, we propose a Bayesian compartmental epidemiological model which accounts 
for false negatives in diagnostic tests by adding extra compartments for false negatives to 

the standard SEIR model21,22 assuming a known value of the test sensitivity (1 – false 

negative rate). Our method provides estimated numbers of total cases and deaths, both 

reported and unreported, characterizes uncertainty in estimation via posterior sampling. To 

facilitate decision-making and public use, we have contributed an R-package SEIRfansy 
(faLSE nEGATIVE rate and syMPTOM) to implement these methods.

We illustrate our methods by analyzing the transmission patterns of COVID-19 in India from 

April 1st, 2020 to August 31st, 2021. While our method can be applied more generally, 

we have focused on India for three main reasons - first, the devastating second wave has 

caused an unprecedented catastrophe in India, with more than 440 thousand reported deaths 

on September 6, 2021 and an worst case estimate of roughly 4.2 million deaths23. Second, 

different stages of non-pharmaceutical interventions in India are well-documented and the 

public health policies were roughly uniform throughout the country in Wave 1, but not in 

Wave 2, providing two different test cases for our methods. Third, India is one of the few 

countries where there has been four national serosurveys, providing an empirical estimate 

of the prevalence of past infections, this helps us to calibrate our estimates for latent 

infections24.

The rest of the paper is organized as follows. In §2, we introduce the method used for 

data analysis and simulation, accompanied by key metrics for evaluation. We also describe 

extensions to incorporate (i) time varying fatality rates (ii) symptom-based testing and 

general selection bias with details of extensions relegated to the supplementary materials. 

Section 3 contains the results for analysis of the data from India. Section 4 contains 

extensive simulation studies to assess the performance of our model under misclassification 

and symptom-driven selection. Section 5 provides a summary discussion. We note here that 

earlier contributions by a subset of the current authors25,26 focused on the serosurvey data 

from Delhi, India and a systematic comparison of five different epidemiological models, 

respectively. In contrast, this paper provides an extensive analysis of the two waves of 

COVID-19 pandemic in India (vide §3), and delineates the effect of misclassification and 

selection via extensive simulation study.
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2 | METHODS

2.1 | Developing the SEIR-fansy model

Compartmental epidemiological models such as the SEIR model21,22 for studying the spread 

of an infectious disease divides the entire population into various compartments per their 

current status (e.g. SEIR: Susceptible-S, Exposed-E, Infectious-I, Removed-R), and model 

the flow patterns between these compartments over time.

We propose an extension of the SEIR model (Fig. 1) that directly incorporates false 

negative rates of the diagnostic tests and untested infectious compartments into the model. 

We assume that the untested compartment primarily consists of asymptomatic individuals 

and divide the tested individuals into ‘Tested Positive’ (which consists of true positives) 

and negative (‘False Negative’) compartments. Further, as in the base-model, exposed 

individuals are included in the E compartment. Our model specification excludes a small 

fraction of people who are diagnosed directly based on only symptoms, without ever having 

a diagnostic test. After virus exposure (with or without subsequent testing), infectious people 

will then either recover from disease or die. Compartments for these two outcomes are 

defined separately for reported and unreported cases. Thus, compared to the standard SEIR 

model21, we have retained the S and E compartments but have split the I compartment 

into U, P and F compartments. The removed (R) compartment in the SEIR model has 

been further split into four compartments - RU, DU, RR and DR respectively. The precise 

definitions for the compartments and parameters as laid out in Fig. 1 are described below. 

Note that in our model, we consider two different types of unreported infectious individuals 

- untested (U) and false negatives (F). These two compartments, along with the the tested 

positive individuals, constitute the infectious component and play a crucial role in the 

disease transmission dynamics. On the other hand, the exposed (E) individuals, although 

themselves infected, do not transmit the disease to other (susceptible) individuals during the 

latent incubation period. Furthermore, the ‘tested’ compartment (T) does not include the 

tested individuals who truly do not carry the virus (i.e., true negatives). The reason that we 

do not model truly negative individuals explicitly, is that they do not have any impact on the 

disease transmission dynamics and hence, can be treated same as the individuals in the S 
compartment.

2.2 | Compartmental Parameters

We model the duration of stay in a particular compartment by an exponential distribution 

with a specified rate parameter, and the system of differential equations given by 

(1) describes the underlying transmission dynamics. Although transitions between 

compartments happen in continuous time, we adopt the standard practice15,27 of considering 

a discretized system to implement our model as data are collected at a daily level. Below, 

we define the main parameters of our model (vide Fig. 1) that specify the underlying 

transmission dynamics:

• β: Rate of transmission of infection by false negative individuals.

• αp: Ratio of rate of transmission by tested positive patients relative to false 

negatives. We assume αp < 1, since patients who are tested positive are likely to 
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adopt isolation measures, where the chance of spreading the disease is less than 

that of false negative patients who are mostly unaware of their infectious status.

• αu: Scaling factor for the rate of transmission by untested individuals. αu is 

assumed to be < 1 as compartment U mostly consists of asymptomatic or mildly 

symptomatic cases who are on average likely to be less contagious than those 

having symptoms.

• De: Incubation period (in number of days).

• Dr: Mean number of days till recovery for those who test positive.

• Dt: Mean number of days for the return of test result.

• μc: Death rate due to COVID-19 infection, equivalent to the inverse of the 

average number of days from disease onset to death multiplied by the true 

infection fatality rate.

• λ, μ: Natural birth and death rates in the population. These are assumed to be 

equal for the sake of simplicity.

• r: Probability of being tested for infection, akin to the ascertainment rate used in 

other comparable SEIR-type models.

• f: False negative probability of RT-PCR test.

• β1 and 1/β2: Scaling factors for rate of recovery for undetected and false 

negative individuals respectively. Both β1 and β2 are assumed to be less than 

1. The severity of symptoms in untested individuals is assumed to be less than 

those tested positive. Consequently, untested individuals are assumed to recover 

faster than those who tested positive. The time to recovery for false negatives 

is assumed to be larger than those who tested positive since their absence of 

diagnosis and consequently formal hospital treatment.

• δ1 and 1/δ2: Scaling factors for death rate for untested and false negative 

individuals respectively. Both δ1 and δ2 are assumed to be less than 1. The 

untested individuals are assumed to have a smaller probability of dying relative 

to those who test positive, since untested people are mostly asymptomatic. False 

negatives are assumed to have a higher probability of dying relative to those 

who test positive due to absence of diagnosis and consequently seek hospital 

treatment.

In the following sections we assume β and r to be time-varying quantities, with βt and rt 

being their respective values at time t. We briefly describe the transmission dynamics of our 

model. First, the susceptible (S) individuals come in contact with any infected individual at 

a given time at the four infectious compartments/nodes U, T, F and P with rates αuβt, αTβt, 

βt and αpβt respectively. After getting infected, susceptible people transition to the exposed 
node, and after the incubation period, become infectious and move into either the untested 

(U) or the tested (T) node with rates (1−rt)/De and rt/De, respectively. It is important to note 

that the E node contains only infected people, and so if they are tested after the sub-clinical 

latency period they should all be positives with a perfect test. However, due to limited testing 
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and asymptomatic diseases, only those who are tested are reported to be positive or negative 

after DT days with rate (1−f)/Dt and f/DT respectively. Those in the untested compartment 

(U) move to the recovered unreported node (RU) and the death unreported node (DU) with 

rates 1/β1Dr and δ1μc while the tested positive people move to the recovered reported node 

(RR) and death reported node (DR) with rates 1/dr and μc respectively. Finally, the tested 
false negative people (F) move to the the recovered unreported (RU) and death unreported 
(DU) with rates β2/Dr and μc/δ2 respectively. We shall use S(t), E(t), T(t), U(t), F(t), RR(t), 
RU(t), DR(t) and DU(t) to denote the number of people in the aforementioned compartments 

on the tth day.

Differential Equations: The number of individuals at time t at each node in Fig. 1 follows 

the set of differential equations described below. Here we make a simplifying assumption 

that the time required from getting tested to obtaining the result or DT is hard to identify 

and to estimate when treated as a separate parameter. In the main text, we assume DT = 

0, implying that the T node is instantaneous, i.e., individuals do not spend any time at that 

node and move to either F or P immediately. This assumption makes the system of equations 

simpler and leads to more stable estimates. We describe the case of non-instantaneous 

testing in supplementary §S.1.3. The following are the differential equations corresponding 

to instantaneous testing.

∂S
∂t = − βtS(t)

N αPP (t) + αUU(t) + F (t) + λN − μS(t) (1)

∂E
∂t =

βtS(t)
N αPP (t) + αUU(t) + F (t) − E(t)

De
− μE(t)

∂U
∂t =

1 − rt E(t)
De

− U(t)
β1Dr

− δ1μcU(t) − μU(t)

∂P
∂t =

(1 − f)rt E(t)
De

− P (t)
Dr

− μc P (t) − μ P (t)

∂F
∂t =

f rt E(t)
De

−
β2 F (t)

Dr
−

μc F (t)
δ2

− μ F (t)

∂RU
∂t = U(t)

β1Dr
+

β2 F (t)
Dr

− μ RU(t)
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∂RR
∂t = P (t)

Dr
− μ RR(t)

∂DU
∂t = δ1μcU(t) +

μc F (t)
δ2

∂DR
∂t = μcP (t)

The individuals in the exposed (E) compartment are not infectious yet, as the virus is in 

subclinical latency and not contagious. In fact, the number of days for an individual in the 

E compartment to become infectious (i.e., to enter either P, F or U) is assumed to follow an 

exponential distribution with mean De = 5.2 days. The first term in the differential equation 

for S compartment i.e., [β(t)S(t)(αPP(t) + αUU(t) + F(t))] denotes the incoming infected 

individuals which depends on the infection/transmission rate β(t), the number of susceptible 

individuals S(t), and the number of infectious individuals P(t), U(t) and F(t). These three 

compartments are the only that can spread infection. The system of differential equations 

in (1) provides the evolution dynamics of the compartmental counts over time. It is worth 

pointing out that while our assumption of mean incubation period De = 5.2 is consistent with 

extant literature28 for the ancestral, alpha and delta variants, the reduced generation interval 

for Omicron does not affect our data analysis as it ends in August 2021 before Omicron 

emerged. To investigate the effect of De on key metrics, we have performed a new sensitivity 

analysis by varying the latency period from 2–6 days (supplementary §S.7.2). We observe 

that the predicted number of active cases and estimates of R0 exhibit small but observable 

variation with changing values of De, with the overall trend remaining similar. Thus, while 

our assumptions are guided by the values reported for the ancestral, alpha and delta variants 

predominant during our observation period in India, the latency and incubation periods are 

subject to change with emerging variants of Covid-19 like Omicron with shorter incubation 

period. Future studies would need to incorporate this external information using reliable and 

accurate estimates29 of De. Different periods of the pandemic will need different values of 

De based on the dominant variant.

To obtain predictions for derived quantities of interest, such as the reported and total active 

case counts starting from the primary compartmental counts, we refer to the formulae given 

in Table 1.

The basic reproduction number R0 under these set of differential equations is given by

R0 = βt ⋅ S0
μDe + 1

αu 1 − rt
1

β1Dr
+ δ1μc + μ

+ αprt(1 − f)
1

Dr
+ μc + μ

+ rtf
β2
Dr

+ μc
δ2

+ μ
(2)

where,
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S0 = λ/μ if μ ≠ 0
1 if μ = 0

The derivation of R0 has been deferred to §S.1.1.1 of supplementary materials. With the 

system of differential equations governing our compartmental model and the expression of 

R0, we describe the estimation strategy for the key parameters in our model. We fix the 

values of most parameters guided by previous studies (details in supplementary §S.3.1)., 

and use data-based estimates for the time-varying parameters βt and rt for each of the 

pre-determined time intervals. Towards this, we assume a multinomial likelihood for the 

compartmental counts (see §2.3.2) and use a Metropolis–Hastings algorithm (§2.3.4) to 

draw samples from the posterior distribution of the parameters βt and rt.

2.3 | Estimation

Typically, one can solve the system of equations by assuming initialization constraints/

values, then fixing certain key parameters and allowing parameters of interest to be 

estimated based on data. We assume there are two key time varying parameters - the 

transmission rate βt and ascertainment rate rt. For our analysis, we have split the time period 

of interest (training period) into smaller sub-intervals, within which the values of βt and rt do 

not change. However, as we move from one sub-interval to another, we allow the parameter 

values to vary. This assumption reflects the natural progression of the pandemic coupled 

with changes in intervention strategies in the population under study. In this context, it is 

natural to ask if only two unknown parameters are sufficient to describe a complex model 

like the one at hand. Here, we are only estimating the parameters βt and rt because the other 

parameters like De, Dr, μc, etc. have been studied extensively using data across the world, 

and reliable estimates have been obtained by various studies on different populations (see 

the references in supplementary §3.1). The effect of changing the fixed parameter values 

or initial values on our analysis has been studied in supplementary §S.7. The steps for 

estimating the parameters are outlined as follows. The brief outline of the procedure is 

provided in Fig. 2.

2.3.1 | Solving the system of differential equations—Since it is difficult to obtain 

analytical solutions to this set of differential equations, we use approximations to solve 

them. Further, we only need the compartmental values at discrete time points (daily values, 

in our case). One can use discrete time approximations of the continuous time differential 

equations. Such approximations are common in epidemiological applications and have been 

empirically shown to be quite accurate27. The differential equations presented in §2.3.1 

are replaced by a set of difference equations. That is, the derivative (instantaneous rate of 

change) of number of cases for any compartment X with respect to time t given by ∂X
∂t  is 

approximated by the difference between that compartment counts on the (t + 1)th day and the 

tth day, (X(t + 1) − X(t)). The discrete time recurrence relations are provided below:
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S(t + 1) − S(t) = − βtS(t)
N αPP (t) + αUU(t) + F (t) + λN − μS(t)

E(t + 1) − E(t) = βtS(t)
N αPP (t) + αUU(t) + F (t) − E(t)

De
− μ E(t)

U(t + 1) − U(t) = 1 − rt E(t)
De

− U(t)
β1Dr

− δ1μcU(t) − μ U(t)

P (t + 1) − P (t) = (1 − f)rt E(t)
De

− P (t)
Dr

− μc P (t) − μ P (t)

F (t + 1) − F (t) = f rt E(t)
De

− β2 F (t)
Dr

− μc F (t)
δ2

− μ F (t)

RU(t + 1) − RU(t) = U(t)
β1Dr

+ β2 F (t)
Dr

− μ RU(t)

RR(t + 1) − RR(t) = P (t)
Dr

− μ RR(t)

DU(t + 1) − DU(t) = δ1μcU(t) + μc F (t)
δ2

DR(t + 1) − DR(t) = μcP (t)

(3)

An examination of (3) reveals that the state variables at time (t + 1) depend not only on the 

state space at time t but also the transmission parameters at time t. As before, some of these 

parameters are assumed to be fixed, while others (viz., βt and rt) are the unknown parameters 

of interest. Knowing the initial compartment values (at t = 0) along with the entire set of 

parameters (including initial values β0 and r0) allows us to generate compartmental values 

for the entire time period under investigation (say, d days) in an iterative manner using the 

system of difference equations (3) above. This enables us to calculate the likelihood function 

at any given value of βt and rt using one of the underlying functions (discussed in §2.3.2).

We use a Bayesian inferential framework via Markov chain Monte Carlo (MCMC) sampling 

for estimating the key parameters βt and rt. Our choice of a Bayesian paradigm over a 

frequentist one is motivated by two main concerns. First, iterated algorithms for finding the 

maximum likelihood estimate are more prone to returning a local optimum rather than the 

global maxima in presence of multiple parameters in a non-linear model30,31. In our context, 

for wave 1, we have divided the entire time period into 12 time intervals, based on the 

different non-pharamceutical interventions by the government. This necessitates estimating 

24 parameters (transmission rate (βt) and ascertainment rate (rt)) corresponding to the 12 

periods. Properly designed posterior sampling algorithms are more likely to converge to 

more stable estimates in such cases. Second, Bayesian methods allow automatic uncertainty 

quantification and inference on complex functions of the underlying parameters without 

resorting to large sample approximations like the delta theorem.

Since the full conditional distributions for βt and rt do not have analytically tractable 

conjugate forms, posterior computation can proceed via a Metropolis–Hastings algorithm 

using the likelihood as a function of βt and rt and the prior specification in §2.3.3. We 

observe good computational efficiency for our sampler indicated by rapid convergence, 

adequate mixing and low autocorrelation, and point estimates are obtained via summary 

statistics based on the posterior draws.
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Before writing the skeletal algorithm, let us introduce some notation for the rest of the 

estimation procedure. Let s denote the total number of time periods. Then for j ∈ {1, … s}, 

let β(j) and r(j) denote the values of parameters β and r in the jth period (since, parameters 

are assumed to remain constant within each time period). Define β = {β(1), …, β(s)} and 

r = {r(1), …, r(d)} and Xt = (S(t), E(t), …, DR(t)). Also, let βi and ri denote the posterior 

samples of β and r drawn at the ith iteration of the MCMC algorithm. Algorithm 1 presents 

an outline of the iterative estimation algorithm.

The following sections discuss how the likelihood is formulated and choice of priors in 

greater detail.

2.3.2 | Distributional assumptions and likelihood—We assume that the joint 

distribution of the counts transitioning to each compartment at a given time follows a 

Multinomial distribution. For example, from the exposed node, one can move to the positive, 

false negative, or untested nodes, or they may die due to natural causes. Let ζX→Y denote 

the number of individuals moving from X to Y compartment at time t with ζX→O denoting 

the number of individuals in compartment X dying at time t. Similarly pX→Y denote the 

probability of an individual moving from X to Y compartment at time t and pX→O denotes 

the probability of an individual in compartment X dying at time t.

ζE U, ζE P , ζE F , ζE O, ζE E Multinom 

E(t − 1), 1 − rt
De

, rt(1 − f)
De

, rtf
De

, μ, 1 − pE U − pE P − pE F − μ
(4)

The complete model with the distributions of latent nodes have been described in details in 

supplementary §S.2.3.2, and we describe the likelihood next.

Case I: Only using data on daily new cases:  For this situation, we assume that given 

the parameters, the number of new confirmed cases on the the tth day depends only on the 

number of exposed individuals on the previous day. Let the number of newly reported cases 

on day t, Pnew(t), say, follow a distribution with probability mass function (pmf) h(x | β, r, 

E(t − 1}). Then, we can write the likelihood of β = {β1, β2, …, βs} and r = {r1, r2, …, rs}, 

where s denotes the number of disjoint time periods, as :
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L(β, r) = ∏
t = 1

d
ℎ xt ∣ E(t − 1), β, r

Here, d denotes the last day used in model-fitting. We assume that Pnew(t) follows a 

Binomial distribution with size E(t − 1) and probability rt(1−f)/De. This is a natural 

corollary of the assumption that counts corresponding to all the compartments jointly 

follow a multinomial distribution. Thus the daily number of positive cases marginally will 

follow a binomial distribution. Alternatively one can assume that Pnew(t) follows a Poisson 

distribution with rate rt(1−f)/De × E(t − 1), where E(t − 1) is the conditional expectation of 

the number of exposed at day (t − 1).

Case II: When daily data on new cases, recoveries and deaths are 
available.: Marginally, the distribution for the daily number of positive cases remains 

the same as before. For the recovered and death nodes, the joint distribution is again a 

multinomial distribution given P(t − 1). Let Pnew(t), RRnew(t), and DRnew(t) denote the 

number of new reported cases, recoveries and deaths respectively on the tth day. If Pnew(t), 
RRnew(t), and DRnew(t) follow the distribution with pmf h(x, y, z | β, r, E(t − 1)). Then, we 

can write the likelihood of β = {β1, β2, …, βs} and r = {r1, r2, …, rs} where s denotes the 

number of time periods as follows:

L(β, r) = ∏
t = 1

d
ℎ xt, yt, zt ∣ E(t − 1), P (t − 1), β, r

The number of daily new reported positive cases depends only on the number of exposed 

individuals on the previous day, while the number of new reported recoveries and the new 

reported deaths depend on only the number of reported active cases on the previous day. 

This leads to the following calculation.

P Pnew(t), RRnew(t), DRnew(t) ∣ E(t − 1), P (t − 1) = P Pnew (t) ∣ E(t − 1), P (t − 1)
⋅ P RRnew (t), DRnew (t) ∣ E(t − 1), P (t − 1)
= P Pnew (t) ∣ E(t − 1) ⋅ P RRnew (t), DRnew (t) ∣ P (t − 1) .

From (4),

Pnew(t) ∣ E(t − 1) Binomial  E(t − 1),
rt(1 − f)

De
,

RRnew (t), DRnew (t) ∣ P (t − 1) Multinomial  P (t − 1), 1
Dr

, μc, 1 − 1
Dr

− μc .

The values of E(t − 1) and P(t − 1) are required for formulating the likelihood, as Pnew(t)|E(t 
− 1) and RRnew(t), DRnew(t)|P(t − 1) depend on them. E(t − 1) and P(t − 1) are used as 
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the size parameters in the binomial and multinomial distributions respectively. These size 

parameters are obtained as deterministic functions of βt and rt by applying the discrete time 

differential equations (3) recursively (see §2.3.1). These deterministic functions of βt and 

rt are then plugged into the likelihood used in our Metropolis–Hastings algorithm to draw 

posterior samples of the parameters as well as the compartmental counts derived as functions 

of βt and rt as described in Table 1.

In case of lack of reliable data on recoveries and deaths, a simpler Poisson or Binomial 

likelihood might be a more pragmatic modeling choice compared to the multinomial 

likelihood. Note that in order to write the likelihood of the observed data we first need 

to represent the observed variables in terms of the compartmental counts which can be 

done according to table 1. It is important to remember that we are modeling the number 

of active cases, recoveries and deaths first and using these quantities we obtain estimates 

of cumulative cases and deaths. We will assess our models primarily based on their 

performance in predicting active cases as the other case-counts are largely dependent on 

this estimated value.

2.3.3 | Choice of priors—For the parameter rt, we assume a U(0, 1) prior distribution 

while for βt, we assume an improper non-informative flat prior:

π βt ∝ ⫿ βt > 0 .

Alternatively, one may consider a log-normal prior for βt and R0. This will induce an 

implicit prior distribution on the ascertainment rate rt by virtue of the relationship between 

R0, βt and rt. Our choice of non-informative priors reflects the lack of substantive a-priori 

knowledge about these parameters.

2.3.4 | Posterior sampling—Having specified the likelihood and the prior distribution, 

we draw samples for βt and rt from the corresponding posterior distributions using 

a Metropolis–Hastings sampling algorithm with a Gaussian random walk proposal 

distribution. With new draws of βt and rt, we approximate the expected number of 

individuals in each compartment at each time point t conditioned on the drawn values of 

βt and rt using (3). This enables us to express the likelihood according to §2.3.2. We ran 

the MH sampling algorithm for 200,000 iterations with a burn-in of 100,000 and retained 

every 100th draw to reduce autocorrelation. We assessed the convergence and adequate 

mixing of the chain by using the Gelman and Rubin diagnostic measure32 and trace plots. 

The thinning bins were determined based on the autocorrelation plot to ensure successive 

MCMC draws used for estimation are moderately uncorrelated. The diagnostic analysis is 

presented in Supplementary Section §S.6. Finally, the mean of the draws of βt
i

i = 1
n

 and 

rti i = 1
n  are used as Bayesian posterior mean-based estimates of βt and rt. For every posterior 

draw of βt
i and rti, we use (3) to generate counts of the different compartments at each 

time point t. The generated counts serve as parameters for generating posterior estimates 

of the compartmental counts, using the sampling distributions specified in supplementary 

§2.3.2. All compartmental counts are rounded off to the nearest integer. We repeat this for 
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all time points t. The 95% Bayesian credible interval for all parameters are calculated using 

the 2.5% quantile and 97.5% quantile of the posterior draws (after thinning). The same is 

done for the estimated counts in each compartment for all time points. The model obtained 

using the likelihood described in the §2.3.2 and the priors will be hereby referred to as the 

multinomial-2-parameter model.

Extensions:  With the above structure as our primary analytic foundation, we extend the 

model in three primary directions to better adapt to real data and allow more flexibility. 

Details are deferred to supplementary §S.2.

Extension 1. Time varying Case-Fatality Rate (mCFR): To address the ever-changing 

nature of the case-fatality rates during the course of this pandemic, we propose the modified 

CFR or mCFR which includes only the removed cases in the denominator.

Modified case fatality rate (mCFR) = Reported Cumulative deaths 
Reported Cumulative deaths + Reported Cumulative Recoveries 

Figure S.2 of the Supplementary Materials shows variation of mCFR across across time 

observed in real data. Hence, we hypothesize that modeling mCFR as a time varying 

quantity will improve the prediction of active cases and deaths, and introduce a third 

time varying parameter called the mCFR along with βt and rt in the previous multinomial 

likelihood.

Extension 2. Testing of infectious people based on symptoms: As the probability of an 

infected individual getting tested depends largely on the symptoms, we split the Exposed(E) 
compartment into three nodes: Severe Symptomatic (Se), Mild Symptomatic (Mi) and 

Asymptomatic (As). The new set of differential equations (particularly for the nodes 

nodes P, U and F), schematic diagram as well as parameter choices are discussed in great 

details in the supplementary §S.2.2. This model is nearly equivalent to the multinomial-2-

parameter model described in S.2.2, and a similar estimation strategy will apply as this is 

a simple reparameterization of our original model. We shall refer to extensions 1 and 2 as 

multinomial-3-parameter and Multinomial Symptoms models, respectively.

Extension 3. Selection model: Who is getting tested?: Considering only testing of truly 

infected individuals cannot tell us the complete story, to understand the selection bias in 

testing we have to consider the probability of being tested in susceptible and unexposed 

individuals as well due a variety of other causes. We extend the multinomial-2-parameter 

model to incorporate the testing mechanism. Here the key ideas is that individuals with 

severe symptoms are always tested provided sufficient tests are available, and then the 

remaining tests are divided among those with mild symptoms and asymptomatics according 

to some given allocation rule that is independent of their true disease status given observed 

symptoms. The schematic model and other analytic details are given in supplementary 

§S.2.3.
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2.4 | Data sources and analytic strategy for COVID-19 in India

We analyze the COVID transmission dynamics in India from a period of April 1,2020 to 

August 31, 2021, focusing primarily on misclassification using the multinomial-2-parameter 

model, given the lack of disaggregated testing data for India. Further, we divide this period 

into 2 parts corresponding to wave 1 and wave 2. For wave 1, we consider the period from 

April 1,2020 to January 31, 2021 while for wave 2, we consider the training period February 

1, 2021 to June 30, 2021. We also consider the period July 1 to August 31, 2021 as a test 

period for the model corresponding to wave 2. For each of the waves, we set the initial 

compartmental counts according to tables S.2 and S.3 of supplementary materials. Then, we 

fit the multinomial-2-parameter model for both these waves and obtain estimates of basic 

reproduction number as well as case counts. We provide the countrywide analysis in the 

main text, and defer analysis for two major Indian cities - Delhi and Mumbai to §S.4 of the 

supplementary material.

The data are sourced from covid19india.org. We check the accuracy of model predictions 

with reported counts for cumulative cases, deaths and active cases, since there is no reported 

data for the other compartments. The training period is divided into sub-intervals based 

on public health interventions in India (see supplementary Table S.4). Values of βt and rt 

are assumed to be piece-wise constant, with between-sub-interval variation allowed, which 

reflects the variations in transmission dynamics over each of the lockdown and unlock 

periods in India. We have performed a comparison of models (see supplementary §S.3.2). 

Based on the results, we have chosen the multinomial-2-parameter model for all of the 

subsequent analysis.

3 | RESULTS OF DATA ANALYSIS: COVID-19 IN INDIA

3.1 | Basic reproduction number

Using the multinomial-2-parameter model we obtain the estimates of R0 for both waves 

1 and 2. For wave 1, we observe that though the estimated values of R0 were very high 

(reaching 4.06 for Lockdown 3), it decreased progressively and Unlock 4 onward, the value 

of R0 remained less than 1. For wave 2, we observe a similar pattern where the value of R0 

first increased, reaching a peak value of 2.47 in April, 2021, and then remained under 1 from 

May, 2021 onward. For the detailed results on the estimates of R0 (with CIs), refer to Fig. 3.

3.2 | Prediction accuracy for reported counts

We use a scale-independent metric, mean squared relative prediction error (MRPE) or 

relative mean square error or RMSE33, defined as follows:

MRPE = 1
n ∑

i = 1

n
1 −

vi
vi

2

for observed data v = (v1, v2, …, vn) and predicted vector v = v1, v2, …, vn . Here we only 

discuss the case f = 0.15, and report the MRPE of the reported cumulative cases, reported 

deaths and reported active cases. Prediction of reported active cases is especially important, 
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since accurate prediction of this crucially helps inform policy makers and administrators 

about health care needs on a daily basis. For the first wave, the training MRPE for reported 

cumulative cases, reported deaths and reported active cases came out to be 0.002, 0.24 and 

0.26 respectively, while for the second Wave, the 3 training MRPE were 0.0006, 0.92 and 

0.0003. For calculating the test set error for wave 2, we have used only the period of July 1, 

2021 to July 31, 2021 and the three test MRPEs came out to be 5.9 × 10−5, 0.0003 and 1.2 

respectively. These results substantiate that the model is performing quite well in terms of 

prediction, especially for reported cumulative cases.

We also note that the reported number of cases not only exhibit an overall trend but also 

a day-of-the-week effect. This is because test centers in most countries do not operate 

uniformly on all days of the week and typically have one or two ‘off days’ when relatively 

lower number of tests are reported. We introduce an extra parameter which is a day-specific 

modifier for the outgoing rate from the E compartment. This in turn influences the 

estimation of daily reported cases. Details of this approach are provided in Supplementary 

§S.3.4. Supplementary Fig. S.7 details how this modification results in more accurate 

predictions.

3.3 | Prediction of unreported or latent counts

Figures 4 and 5 present the daily composition of active and cumulative COVID cases in 

India in terms of both reported and unreported infections for waves 1 and 2 respectively. The 

sub-figures show the counts (left) and proportion (right) of cases who are reported, results 

from false negatives, or remain untested.

From Fig. 4: (B) and (D), we note that the proportion of reported active cases among total 

active cases rises initially, reaching a peak value of 0.31 on May 03, 2020 and then decreases 

for 4 months before increasing again slightly from September 2020 onward. For wave 2, Fig. 

5: (B) and (D), we observe that there is an increasing trend in capture rates from March to 

August, 2021, in the proportion of detected cases and deaths. The predicted proportion of 

reported cases among active cases has increased from 0.06 on March 1 to 0.13 on August 

31, 2021. This suggests widespread testing when the case-counts are growing, around the 

peaks of the curve which is consistent with known patterns of human behavior. In spite 

of enhanced testing and contact-tracing, our estimates suggest that more than 90 % of the 

cases in India remain unreported as of February 1,2021, while in July 1, 2021 approximately 

94.7% of cases in India remain unreported.As evident from the Table 2, the underreporting 

factors for cases came out to be 11.1 [95% CI: 10.7,11.5] as of February 1, 2021 and 19.2 

[95% CI: 17.9, 19.9] as of July 1, 2021. This means that the predicted proportion of reported 

cases is roughly 0.09 [95% CI: 0.087, 0.093] on February 1, 2021 and 0.052[95%CI : 
0.05,0.056] of true infections on July 1, 2021. For the deaths, the estimated underreporting 

factor is 3.58 [95% CI: 3.5, 3.66] as of February 1, 2021 and 4.55 [95% CI: 4.32, 4.68] as of 

July 1, 2021. This implies that the predicted proportion of reported deaths is roughly 0.279 

[95% CI: 0.273, 0.286] on February 1, 2021 and 0.22 [95% CI: 0.214, 0.231] on July 1, 

2021. Thus, about 95% infections and 78% deaths remained unreported in India according to 

the model-based estimation. For further discussion on the CI’s of the predicted case counts 

please refer to §S.3.3 of supplementary materials.
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3.4 | Effect of misclassification on prediction

For both the waves, we assumed the false negative rate of RT-PCR tests to be 15%, while 

acknowledging variation in this rate across the various tests being used in India34. In light of 

this uncertainty, we study how the predictions change for different values of false negative 

rates (f = 0, f = 0.15 and f = 0.3). From Fig. 6 part (B) and (D), we note that predictions for 

reported active cases from all three models with different values of f concur for both waves 

1 and 2. We also note that each of the fits agrees closely with the observed data quite well. 

Part (A) and (C) of Fig. 6 show how the estimates of total active cases (sum of reported, 

false negative and untested cases) vary substantially across the three assumed values of f for 

waves 1 and 2 respectively. As expected, the model with f = 0.3 leads to the highest estimate 

of unreported cases as it assumes the highest false negative rate while the model with f = 0 

leads to the lowest estimate of unreported cases. It is also worthy of mention that for both 

the waves, the difference between predicted number of unreported cases between models 

with f = 0.15 and f = 0 is lower than the same for models with f = 0.3 and f = 0.15.

4 | SIMULATION STUDIES

Since the underlying truth is unknown in an actual study and the number of true infections 

are latent counts, we study the effect of selection bias and misclassification on the estimation 

of R0 and the predicted case counts via simulation studies where we know the true values of 

the parameters. Each simulation is repeated 1000 times and average values are reported by 

means of tables and figures.

4.1 | Effect of misclassification

4.1.1 | Simulation design—We quantify the effect of incorporating false negative tests 

in our model by characterizing the differences in estimated transmission dynamics with and 

without accounting for false negatives in our simulation study. We first simulate count data 

from a model where the tests have a true false negative rate f = 0.3 and we then estimate the 

parameters of interest using three models: f = 0.3, 0.15 and 0.

For this part of the simulation study, we do not consider selection bias and assume that all 

individuals are equally likely to be tested.

For details regarding the simulation data generation procedure, refer to supplementary 

§S.5.1.

4.1.2 | Results

Estimation of R0:  The values of R0 for the five periods used to generate the data (using f = 

0.3) were 3.99, 3.65, 2.12, 1.59 and 1.69. The mean of predicted values of R0 for the model 

with f = 0 across the 1000 iterations were 3.64, 3.51, 1.97, 1.48 and 1.65 for the 5 periods 

while those for model with f = 0.15 were 3.52, 3.64, 2.01, 1.51 and 1.69 and for model with 

f = 0.3 were 3.83, 3.73, 2.04, 1.53 and 1.71 respectively. Now in this simulation, we have 

generated the data using f = 0.3. This shows that ignoring misclassification can lead to bias 

in estimating R0.
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Prediction accuracy for total active case-counts:  Part (A) of figure 7 shows the variation 

of predicted values of total active cases across different models with varying rates of false 

negatives in one iteration of the simulation The true value of f used to generate the data was 

0.3. After fitting the 3 models (with f = 0, 0.15 and 0.3), we observe that the model with f = 

0.3 performs best in predicting the total active cases followed by the model with f = 0.15. As 

expected, the model which does not consider false negatives, i.e. with f = 0 performs worst. 

We calculate the mean of MRPE of the predicted number of reported active cases (relative 

to that of the simulated true data) across 1000 simulation iterations and the model with f = 

0.3 performs best as expected. The mean MRPEs for the models with f = 0, 0.15 and 0.3 

are 0.13, 0.068 and 0.012 respectively. We note the significant improvement in prediction 

accuracy if one incorporates the false negative rate of the test. We also note that the MRPE 

for reported active cases are considerably less after incorporating this correction. We see a 

similar trend in other counts as well. For cumulative cases, we have mean MRPE of 0.13, 

0.066 and 0.012 for models with f = 0, 0.15 and 0.3 respectively. Finally, for total deaths, we 

have MRPE of 0.06, 0.01 and 0.02 for models with f = 0, 0.15 and 0.3 respectively.

4.2 | Effect of selection

4.2.1 | Simulation design—In §2.1, extension 3, we propose an extended model 

incorporating symptom-dependent testing. To study the effect of ignoring this biased 

testing mechanism, we generate data following this and estimate model parameters using 

our misclassification model which incorrectly ignores selection/testing. The choice of 

parameters are described in supplementary §S.5.2.

4.2.2 | Results

Estimation of R0: The true values of R0 for the 5 periods used to generate the data were 

2.22, 2.51, 1.89, 0.52 and 1.29. In presence of selection, we find that the estimated values 

of R0 differ substantially from the actual values. The means (and 95% percentile-based CI) 

of estimated values across all the 1000 simulations for the 5 periods were 0.24 (0.02, 0.78), 

2.40 (1.57, 3.08), 2.92 (2.64, 3.18), 2.56 (2.37, 2.80) and 2.10 (2.06, 2.20). Compared to the 

effect of misclassification, the effect of selection is more evident on estimated R0.

Prediction accuracy of active case-counts:  Parts (B) and (C) of Fig. 7 show the 

predictions for total and reported active cases in a random iteration among the 1000 

simulations. The blue band indicates the 95% CI of estimated counts in that particular 

simulation. The figure indicates that under selective testing, the predicted counts from the 

model may be very different from the true simulated counts. The model incorporating 

misclassification and ignoring selection failed to capture the overall trend in the simulated 

data for the total active cases. As a result we obtain a high MRPE of 0.56 for total 

active cases, the 95% CI being (0.32, 1.54). For reported active cases, however, the 

misclassification model obtained fairly accurate predictions and successfully captured the 

trend in the data. The mean MRPE for the reported active cases came out to be 0.085 (95% 

percentile-based CI: 0.044, 0.150) which is much lower than the same for total active cases. 

This simulation demonstrates that selection bias has substantial impact on our estimates, and 

ignoring selection could lead to erroneous inference, particularly for predicting total number 

of true infections.

Bhaduri et al. Page 17

Stat Med. Author manuscript; available in PMC 2023 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The effect of number of tests has also been studied using the selection model. We observe 

that with higher number of tests, the pandemic ends faster as expected. For more details on 

this, please refer to supplementary §S.5.3.

5 | CONCLUSION

In this paper, we have undertaken a principled modeling effort to understand the effect of 

selection bias and misclassification in test results in compartmental models and analyzed the 

COVID-19 data in India from April 1, 2020–August 31, 2021. The SEIR-fansy method has 

broader methodological significance for modeling any infectious disease transmission where 

diagnostic strategies are prone to misclassification errors. Our Bayesian approach allows for 

direct uncertainty quantification of all policy-relevant estimands.

The standard SEIR model considers a removed compartment which comprises of both 

recovered and deceased individuals. In the present model, we have split this into two 

nodes namely recovered (R) and deceased (D) and have modeled them using a multinomial 

likelihood function. We have further divided each of these two nodes into two sub-nodes 

based on whether the counts are reported (RR, DR) or unreported (RU, DU. As a result, 

we are able to estimate the underreporting factors for deaths as well. We also model 

the undetected and false negative individuals as two new compartments compared to the 

standard SEIR model which enables us to estimate the number of active/ cumulative 

undetected cases/deaths at any given time point more accurately. Section 3.3 contains the 

predicted proportion of unreported counts which is substantial for a country like India35,36. 

This helps us in understanding the true extent of the disease beyond the reported figures 

which is important from a policy making perspective. RT-PCR tests are well known to 

have a substantial false negative rate37. We study the effect of misclassification on the 

predicted counts. We observe in §3.4 that accounting for misclassification has a substantial 

influence on the predicted number of total cases/deaths. This is crucial because even though 

there are many models for estimating the number of untested infectious individuals, many 

of them overlook the contribution of false negatives which might lead to underestimation 

of the true number of cases. Such modifications enable us to arrive at a more accurate 

estimate of the infection fatality rates than a naive one based on reported cases and deaths. 

We have illustrated our methods using data from India and two of its states, Delhi and 

Mumbai. During the first wave on February 1, 2021, we estimate that the under-reporting 
factors for cumulative cases and cumulative deaths in India are approximately 11.1 and 

3.58 respectively (Table 2), while during the second Wave on July 1, 2021, they came out 

out to be 19.2 and 4.55. This indicates the actual death toll in India is approximately 4 

times higher than what is observed. Any reasonable calculation of infection fatality rates 

will need to incorporate this undercounting into account. A recent paper by Zimmermann et 

al.38 calculates the Infection Fatality Rate (IFR) for India to be around 0.1% using observed 

death counts and 0.4% after incorporating underreporting of deaths and discusses the range 

of problems associated with underreporting of deaths and cases.

In addition, we have also conducted extensive simulation studies to characterize the effects 

of misclassification and selection on estimated counts and other model parameters. We 

observe that misclassification alone does not have a substantial effect on estimates of R0 but 
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has a strong effect on projected future counts. Selection bias, on the other hand, has a strong 

effect on estimates of both R0 and estimated counts. Additional simulation studies showing 

the effect of number of tests on the predicted total number of active cases are deferred to 

supplementary materials (§S.5.3) for the sake of brevity.

It is worth pointing out the limitations of our study. Like all compartmental models, our 

model makes a number of assumptions about the modeling framework and the transmission 

dynamics, and the accuracy of estimates depend on these. For example, we assume that the 

probability of infection is the same for all individuals in a particular compartment, which 

might be unrealistic where contact happens within individualized local networks. When 

this assumption is not tenable, it is better to apply the model to smaller sub-populations 

and aggregate the results. Alternatively, one could decompose each compartment into sub-

compartments based on age-sex-job specific contact networks and impose a hierarchical 

structure. One of the major limitations of this method is to assume that f or the false negative 

rate is known, which may be a realistic assumption when a single approved test with known 

error rates is used. In reality, different tests with varying error rates are used and a model 

will need to adapt to their composite nature. We also ignore the false positives here as the 

SEIR model focuses only on the ‘truly exposed’. But an extended model (e.g. our selection 

model) that includes a component for tested unexposed individuals will need to consider 

false positives. Our model also assumes that the values of infection transmission rate βt and 

ascertainment rate rt remain constant over periods of time and that other parameters remain 

constant through the entire course of the pandemic. However, such an assumption might 

not hold in reality. One possible solution is to replace βt by βtπ(t) as done by Ray et al.39. 

Here, π(t) is a time varying intervention modifier which takes values in [0, 1] for stricter 

lockdown relative to the last period in the training data. The credible intervals observed in 

our procedure are extremely narrow, indicating underestimation of uncertainties inherent in 

the predictions. This stems from two reasons, one is due to choosing the starting values of βt 

and rt at the MLEs and not accounting for that data-driven choice. The other is from ignoring 

the hierarchical uncertainty in the parameters governing the distribution of the incubation 

and infectious periods. Future work needs to accommodate another layer of hierarchy in 

these choices. Lastly, instead of the standard SEIR model based on the daily time series of 

cases, recoveries and fatalities and the first order differential equations, one can extend these 

to second order equations40,41.

We have focused on the accuracy of predicted reported cases and active cases with an 

underlying premise that improving these predictions also improves predictions of all other 

compartments, including death counts, as long as the other fixed parameters are compatible 

with the data. Existing literature11 adopts the reverse strategy by starting from the death 

data, and future comparison of our method with this genre of work is warranted. Despite the 

limitations, we hope that this generalized framework and the R package will serve as useful 

tools to assess robustness of emerging disease transmission models and elsewhere.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Compartmental model incorporating false negative test results. There are total 10 

compartments in this model. The S and E compartments corresponds to Susceptible (who 

have not been infected till now) and Exposed (who are infected with the virus but are 

still not infectious). There are 3 infectious compartments, namely, U (Untested infectious), 

P (Tested Positve) and F (Tested False Negative). Finally the 4 compartments RU, RR, 

DU and DR denote the Recovered Unreported, Recovered Reported, Deceased Unreported 

and Deceased Reported. β corresponds to the rate of transmission by false negative (F) 

individuals, while for U and P, it is multiplied by scaling factors αu and αp. Other 

parameters include De which corresponds to the incubation period, f which is the false 

negative rate(= 1-sensitivity) and r which denotes the rate of ascertainment. Dr, β1.Dr, and 

Dr/β2 correspond to recovery period for P, U and F respectively, while μc, δ1, μc and μc/δ2 

denote the death rates for P, U and F respectively.
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FIGURE 2. 
Flowchart showing the estimation process of misclassification model using a Metropolis–

Hastings MCMC algorithm
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FIGURE 3. 
Estimates of R0 in India across phases for (A) wave 1 and (B) wave 2. The mean and 95% 

credible intervals (in parentheses) are provided under the Multinomial-2-parameter model. 

The reproduction numbers are estimated for the training periods corresponding to each of 

the two waves: April 1,2020 to Jan 31, 2021 for the first wave and Feb 1,2021 to June 

30,2021 for the second wave.
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FIGURE 4. 
COVID-19 cases in India for wave 1 with estimated number of Reported, False Negative 

and Untested cases. We have taken April 1, 2020 to January 31, 2021 as the first wave 

training period and in the first wave, we have not taken any testing period. (A) Total active 

COVID cases in India from April 1, 2020 to January 31, 2021 including reported active 

cases, false negatives active and untested active cases. (B) Proportion of reported active 

cases among Active COVID cases in India (C) Total cumulative cases in India from April 

1, 2020 to January 31, 2021 including reported cumulative cases, cumulative false negatives 

and untested cumulative cases. (D) Proportion of reported cases among total cumulative 
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COVID cases in India. (E) Total deaths in India from April 1, 2020 to January 31, 2021 

including reported and unreported deaths. (F) Proportion of reported deaths among total 

deaths in India. The dotted curves in subfigures A, C and E represent the observed data.
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FIGURE 5. 
COVID-19 cases in India for wave 2 with estimated number of Reported, False Negative and 

Untested cases. In the wave 2, we have taken Feb 1,2021 to June 30,2021 as the training 

period, while, July 1,2021 to August 31,2021 was taken to be the test period.(A) Total 

active COVID cases in India from February 1, 2021 to August 31, 2021 including reported 

active cases, false negatives active and untested active cases. (B) Proportion of reported 

active cases among Active COVID cases in India (C) Total cumulative cases in India from 

February 1, 2021 to August 31, 2021 including reported cumulative cases, cumulative false 

negatives and untested cumulative cases. (D) Proportion of reported cases among total 
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cumulative COVID cases in India. (E) Total deaths in India from February 1, 2021 to August 

31, 2021 including reported and unreported deaths. (F) Proportion of reported deaths among 

total deaths in India. The dotted curves in subfigures A, C and E represent the observed data.
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FIGURE 6. 
Effect of misclassification on estimates for India (A) Estimates of Total Active Cases for 

wave 1 with f = 0, 0.15 and 0.3 (B) Estimates of Reported Active Cases for wave 1 with f = 

0, 0.15 and 0.3 with the observed data (C) Estimates of Total Active Cases for wave 2 with 

f = 0, 0.15 and 0.3 (D) Estimates of Reported Active Cases for wave 2 with f = 0, 0.15 and 

0.3 with the observed data. April 1, 2020 to January 31, 2021 was taken as the first wave 

training period and there was no test period for the first wave. In the wave 2, Feb 1,2021 

to June 30,2021 was taken as the training period, while July 1,2021 to August 31,2021 was 

taken to be the test period for the second wave.
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FIGURE 7. 
(A) Effect of misclassification on Total Active Cases (B) Effect of selection on Total Active 

Cases and (C) Effect of selection on Reported Active Cases: simulations were carried out in 

order to assess the effect of misclassification, selection on Reported Active and Total Active 

Cases. For misclassification, the data was generated for a period of 101 days which was 

divided into five time periods: days 1 – 10, 11 – 31, 32 – 50, 51 – 64, 65 – 101. The values 

of βt across the five periods were set at 0.8, 0.65, 0.4, 0.3, 0.3 and the corresponding values 

of rt were set at 0.1, 0.2, 0.15, 0.15, 0.2. For selection model, additional parameters were 

set as p0 = (10−6, 10−5, 1 – 10−6 – 10−5) and p1 = (0.02, 0.18, 0.8). As before, the data are 

generated for a period of 101 days with 5 periods 1 – 10, 11 – 31, 32 – 50, 51 – 64 and 65 

– 101 while the values of βt used to generate the data were 0.6, 0.4, 0.3, 0.25 and 0.2 for the 

5 periods respectively. Predictions are based on the Multinomial-2-parameter model, where 

the probability of being tested is assumed to be independent of symptoms with f = 0.3 (the 

simulation truth).
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TABLE 1

Variables of interest and their expressions in terms of model compartments as functions of time

Counts of Interest Notation (at time t)

Reported Active Cases P(t)

Unreported Active Cases U(t) + F(t)

Total Active Cases P(t) + U(t) + F(t)

Reported Cumulative Cases P(t) + RR(t) + DR(t)

Unreported Cumulative Cases U(t) + F(t) + RU(t) + DU(t)

Total Cumulative Cases P(t) + RR(t) + DR(t) + U(t) + F(t) + RU(t) + DU(t)

Reported Deaths DR(t)

Unreported Deaths DU(t)

Total Deaths DR(t) + DU(t)
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TABLE 2

Predicted cumulative cases and deaths (reported and total) of India along with observed counts and predicted 

under-reporting factors for cases and deaths in India across the two waves. The training period for the first 

wave was taken to be April 1, 2020 to January 31, 2021 with no testing period. Wave 2 training period was 

taken to be Feb 1,2021 to June 30,2021 with July 1,2021 to August 31,2021 as the test period. For both of the 

waves, reported numbers are based on the day just after the end of training periods.

1st Feb 2021 1st July 2021

Cases

Predicted Reported (millions) 10.5 [10.4, 10.6] 30.9 [30.8, 30.9]

Predicted Total (millions) 120 [115, 124] 452 [426, 466]

Observed (millions) 10.8 30.4

Under-Reporting Factor 11.1 [10.7, 11.5] 19.2 [17.9, 19.9]

Deaths

Predicted Reported (millions) 0.15 [0.148, 0.152] 0.393 [0.393, 0.395]

Predicted Total (millions) 0.55 [0.54, 0.56] 2.2 [2.1, 2.2]

Observed (millions) 0.154 0.399

Under-Reporting Factor 3.58 [3.5, 3.66] 4.55 [4.32, 4.68]
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