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Abstract

Structural variants (SVs) are associated with cancers and developmental disorders, but challenges 

with estimating population frequency remain a barrier to prioritizing mutations over inherited 

variants. In particular, variability in variant calling heuristics and filtering limits the utility of 

current SV catalogs. We present STIX, a method that, instead of relying on variant calls, indexes 

and searches the raw alignments from thousands of samples to enable more comprehensive allele 

frequency estimation.

Reporting Summary

Further information on research design is available in the Nature Research Reporting Summary 

linked to this article.

Structural variants (SVs), including large deletions, duplications, insertions, inversions, and 

translocations1, are associated with cancer progression and Mendelian disorders2–5. Copy 

number variants and gene fusions have received the most attention, but recent large-scale 
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SV studies such as the Pan-Cancer Analysis of Whole Genomes6 (PCAWG), the 1000 

Genome Project7 (1KG), gnomAD SV8, and the Centers for Common Disease Genomics9 

(CCDG) have expanded our understanding of the depth and diversity of somatic SVs in 

cancer and polymorphic SVs in humans. Despite the importance of SVs, barriers remain 

to their adoption in disease analysis1. In particular, limitations to short-read SV calling, 

reference biases, and variability in the heuristics and filtering strategies between cohorts lead 

to an incomplete understanding of SV population frequency that limits our ability to assess a 

variant’s severity and impact10.

In cancer studies, SV interpretation requires classifying variants as germline or somatic. 

The standard is to call variants in the tumor and control tissue from the same individual. 

SVs found only in the tumor are deemed somatic. This method is susceptible to the 

sensitivity of the normal sample calls, which are often sequenced at lower coverage. When 

an inherited SV is missed in the normal tissue, it can be incorrectly classified as somatic. An 

alternative strategy is to substitute matched normal tissue with a panel of unrelated normal 

samples (e.g., 1KG, Simons Diversity Panel11 (SGDP)), but the time and computational 

costs associated with joint-calling large numbers of samples can be prohibitively high.

SV catalogs from large DNA sequencing projects can filter tumor-only calls as a shortcut 

to joint calling. Variants found in both the tumor and reference catalog can be classified 

as inherited since we can reasonably assume that somatic variants, and driver mutations 

in particular, are likely to be rare and unlikely to share SV breakpoints with polymorphic 

SVs. While this assumption does not hold in all cases, it is the standard for many diseases 

studies. The analysis is more complicated for variants found only in the tumor calls. In 

principle, SVs that are not in the cohort are rare and could be somatic. In practice, several 

SV-specific factors, including short-read calling limitations12, genotyping complexities (see 

Supplementary Note 1, Supplementary Fig. 1), and aggressive filtering for false positive 

calls, exclude many real SVs from appearing in these catalogs. For example, among the 

thousands of cancer-related SVs that are recoverable in 1KG, an order of magnitude fewer 

are present in the 1KG SV call set7. Given these issues, it is impossible to determine whether 

an SV observed in a patient and not in a reference cohort is absent from the population (true 

negative) or removed in the filtering step (false negative).

Similarly, in Mendelian disease analyses, causal variants should be either absent or are at 

very low-frequency in the reference population13. Using allele frequencies from gnomAD14, 

a catalog of single nucleotide variants (SNVs) from 141,546 human genomes, can reduce 

the number of variants under diagnostic consideration by two orders of magnitude13. 

Unfortunately, no equivalent resource exists for SVs since, as with the cancer analysis, 

static call sets from large populations are inadequate. Pangenomes can help by identifying 

and genotype SVs15, but given the limited number of samples and SVs they can currently 

represent, they are better suited for common variants and are less useful for somatic and 

pathogenic variant classification.

To ensure comprehensive and accurate SV detection and allele frequency assignment, we 

propose searching the raw alignments across thousands of samples using our structural 

variant index (STIX). For a given deletion, duplication, inversion, or translocation, STIX 
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reports a per-sample count of every alignment that supports the variant (Fig. 1). Assuming 

deleterious variants are rare, from these counts, we can conclude that an SV with 

evidence in many healthy samples is either a common germline variant or the product of 

systematic noise (e.g., an alignment artifact) and is unlikely pathogenic. By relying on the 

raw alignments, STIX avoids the previously described false negative issues and removes 

thousands of variants that could have otherwise been associated with disease.

STIX is built on top of the GIGGLE genome search engine16. Sequence alignment files 

contain mostly normal alignments and typically less than 5% “discordant” alignments 

(split-reads and paired-end reads with unexpected aligned distance between pairs or strand 

configuration) due to either the presence of a SV or some noise in the sequencing or 

alignment process (Fig. 1A). These alignment signals are used for detection by all current 

methods. STIX extracts and tracks all discordant alignments from each sample’s genome 

(Fig. 1A), then creates a unified GIGGLE index for all samples. When a user provides the 

SV type, breakpoint coordinates, and its confidence intervals, STIX returns the count of all 

alignments that support the variant (Fig. 1B). We have deployed web interfaces for STIX 

queries of 1KG and SGDP aligned to GRCh37 at http://stix.colorado.edu (Fig. 1C). The 

server also supports direct access for integrating STIX into other programs.

Considering the 1KG SV catalog, STIX shows high accuracy in identifying the samples with 

deletions (0.998), duplications (0.995), and inversions (0.988) (see Methods, Supplementary 

Table 1). This result is consistent with a previous report showing STIX outperformed 

DELLY, SVTyper, and SV2 on simulated and real deletions, and demonstrated the best 

balance between sensitivity and specificity17. The STIX index was also 500X smaller than 

the original alignments and queries ran 620X faster (see Methods).

Using STIX indexes of 1KG and SGDP, we recovered thousands of the somatic SVs 

published in Catalogue of Somatic Mutations in Cancer18 (COSMIC) and PCAWG (Figs. 

2A–B,2D–E). These variants were likely either germline or recurrent mutations and unlikely 

to be driving tumor evolution. Only a fraction of the SVS found by STIX were in either the 

1KG or gnomAD SV lists (Figs. 2C,2F) (See Supplementary note 2).

STIX’s primary utility is to refine SV calls down to a set that can be assessed manually, 

especially in the absence of DNA sequences from matched-normal tissue. For example, 

when applied to 183 prostate cancer samples from PCAWG, the MANTA19 caller recovered, 

on average, 3892.8 deletions per sample (Fig. 2G). Using the PCAWG calls as the truth 

set, removing SVs using the matched-normal tissue resulted in 51.4 false positives, 29.9 

true positives, and 3.7 false negatives. Using the STIX 1KG database had 30% fewer false 

positives (35.8), roughly the same number of true positives (23.1), and some additional 

false negatives (10.5). The results were similar for inversions (Supplementary Fig. 2A) 

and duplications (Supplementary Fig. 2B). In addition to being over 50X smaller than the 

tumor-only call set, the STIX-filtered calls were also enriched for putative consequential 

variants (Supplementary Fig. 3). Using the 1KG and gnomAD SV calls as germline filters 

was less effective because the average number of false positives was 88X and 55X higher, 

respectively. Interestingly, these population filters’ true-positive and false-positive results 
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were similar to the STIX results, indicating that the PCAWG call set likely retained some 

common SVs.

STIX enables fast and accurate SV frequency estimates directly from population-scale 

sequencing data, which wasn’t possible in previous SV studies due to inconsistent filtering 

and calling strategies. It does this by indexing all SV evidence directly from the raw 

alignments, avoiding detection bias, and compressing large consortia data sets. With STIX, 

we indexed 2,504 samples from the 1,000 Genomes Project and 279 samples from the 

Simons Genome Diversity Project. These indexes helped improve somatic SV calls and 

highlighted the potential for recurrent de novo SVs (see Supplementary Note 3). The code is 

freely available at https://github.com/ryanlayer/stix.

A limitation of this approach is that, while population frequency is a powerful metric 

for isolating rare, potentially functional variants, not all rare variants are pathogenic, 

and making this classification requires further analysis. Additionally, with STIX, and all 

alignment-based short-read SV methods, it is difficult to determine whether two discordant 

alignments support the same SV or similar SVs. Discordant paired-end reads provide 

indirect evidence of an SV, which leads to breakpoint location ambiguity that can affect 

STIX’s resolution (Supplementary Note 4). STIX also does not track per-sample normal 

coverage levels (due to high storage cost) and cannot distinguish between no support 

for an SV and insufficient coverage at a particular locus. When considering a large 

reference cohort, coverage fluctuations in individual samples minimally impact the results. 

Quantifying read depth or applying other QC metrics is advisable for smaller cohorts or 

particularly sensitive experiments involving rare variants.

In the future, we plan to explore how STIX may enable data access with lower consent 

and privacy issues. Reporting summary statistics reduces the likelihood of re-identifying 

samples, which would help reconcile different consent rights across patient cohorts. With 

these improvements, STIX could bring the power of thousands of genomes to the diagnosis 

and treatment decisions process.

Methods

STIX SV evidence collection and classification

When a user submits a query, they specify the SV type (deletion, duplication, inversion, 

or break end) and breakpoint. Breakpoints are encoded as a pair of left and right 

coordinates, where each coordinate has a chromosome and start and end positions. The 

left coordinate is strictly downstream of the right and has a lexicographically equivalent 

or smaller chromosome. The left and right coordinates are extended to account for 

the indexed samples’ insert size distribution and the SV type. Deletions extend the 

left coordinate downstream and the right coordinate upstream. Duplications extend the 

left coordinate upstream and the right coordinate downstream. Inversions extend both 

coordinates downstream for + strand alignments and upstream for - strand alignments. For 

break ends, the left and right coordinates are not modified.
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STIX searches the index using the left coordinate and only retains alignments that also 

overlap the right coordinate and have a strand configuration that matches the given SV type 

(listed below). STIX counts the number matches per sample and reports that total to the user.

SV strand configurations:

• Deletions

– Paired-end alignments must have a +/− orientation.

– Split-read alignments must have a +/+ or −/− orientation.

• Duplications:

– Paired-end alignments must have a −/+ orientation.

– Split-read alignments must have a +/+ or −/− orientation.

• Inversions:

– Paired-end alignments must have a +/+ or −/− orientation.

– Split-read alignments must have a +/− or −/+ orientation.

• Break ends:

– The only requirement is that the alignments overlap the left and right 

query coordinates.

SV evidence extraction and STIX index creation

SV alignment evidence (discordant reads and split reads) are extracted from BAM and 

CRAM files using excord (https://github.com/brentp/excord). Excord scans each alignment 

to determine if it contains a split read, has a strand configuration that is not +/−, the 

two aligned ends are not on the same chromosome, and the distance between the two 

aligned ends is further away than expected (set by the --discordantdistance command line 

parameter). The expected distance between two reads depends on the size and variance 

of fragments and can be measured by finding the mean and standard deviation of normal 

alignments in the BAM file. We recommend using the mean plus two times the standard 

deviation for the discordant distance. If any of these conditions is true, then the alignment is 

recorded as a possible piece of SV evidence. For each piece of evidence, excord stores the 

position and orientation of the two ends into a sample-specific BED file. For example:

1 10022 10122 1 1 249240455 249240538 1 0

1 10031 10131 1 4 191044177 191044238 1 0

1 10036 10136 1 2 243153001 243153102 −1 0

1 10054 10154 −1 19 59097998 59098033 −1 0

1 10066 10166 −1 1 249239980 249240049 −1 0

Excord was written in the Go programming language. Pre-compiled binaries are available 

under releases in its GitHub repository.
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Each sample BED file is sorted and bgziped. For example :

samtools view -b NA12812.bam \

| excord \

--discordantdistance 500 \

--fasta hs37d5.fa.gz \

/dev/stdin \

| LC_ALL=C sort --buffer-size 2G -k1,1 -k2,2n -k3,3n \

| bgzip -c > alt/NA12812.bed.gz

Once all sample BED files have been processed an index is created using giggle. For 

example:

giggle index -i “alt/*gz” -o alt_idx -s -f

The last step is to create a sample database from a cohort pedigree file (PED). At a 

minimum, this file must contain a file header, and one line per sample where each line must 

contain the sample name and the name of its associated BED file. The following example 

has three extra fields:

Sample Sex Population Super_Population Alt_File

NA12812 1 CEU EUR NA12812.bed.gz

HG00672 2 CHS EAS HG00672.bed.gz

NA12878 2 CEU EUR NA12878.bed.gz

HG00674 1 CHS EAS HG00674.bed.gz

Creating the sample database requires the giggle index, input PED file name, output 

database name, and the column number that contains the name of the sample BED file. 

For example:

stix -i alt_idx -p four.ped -d four.ped.db -c 5

Once the BED files have been indexed and the sample database has been created from 

the PED file, STIX can now query the samples for SV evidence. For each query, the user 

must specify the index location (-i), sample database (-d), SV type (-t), left (-l) and right 

(-r) breakpoint coordinates, and window size (-s) to consider around each breakpoint. The 

window size will depend on the size and variance of the sample fragments. We recommend 

using the same value used for the discordant distance parameter in the excord extraction. 

The output of STIX is a per-sample count of alignments that support the existence of the SV 

in the sample. For example:
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stix \

        -i alt_idz \

        -d four.ped.db \

        -s 500 \

        -t DEL \

        -l 14:68603030–68603035 \

        -r 14:68603738–68603743

Id Sample Sex Population Super_Population Alt_File Pairend Split

0 HG00672 2 CHS EAS HG00672.13.14.bed.gz 8 0

1 HG00674 1 CHS EAS HG00674.13.14.bed.gz 7 0

2 NA12812 1 CEU EUR NA12812.13.14.bed.gz 7 0

3 NA12878 2 CEU EUR NA12878.13.14.bed.gz 11 0

1,000 genomes phase three STIX index

2,504 low-coverage BAMs (GRCh37) and the PED file were downloaded from the 1,000 

genomes AWS S3 bucket (s3://1000genomes/phase3/data/). Excord was run on each sample 

with --discordantdistance set to 500.

Simons Genome Diversity Panel STIX index

252 30X-coverage FASTQ files and PED file were downloaded from the Simons Foundation 

(https://www.simonsfoundation.org/simons-genome-diversity-project/) and aligned to the 

human reference genome (GRCh37) using BWA-MEM. Excord was run on each sample 

with --discordantdistance set to 500.

STIX speed measurement

To test the speed of STIX versus any other alternative genotyping method that accesses 

the BAMs directly, we compared the time required for STIX to query a specific SV (DEL, 

10:105053143–105054173) across the full 1KG cohort versus how much time was required 

to read the alignments in the same region of each BAM in the 1KG cohort. The assumption 

being that any genotyping method would need to at least read the alignments, and the I/O 

time would be a lower bound for any such method.

$ time stix \

         -i 1kg_stix_idx \

         -d 1kg.ped.db \

         -s 500 \

         -t DEL \

         -l 10:105053143–105053143 \

         -r 10:105054173–105054173 -S > /dev/null

real    0m1.531s
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$ time ls 1000G_phaseIII_whole_genome/*.mapped.*.low_coverage.*.bam \

| gargs ‘samtools view {} 10:105052643–105053143 > /dev/null’

real    16m45.827s

Source code availability and Snakemake20 pipeline

To improve readability and reproducatiblity, the source code for all experiments and analysis 

in this manuscript are part of a Snakemake pipeline available at https://github.com/ryanlayer/

stix_paper/blob/main/Snakefile. In the following sections, the relevant rules within the 

pipeline are listed.

Accuracy measurement

To determine STIX’s classification performance we considered the 1KG cohort and the 

phase 3 SVs identified by Sudmant et al.7. For each reported deletion, duplication, and 

inversion, we collected the samples that were identified by 1KG as being non-reference. 

This analysis only included SVs with the CIEND and CIPOS values specified.

For each of those SVs, we then constructed a similar list of samples where STIX found 

evidence of the same variant.

Given the list of non-reference samples from the 1KG catalog and the list of samples 

with supporting evidence from STIX, we computed the following values for deletions, 

duplications, and inversions separately.

- positives (P): Number of non-reference samples in the 1KG catalog

- negatives (N): Number of reference samples in the 1KG catalog (total samples 

minus positives)

- true positives (TP): Number of samples with evidence from STIX that were non-

reference in the 1KG catalog

- true negatives (TN): Number of samples with no evidence from STIX that were 

reference in the 1KG catalog

- false positives (FP): Number of samples with evidence from STIX that were 

reference in the 1KG catalog

- false negatives (FN): Number of samples with no evidence from STIX that were 

non-reference in the 1KG catalog

From these values we computed:

- accuracy = (TP + TN) / (P+N)

- precision = TP/(TP + FP)

- sensitivity = TP/P

- specificity = TN/N

- F1 = 2TP/(2TP+FP+FN)
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Relevant Snakemake rules:

• onekg_classification_stats

• onekg_sv_table

COSMIC SV evaluation

The COSMIC SV catalog was downloaded from the COSMIC website (https://

cancer.sanger.ac.uk/cosmic/download, Structural Genomic Rearrangements, login required). 

The chromosomal position of the deletions (intrachromosomal deletion), duplications 

(intrachromosomal tandem duplication), and inversions (intrachromosomal inversion) were 

extracted and sorted into a compressed BED file.

Relevant Snakemake rules:

• cosmic_sv_beds

To determine the overlap between the COSMIC SVs and the 1KG catalog, we converted 

the 1KG SV VCF to SV-type specific BED files and intersected these files with the 

corresponding COSMIC BED files. Intersections required a reciprocal overlap of 90%. From 

these intersections we compute the 1KG allele frequency.

Relevant Snakemake rules:

• onekg_gts

• Cosmic_1kg_overlap

Relevant scripts:

• src/get_1kg_ac.py

To determine the overlap between the COSMIC SVs and the gnomAD SV catalog, 

we retrieved the version 2.1 SV BED file from the gnomAD web site (https://

gnomad.broadinstitute.org/downloads/#v2-structural-variants) and split the BED file into 

SV-type specific BED files and intersected these files with the corresponding COSMIC BED 

files. Intersections required a reciprocal overlap of 90%.

Relevant Snakemake rules:

• cosmic_gnomad_overlap

To determine the overlap between the COSMIC SVs and the STIX for 1KG and SGDP, 

we submitted a STIX query for each SV in the COSMIC SV-type BED files using a 500 

base pair window. For each SV we compute the number of samples with some supporting 

evidence.

Relevant Snakemake rules:

• cosmic_stix_1kg_overlap_stats

Relevant scripts:

• src/qdel.sh
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Pan-Cancer Analysis of Whole Genomes SV evaluation—The PCAWG SV 

catalogs were downloaded from the ICGC data portal website (https://dcc.icgc.org/releases/

PCAWG/consensus_sv/), and combined SV-type specific call sets.

Relevant scripts:

• src/get_pcawg_svs.sh

Similar to the process in COSMIC SV evaluation, to determine the overlap between 

the PCAWG SVs and the 1KG catalog, we converted the 1KG SV VCF to SV-type 

specific BED files and intersected these files with the corresponding PCAWG BED files. 

Intersections required a reciprocal overlap of 90%. From these intersections we compute the 

1KG allele frequency.

Relevant Snakemake rules:

• pcawg_1kg_overlap

To determine the overlap between the PCAWG SVs and the gnomAD SV catalog, 

we retrieved the version 2.1 SV BED file from the gnomAD web site (https://

gnomad.broadinstitute.org/downloads/#v2-structural-variants) and split the BED file into 

SV-type specific BED files and intersected these files with the corresponding PCAWG BED 

files. Intersections required a reciprocal overlap of 90%.

Relevant Snakemake rules:

• pcawg_gnomad_overlap

To determine the overlap between the PCAWG SVs and the STIX for 1KG and SGDP, we 

submitted a STIX query for each SV in the PCAWG SV-type BEDPE files using a 500 

base pair window. For each SV we compute the number of samples with some supporting 

evidence.

Relevant scripts:

• src/get_pcawg_stix_1kg_overlap.sh

• src/get_pcawg_stix_sgdp_overlap.sh

De novo SV evaluation—The de novo SV catalog was retrieved from the GitHub 

repository referenced in the publication. Those SVs were reported using the GRCh38 human 

reference genome. We used the UCSC genome browser tools to lift the SVs to GRCH37, 

then split the file into SV type specific BED files.

Relevant Snakemake rules:

• denovo_sv_beds

Similar to the process in COSMIC SV evaluation, to determine the overlap between the de 

novo SVs and the 1KG catalog, we converted the 1KG SV VCF to SV-type specific BED 

files and intersected these files with the corresponding PCAWG BED files. Intersections 
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required a reciprocal overlap of 90%. From these intersections we compute the 1KG allele 

frequency.

Relevant Snakemake rules:

• denovo_1kg_overlap

To determine the overlap between the de novo SVs and the gnomAD SV catalog, 

we retrieved the version 2.1 SV BED file from the gnomAD web site (https://

gnomad.broadinstitute.org/downloads/#v2-structural-variants) and split the BED file into 

SV-type specific BED files and intersected these files with the corresponding PCAWG BED 

files. Intersections required a reciprocal overlap of 90%.

Relevant Snakemake rules:

• denovo_gnomad_overlap

To determine the overlap between the de novo SVs and the STIX for 1KG and SGDP, we 

submitted a STIX query for each SV in the de novo SV-type BED files using a 500 base pair 

window. For each SV we compute the number of samples with some supporting evidence.

Relevant Snakemake rules:

• denovo_stix_1kg_overlap

• denovo_stix _sgdp_overlap

STIX germline filtering evaluation

Information regarding PCAWG donor IDs, file IDs, and specimen type can be found in 

Supplemental Table 4. Additionally, we have provided a table mapping PCAWG file ID to 

BAM sample name for BAMs used for Manta SV calls in Supplemental Table 6. We used 

Manta version 1.6.0 to call SVs in the PCAWG samples. For each tumor, we called svs in 

normal mode as well as matched tumor/normal mode.

To create manta SV calling workflows for the ICGC samples, we used the following 

commands:

single sample (normal) mode

$MANTA_INSTALL_PATH/bin/configManta.py \

--bam $BAM_PATH \

--referenceFasta $REF_GENOME_PATH \

--runDir $OUTPUT_DIRECTORY

paired tumor-normal mode

$MANTA_INSTALL_PATH/bin/configManta.py \

--normalBam $NORMAL_BAM \

--tumorBAM $TUMOR_BAM
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--referenceFasta $REF_GENOME_PATH \

--runDir $OUTPUT_DIRECTORY

All bams are aligned to the hs37d5 reference genome which can be 

downloaded via the 1KG ftp (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/

phase2_reference_assembly_sequence/hs37d5.fa.gz). After running the manta configuration 

script, a runWorkflow.py script is generated in the designated run directory and can be run as 

follows:

./runWorkflow.py -j $THREADS

The germline filtering analysis pipeline and associated scripts are contained 

within a snakemake pipeline located at https://github.com/ryanlayer/stix_paper/tree/main/

germline_filtering/stix.smk. Instructions for how to install dependencies and run the pipeline 

can be found under germline_filtering/README.md.

The pipeline performs the 1KG STIX queries using the deletion SVs called from the Manta 

normal mode callsets. Regions that return evidence from the 1KG STIX query are filtered 

out. For comparison, we then perform filtering by subtracting sets of deletion regions in 

GnomAD and 1KG, respectively. For evaluation we intersect the STIX, GnomAD, and 1KG 

filtered regions along with the Manta tumor/normal SV calls with the PCAWG somatic 

deletion SVs for each sample. All intersection and subtraction operations were performed 

with a 90% reciprocal overlap threshold. False positives (FP) were the SVs that passed the 

filters but were not in the PCAWG calls. True positives (TP) were the SVs that passed the 

filters and were in the PCAWG calls. False negatives (FN) were SVs that did not pass the 

filters and were in the PCAWG calls.

STIX query resolution evaluation

For the 31,762 deletions in the 1KG call set that STIX also found evidence for, we shifted 

the start and end coordinates up and down stream 500bp at 50bp steps. At each step we 

submitted the STIX query with the new coordinates and counted the number of samples 

with supporting evidence, then computed the proportion of the number of samples at each 

step to the number of samples found by the original query. Finally we plotted the median of 

proportions at each step.

Relevant Snakemake rules:

• stix_1kg_deletion_resolution_slide

• Stix_1kg_deletion_resolution_plot

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data Availability

For most data availability, the Snakemake pipeline provided by https://github.com/ryanlayer/

stix_paper downloads data used for analyses. For the somatic SV filtering analysis done 

using PCAWG alignment files, access to data is restricted. Information regarding PCAWG 

sample data used for this analysis can be found under Methods subsection “STIX germline 
filtering evaluation”.
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Figure 1. 
The STIX structural variant index. (A,B) The STIX indexing and query process for three 

samples and a polymorphic deletion. (A) A small number of the alignments that tile the 

genomes are discordant (designated by a dotted line connected read pairs) because of either 

an SV or other nonspecific causes (e.g., mapping artifacts). (B) Discordant alignments 

are extracted from all samples and indexed using GIGGLE. Query SVs are mapped to 

alignments that reside in both regions and are aggregated and returned. The first query 

returns three alignments in two samples, and the second returns zero alignments. (C) The 

distribution of evidence depths for a deletion searched in the SGDP cohort through the 

http://stix.colorado.edu interface.
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Figure 2. 
(A-F) SVs reported in cancer databases also occur in healthy populations. (A-C) COSMIC 

contains 46,185 somatic deletions. STIX found evidence for (A) 27.9% of these SVs in 

SGDP and (B) 27.5% in 1KG. In these two plots (and D and E), we summarize the 

population-level evidence for each recurring SV (blue dot) by the number of samples with 

any concordant evidence (x-axis) and the maximum amount of per-sample evidence (y-axis). 

(C) Only 1% of COSMC SVs appeared in the 1KG SV call set. The agreement between 

the STIX and the 1KG call sets is plotted using the population frequency estimates from 

each method for each SV. (D-F) PCAWG found 84,083 deletions, (D) 3.4% of which were 

in SGDP and (E) 2% were in 1KG. (F) The 1KG call set contained only 0.2% PCAWG 

SVs. (G) A comparison of germline filtering strategies for 183 prostate tumor samples that 

remove tumor deletions found in matched-normal tissue (SV), the STIX index of 1KG, the 

1KG SV calls, and the gnomAD SV calls. Histograms show the frequency of sample-level 

SV counts. Red bars and text give the sample mean. For example, the raw tumor calls had, 

on average, 3,892.0 SVs, and STIX filtering yielded, on average, 35.8 false positives, 23.1 

true positives, and 10.5 false negatives.
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