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Abstract

Purpose: Cell-free DNA (cfDNA) offers a non-invasive approach to monitor cancer. Here we 

develop a method using whole-exome sequencing (WES) of cfDNA for simultaneously monitoring 
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the full spectrum of cancer treatment outcomes, including MRD, recurrence, evolution, and second 

primary cancers.

Experimental Design: Three simulation datasets were generated from 26 cancer patients to 

benchmark the detection performance of MRD/recurrence and second primary cancers. For further 

validation, cfDNA samples (n=76) from cancer patients (n=35) with six different cancer types 

were used for performance validation during various treatments.

Results: We present a cfDNA-based cancer monitoring method, named cfTrack. Taking 

advantage of the broad genome coverage of WES data, cfTrack can sensitively detect MRD 

and cancer recurrence by integrating signals across known clonal tumor mutations of a patient. 

In addition, cfTrack detects tumor evolution and second primary cancers by de novo identifying 

emerging tumor mutations. A series of machine learning and statistical denoising techniques are 

applied to enhance the detection power. On the simulation data, cfTrack achieved an average AUC 

of 99% on the validation dataset and 100% on the independent dataset in detecting recurrence in 

samples with tumor fractions ≥0.05%. In addition, cfTrack yielded an average AUC of 88% in 

detecting second primary cancers in samples with tumor fractions ≥0.2%. On real data, cfTrack 
accurately monitors tumor evolution during treatment, which cannot be accomplished by previous 

methods.

Conclusion: Our results demonstrated that cfTrack can sensitively and specifically monitor the 

full spectrum of cancer treatment outcomes using exome-wide mutation analysis of cfDNA.

Introduction

Despite the rapid development of cancer treatments, a large fraction of patients experience 

recurrence, resistance, or progression of cancer during or after treatment [1]. Even after 

the surgical removal of tumors, a patient can still have minimal residual disease (MRD), 

which is associated with an increased likelihood of recurrence [2]. Thus, cancer patients 

need continuous monitoring in order to detect MRD, recurrence, and progression, thereby 

facilitating early intervention and therapy adjustment [2][3]. Although cancer monitoring 

is clinically important, the sequential sampling of tumor tissue from the patient poses a 

significant challenge. In this context, liquid biopsy is an attractive option, especially the 

usage of cell-free DNA (cfDNA) in blood. Blood samples can be obtained noninvasively 

for continuous monitoring, and the tumor-derived DNA fragments in cfDNA can provide 

comprehensive genetic profiling even of heterogeneous tumors [4].

However, a major challenge associated with cfDNA-based cancer monitoring is low tumor 

content. In cancer patients receiving treatment or with MRD, the fraction of tumor DNA 

in a cfDNA sample can be as low as 0.1% [5]. Previous studies on cancer monitoring in 

plasma have used deep sequencing on a small mutation panel to discover the weak tumor 

signal [2][5][6][7][8]. However, these methods have several crucial limitations: (1) the high 

cost of deep sequencing restricts the panels to a small number of known mutations (either 

common cancer mutations or mutations selected from the pre-treatment tumor sample of 

a specific patient); (2) personalized panels usually require a labor-intensive experimental 

design; (3) panel-based monitoring cannot detect emerging tumors with a different mutation 

profile, e.g., a second primary cancer, yet approximately 30% patients develop a second 
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primary cancer [9], driven by de novo tumor mutations; and (4) panels usually set detection 

thresholds by studying a cohort of non-cancer individuals, which exposes the test to 

systemic bias from inter-individual variations and inter-experimental differences. Recently, 

two studies [10][11] presented cancer monitoring methods using whole-genome sequencing, 

but they do not yet address limitations 3 and 4 mentioned above, and focus on mutations 

seen in pre-treatment tumor samples. In addition, the high cost of whole-genome sequencing 

limits the clinical applications of those two methods.

In this study, we describe a new cancer monitoring approach, named cfTrack, based on 

the cfDNA whole-exome sequencing (WES). cfTrack addresses all the aforementioned 

limitations of existing methods. Specifically, not only can it monitor the pre-existing 

cancer (i.e., the original, primary cancer) to detect recurrence or MRD, but it can 

also monitor tumor evolution by detecting cancer progression or the emergence of a 

second primary cancer. To monitor the pre-existing cancer, cfTrack (1) uses exome-wide 

somatic mutations collected in pre-treatment samples (solid tumor or blood samples) to 

provide a robust statistical index, then (2) models sample-specific background noise in 

the cfDNA sequencing data to provide an unbiased detection threshold for each patient. 

To monitor tumor evolution, cfTrack performs detection of exome-wide de novo tumor 

mutations in the post-treatment plasma samples, using our recently developed cfSNV 
method [12]. With exome-wide sequencing and comprehensive analysis of mutations, 

cfTrack can sensitively identify these previously undiagnosed patients with second primary 

cancers, comprehensively describe their tumor status, and enable early intervention and 

personalization of treatment. Using both simulation data and a cohort of cancer patients 

(n = 35, 18 prostate cancer, 8 lung cancer, 4 ovarian cancer, 3 glioma, 1 bladder cancer, 

and 1 germ cell cancer), we show that cfTrack achieves sensitive and specific monitoring 

of tumor MRD/recurrence and evolution from cfDNA, even with very low tumor fractions. 

These results demonstrate that cfTrack enables full-spectrum monitoring of cancer treatment 

outcomes.

Material and Methods

Data collection

We collected WES data from four public datasets. We collected data of 18 metastatic cancer 

patients from Adalsteinsson et al. [13] under dbGaP accession code phs001417.v1.p1. Each 

patient’s data includes a WBC sample, a tumor biopsy sample, and two plasma samples. We 

also collected WES data of 3 cancer patients (1 bladder cancer, 1 prostate cancer, and 1 germ 

cell cancer) from Tsui et al. [14] under NCBI BioProject accession code PRJNA679359 and 

WES data of 3 glioma patients under NCBI BioProject accession code PRJNA641696. Each 

patient has a WBC sample, a solid tumor sample, and a plasma sample. We collected WES 

data of 17 prostate cancer patients from Ramesh et al. [15] under NCBI BioProject accession 

code PRJNA554329. All patients have one WBC sample; 8 of the 17 patients have a solid 

tumor sample (metastatic site); 5 (7, 2, 2, and 1) patients have 1 (2, 3, 4, and 5 respectively) 

plasma sample collected at different time points. We also collected samples from 8 NSCLC 

patients and 4 ovarian cancer patients and generated our own WES data as described below. 

For all 8 NSCLC patients, a tumor biopsy sample, a WBC sample, and three plasma samples 
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were collected. For all 4 ovarian cancer patients, a WBC sample and two serum samples 

were collected. In addition, for the ovarian cancer patient OV4, who underwent surgical 

resection at the first blood collection, we collected the patient’s tumor tissue sample. For all 

sources, only one WBC sample (or its WES data) was collected for each cancer patient.

Human subjects

We collected blood samples, tumor samples, and WBC samples from 8 NSCLC patients 

from KEYNOTE-001 [16] and KEYNOTE-010 [17], who all provided informed consent for 

research use. The blood and tissue collection protocols were described in the full protocol of 

KEYNOTE-001 and KEYNOTE-010. The project was approved by the Institutional Review 

Board (IRB) of University of California, Los Angeles (IRB# 12–001891, IRB# 11–003066, 

and IRB# 13–00394) and was conducted in accordance with the Belmont Report. We also 

collected samples from 4 ovarian cancer patients. Serum was harvested from whole blood 

by centrifugation (400xg, 15’) and immediately flash frozen. PBMCs were harvested from 

whole blood collected in a blue top phlebotomy tube with sodium citrate, centrifuged 

(400xg, 15’), and aliquoted from the buffy coat before being immediately flash frozen. 

Portions of solid tumor from the operating room were brought back to the lab and flash 

frozen. Clinical information from consenting patients was obtained from medical records. 

Longitudinally collected clinical specimens from ovarian cancer patients were obtained 

using IRB-approved protocols (IRB# 10–000727) and were studied in accordance with the 

Belmont Report. All patients provided written informed consent.

Genomic DNA WES library construction

For the 8 NSCLC patients, WBC genomic DNA (gDNA) was isolated with QIAGEN 

DNeasy Blood & Tissue Kit (Germantown, MD). Library preparation and exon capture 

was performed with KAPA HyperPrep Kit and Nimblegen SeqCap EZ Human Exome 

Library v3.0 (Roche, Indianapolis, IN) and 2×150bp paired-end sequencing by Genewiz 

(South Plainfield, NJ). For the 4 ovarian cancer patients, WBC and tumor tissue gDNA 

were isolated with DNeasy Blood & Tissue Kit and sonicated by Covaris system (Woburn, 

MA). Ampure XP beads (Beckman-Coulter, Atlanta, GA) size selection was performed to 

enrich 100–250bp DNA fragments before library construction. In brief, 0.9 volume beads 

were added to the fragmented gDNA. After incubation, supernatant was transferred to a 

new tube and an additional 1.1 volume beads were added (“0.9x-1.1x bead size-selection”). 

After wash, gDNA was eluted. gDNA WES library was constructed with SureSelect XT HS 

kit from Agilent Technologies (Santa Clara, CA) according to manufacturer’s protocol. In 

brief, 100ng gDNA was used as input. The adaptor-ligated library was amplified with index 

primer in 8-cycle PCR. 1000 ng pre-capture library was hybridized to capture panel. The 

post-capture library was re-amplified with 9-cycle PCR and 2×150bp paired-end sequenced 

by Genewiz.

Plasma cfDNA WES library construction

For each of the 8 NSCLC patients, venipuncture was performed by trained phlebotomists. 

Plasma samples were isolated within 2 hours of blood collection and stored in −80C until 

cfDNA extraction with QIAGEN QIAamp circulating nucleic acid kit. WES libraries were 

constructed with SureSelect XT HS kit. 10ng cfDNA was used, and 10-cycle PCR was 
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performed for both pre- and post-capture libraries. 700–1000 ng pre-capture library was 

hybridized to the capture panel.

Serum cfDNA WES library construction

Serum cfDNA from the 4 ovarian cancer patients was extracted by QIAamp circulating 

nucleic acid kit. 0.5x-2.0x bead size-selection was performed to eliminate gDNA 

contamination. WES libraries were constructed with SureSelect XT HS kit. Input was 5–

20ng cfDNA. Pre-capture libraries were amplified by PCR with 11 (10–20ng input) or 12 

(input less than 10ng) cycles. Post-capture libraries were re-amplified with 9-cycle PCR.

Data preprocessing

Both genomic DNA sequencing data and cfDNA sequencing data were preprocessed 

using the same procedure. Raw sequencing data (FASTQ files) were aligned to the hg19 

reference genome by bwa mem [18] and sorted by samtools [19]. Then, duplicated reads 

from PCR amplification were identified and removed by picard tools MarkDuplicates 
[20]. After this step, read group information was added to the bam file using picard 
tools AddOrReplaceReadGroups, and reads were realigned around indels using GATK 
RealignerTargetCreator and IndelRealigner [21][22]. After realignment, base quality scores 

were recalibrated using GATK BaseRecalibrator and PrintReads. All tools in the data 

preprocessing pipeline were used with their default settings. After data preprocessing, the 

resulting bam files were used as inputs for mutation detection and MRD detection.

Comprehensive and personalized cancer monitoring using cfDNA.

We present a new cancer monitoring method (Figure 1a and Figure 1b), cfTrack, that 

analyzes both pre-existing tumor mutations and newly emerging mutations in post-treatment 

samples. Specifically, we collect a plasma or solid tumor sample and a matched white 

blood cell (WBC) sample from a patient before the treatment to select markers that are 

specific to the pre-existing tumor. In the post-treatment plasma samples, cfTrack both tracks 

pre-existing tumor markers and detects new somatic mutations.

Due to the low tumor fraction in the plasma samples from patients with MRD, we integrate 

all clonal tumor mutations from the pre-treatment samples (Figure 1b (1)). Tumor mutations 

evolve, so any given somatic mutation observed in pre-treatment samples may disappear 

in post-treatment samples. We perform WES of the pre-treatment samples (solid tumor or 

plasma samples) and select clonal somatic mutations that appear in all pre-existing cancer 

cells and have high variant allele frequencies (VAFs) [4]. Compared to a pre-defined, 

limited panel of known tumor mutations, these clonal mutations, observed in WES, are 

more likely to appear in post-treatment samples and are more informative for monitoring 

the pre-existing tumor [5]. However, when the tumor fraction in cfDNA is very low, WES 

sequencing at medium depth (100x or 200x) may contain few variant supporting reads at a 

specific locus. Therefore, to provide a robust mutation-based statistic index in cfDNA, we 

aggregate variant supporting reads across all clonal somatic mutations (see Identification 

of clonal mutations in pre-treatment samples and Figure S1a–b). We quantify the tumor 

fraction using the integrated variant allele frequency (IVAF), which is the sum of variant 

supporting reads divided by the sum of all reads at the clonal somatic mutations. Note 
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that a recent publication developed a similar integrative approach using the reads from 

whole-genome sequencing of cfDNA [11]. Here we show that WES of cfDNA can also be 

used for ultra-sensitive cancer detection, and given its cost-effectiveness compared to WGS 

it is more feasible for clinical use.

To limit the accumulation of sequencing errors during integration, we suppress sequencing 

errors at the read level with a random forest model (Figure 1b (2)). When we integrate tumor 

reads across a large number of mutation sites to amplify the tumor signal, sequencing errors 

also accumulate. Therefore, we have developed a method to suppress individual sequencing 

errors and enhance the signal-to-noise ratio of cancer detection by differentiating the reads 

containing sequencing errors from those containing true variants. Specifically, this filter is 

based on a random forest model (see Machine learning model for suppressing sequencing 

errors). Previous work has shown that it is possible for machine learning to distinguish 

true cancer mutations from sequencing artifacts at the read level, and such filters have 

been used to predict mutations and detect cancer and MRD [11][13]. Unlike these previous 

works, our method is specifically designed for cfDNA WES data: it incorporates cfDNA 

fragmentation patterns and read sequence contexts (e.g. nucleotide substitution C>A). Both 

features are informative to distinguish tumor-derived true mutations and sequencing errors: 

tumor-derived cfDNA fragments are shorter than non-tumor-derived cfDNA fragments [23]

[24]; sequencing error rates are associated with nucleotide substitution types [25]. By 

combining a wide variety of features (Table S1), our model automatically discovers feature 

co-occurrence relationships that are associated with sequencing errors. The random forest 

model classifies all supporting reads at clonal somatic mutation loci as containing either a 

true variant or a sequencing error. Only those reads classified as “true variants” are counted 

as variant supporting reads.

We predict recurrence or MRD using sample-specific background noise distribution (Figure 

1b (3)). To predict whether a patient has recurrence or MRD, we need to compare the 

estimated tumor fraction with a background noise distribution which represents the error 

allele fraction in samples from individuals without a tumor. Previous studies usually 

compared the post-treatment sample of a patient with a cohort of samples from healthy 

individuals. Because the inter-individual and inter-experimental differences are difficult to 

model, however, this kind of comparison can introduce prediction bias, and the resulting 

detection thresholds are difficult to generalize to other experimental protocols. To avoid 

this limitation, we build the background noise distribution in the same sample. For a set 

of n clonal tumor mutations, we calculate the IVAF repeatedly K times (K=100) from n
random genomic positions, excluding known mutations and positions associated with clonal 

hematopoiesis (see Identification of mutations and CHIP positions). Ideally, all read pairs 

with non-reference alleles at random positions are from sequencing errors, so the observed 

frequency of these reads represents the background noise level. Therefore, we approximate 

the background noise distribution by the K IVAFs from random positions, which represents 

the actual error rates observed in this specific sequencing experiment. Recurrence or MRD 

can then be detected using the empirical p-value of the tumor fraction calculated from 

the pre-existing clonal mutations with respect to the sample-specific background noise 
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distribution. If the empirical p-value is <= 0.05, the patient is regarded as having MRD/

recurrence.

We monitor tumor evolution and newly emerging tumors by identifying newly emerging 

tumor mutations de novo (Figure 1b(4)). Previously described methods for cancer 

monitoring focus on a predefined mutation panel, which makes it difficult to detect tumor 

evolution or second primary cancers. Taking advantage of the WES data with broad 

genome coverage, cfTrack performs de novo mutation identification to accomplish both. 

For this we utilize cfSNV [12], a method we recently developed for the sensitive and 

accurate calling of somatic mutations in plasma samples. cfSNV specifically accommodates 

key cfDNA-specific properties, including the low tumor fraction, short and non-randomly 

fragmented DNA, and heterogeneous tumor content. It addresses the low tumor fraction 

and tumor heterogeneity in cfDNA by iterative and hierarchical mutation profiling and 

ensures a low false-positive rate by multilayer error suppression. Based on the mutation 

calling results from cfSNV, tumor evolution and newly emerging tumors are tracked by a 

logistic regression model, whose features are the tumor fraction and the number of detected 

mutations. The model is trained using a cohort of cancer and healthy plasma samples. A 

sample is predicted with evolved tumors or newly emerging tumors if its prediction score 

is larger than the 95th percentile of the prediction scores from the healthy samples in the 

training data.

Identification of clonal mutations in pre-treatment samples

Tumor-derived somatic mutations are detected using cfSNV [12] from the pre-treatment 

plasma sample; if only the pre-treatment tumor sample is available, tumor-derived mutations 

are the common mutations detected by Strelka2 [26] somatic and MuTect [27] from the 

pre-treatment tumor sample. The detected mutations are removed if there is at least one 

variant supporting read in the matched WBC sample. A mutation is considered clonal, and 

hence retained in the final marker list, if its VAF is > 25% of the average of the five highest 

VAFs in the sample [28]. We require a minimum of 30 markers from the pre-treatment 

plasma sample to obtain a robust prediction. If there are fewer than 30 clonal mutations, 

subclonal mutations with the highest VAFs will be included.

Identification of mutations and CHIP positions

We identify germline mutations in the pre-treatment plasma sample and the matched WBC 

sample from the same patient using GATK HaplotypeCaller and Strelka2 Germline with 

the default settings. GATK HaplotypeCaller is applied to the plasma sample and the 

WBC sample individually; Strelka2 Germline is applied to the plasma-WBC sample pair. 

Somatic mutations are detected in the plasma sample and the matched WBC sample using 

cfSNV under default settings. The Clonal Hematopoiesis of Indeterminate Potential (CHIP) 

positions are identified from pileup files generated using samtools mpileup. If a non-mutated 

position has >= 3 variant supporting reads or a VAF > 1% in the matched WBC sample, it 

is regarded as a CHIP position. The selection of these parameters has little impact on the 

performance (Figure S2a–b). All the identified germline mutations, somatic mutations and 

CHIP positions are excluded in the step of building the background noise distribution.
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Machine learning model for suppressing sequencing errors

Although weak tumor signals in plasma samples can be amplified by integrating the variant 

supporting reads across a large genomic region, sequencing errors can also accumulate 

and possibly confound the tumor signal. Moreover, because of the low fraction of tumor 

DNA, the variant supporting reads at a single mutation are not sufficient to provide a robust 

and accurate estimation of site-level statistics (e.g., strand bias and average base quality) 

for error removal. Therefore, we developed a machine learning filter to eliminate reads 

with sequencing errors (Figure S3). Specifically, for a group of genomic positions (tumor 

mutations or random positions), we classify the variant supporting reads with a random 

forest model to distinguish sequencing errors from true variants. Since all data in this 

study were generated from paired-end sequencing, in the following section, we detail the 

model for paired-end reads, but the principle can also be applied to single-end reads. With 

paired-end sequencing data, there are two types of read pairs with regards to a specific 

mutation site: one (non-overlapping read pair) covers the mutation site by one of its read 

mates, the other (overlapping read pair) covers the mutation site by both of its read mates 

(Figure S3a). The overlapping read pair can provide two readouts of the mutation site on the 

DNA fragment in the sequencing library, but the non-overlapping read pair can only provide 

one readout. This means that the overlapping read pair naturally contains more information 

about the mutation site than the non-overlapping read pair, and the two readouts can serve 

as validation for each other. Therefore, we trained two independent random forest models to 

fully utilize the information in the non-overlapping read pair and the overlapping read pair. 

Please note that the random forest models in cfTrack classify sequencing errors and true 

variants in every read pair, i.e. read-level error suppression. It is different from the empirical 

variant score model in Strelka and the variant quality score model in GATK, which rely on 

site-level statistics (such as averaged base quality in all reads) to classify sequencing errors 

and true variants.

To train the random forest model, we used WES data from 18 patients: 12 with metastatic 

breast cancer (MBC) and 6 with metastatic prostate cancer (CRPC) [13](Figure S3b). Each 

patient had four samples sequenced: two plasma samples (collected at two different time 

points), a WBC sample, and a tumor biopsy sample. We use the supporting cfDNA read 

pairs at known mutation (error) sites as the training data. The known mutation sites include 

both germline and somatic mutation sites, where germline mutations are required to be 

detected in all four samples using Strelka2 germline, and somatic mutations are required 

to be detected from both the cfDNA-WBC pairs (cfDNA data vs. WBC data) and the 

tumor-WBC pair (tumor data vs. WBC data) using Strelka2 somatic and MuTect. Error 

sites are defined as sufficiently covered sites (> 150x) with at most two high-quality 

non-reference read (base quality ≥ 20 and mapping quality ≥ 40) in only one of the four 

datasets. All high-quality labeled read pairs (base quality ≥ 30 and mapping quality ≥ 40) 

were extracted from raw cfDNA data using picard tools FilterSamReads. Multiple read 

pairs may be extracted covering the same mutation site, but these read pairs are similar 

and might cause redundancy in the training and testing data. Therefore, we solved the 

redundancy problem by retaining only one read pair per mutation/error site (Table S2). 

Different features were extracted from the overlapping read pairs and the non-overlapping 

read pairs (Table S1). All categorical features were expanded using the one-hot encoding 
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method. The hyper-parameters of the random forest model were as follows: (1) the number 

of decision trees was 100, (2) the maximum tree depth was 50, (3) imbalanced classes were 

addressed by setting the class weights to “balanced”, and (4) other parameters were left at 

their default values. Two separate random forest classifiers (one for overlapping read pairs 

and one for non-overlapping read pairs) were trained on the extracted read pairs.

We validated the performance of the random forest model by cross-validation. For each 

patient, the labeled read pairs from the 17 other patients were used to train the model, 

while the patient’s own data were used to test the model (results shown in Figure S4). The 

training data of the random forest model in all the simulation (MRD/recurrence and second 

primary cancers) also exclude the patient used for generating the simulation data to avoid 

data leakage. Therefore, the evaluation of cfTrack is independent of the training data. As 

an independent validation set, we used a group of non-small-cell lung cancer patients (8 

patients each with 3 samples) with sequential plasma cfDNA samples. The read pairs in 

these cfDNA samples were labeled in the same manner as described above. Then, these 

labeled read pairs were used as independent testing data for the random forest model trained 

by the data generated from the 12 MBC and 6 CRPC patients (results shown in Figure 

S5). On all cross-validation datasets, the random forest model can accurately distinguish 

sequencing errors from true variants (average AUC = 0.95, 95% confidence interval (CI) = 

0.9496–0.9503).

Simulation of recurrence and MRD detection by tracking clonal somatic mutations in pre-
treatment samples

To evaluate the performance of our method, we generated simulation data to mimic 

patients with MRD/recurrence and patients with complete remission. The patients with 

MRD/recurrence have tumor content in the post-treatment plasma sample and will show 

the detection sensitivity; the patients with complete remission have no tumor content in the 

post-treatment plasma sample and will show the detection specificity. The simulation data 

were generated from two datasets independently: (1) validation dataset, 27 MBC and 14 

CRPC patients and (2) independent dataset, 8 NSCLC patients.

In the validation dataset, only 12 MBC and 6 CRPC patients have two plasma cfDNA 

samples, so only these patients were used to generate the post-treatment cfDNA samples 

from the MRD/recurrence patients. Note that these data were also used to generate the 

training data for the read-level error suppression model. Therefore, to avoid data leakage 

in the performance evaluation, the MRD/recurrence detection on the validation dataset 

was performed in a “leave-one-patient-out cross-validation” manner. In other words, for 

a simulated sample (generated from WES data from a specific patient) in the validation 

dataset, the random forest models used in the error suppression step were trained on the 

other 17 patients. In the independent dataset, the 8 NSCLC patients have three plasma 

cfDNA samples. Only the first two time points of the plasma cfDNA samples were used in 

the simulation. These data were untouched and independent of the training of the read-level 

error suppression model, so the error suppression model used on the independent dataset 

was trained by all training data extracted from the 12 MBC and 6 CRPC patients.
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To demonstrate the sensitivity of detection for pre-existing cancer, we generated in silico 
dilution series to simulate patients with MRD/recurrence by mixing the plasma sample 

collected at the second time point and the matched WBC sample at varying concentrations 

of cfDNA reads (0.01%, 0.05%, 0.1%, 0.3%, 0.5%, 0.8%, 1%, 3%, 5%, and 8%) using 

samtools view and samtools merge. Five independent mixtures were generated at every 

concentration, at theoretical depths of 200x, 100x or 50x on the WES targeted regions. Since 

read sampling is random, it is possible that there is no variant supporting read at a given 

marker, even across all markers. Thus, we removed samples with no variant supporting reads 

at all personalized markers (checked by samtools mpileup). In this simulation, the original 

matched WBC samples and the original plasma samples at the first time point were used 

as the WBC samples and the pre-treatment plasma samples, respectively (Figure 2). The 

in silico dilution series represents post-treatment plasma samples from patients with MRD/

recurrence. For the validation dataset, we generated the data for each of the 12 MBC and 6 

CRPC patients. The theoretical tumor fraction in each sample is calculated as the product 

of the original tumor fraction in the cfDNA sample and the dilution. The theoretical tumor 

fraction ranges from 0.001% to 6.114%, with a median of 0.270%. For the independent 

dataset, we generated the data for each of the 8 NSCLC patients. The theoretical tumor 

fraction ranges from 0.001% to 1.867%, with a median of 0.103%. The different ranges 

of the theoretical tumor fractions in the two datasets are caused by differences in the 

tumor content levels in the original plasma samples. Note that the theoretical tumor fraction 

usually overestimates the true tumor fraction because of random sampling and the imperfect 

on-target rate.

To evaluate the specificity of the MRD detection pipeline, we generated the patients with 

complete remission by subsampling from the original WBC samples. Therefore, these 

subsamples are expected to have no tumor DNA. For a WBC sample from a cancer patient, 

five subsamples were generated for each of 200x, 100x, and 50x theoretical depth of the 

targeted regions. These subsamples represent post-treatment plasma samples from patients 

without MRD. The original plasma samples at the first time point were used as the pre-

treatment plasma samples. Note that only one WBC sample was available for each patient. 

If the only original WBC sample was directly used as the pre-treatment WBC sample, all 

data in the post-treatment plasma samples (i.e. subsamples) would have been observed in 

the pre-treatment WBC sample (i.e. the full original sample), which is impossible in reality. 

Therefore, we used another subsample of the original WBC samples as the pre-treatment 

data at a sampling rate of 95% (Figure 2). In this simulation, we preserved some randomness 

between the WBC samples and the post-treatment plasma samples, which reflects real cases. 

For the validation dataset, we generated the remission samples for each of the 27 MBC and 

14 CRPC patients. For the independent dataset, we generated the remission samples for each 

of the 8 NSCLC patients.

To avoid potential bias from independently sampling replicates from the same patients, 

we randomly selected 1 replicate at every dilution (including 0% for remission samples) 

for every patient to calculate the performance (AUC, sensitivity, and specificity). After the 

selection, the performance metrics (AUC, sensitivity, and specificity) were evaluated on 

the MRD/recurrence samples grouped by the tumor fraction with a 0.01% step size and 

the remission samples (samples with WBC reads only). To provide a robust estimate, we 
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randomly selected samples and calculated the performance 50 times. For the validation 

dataset, in each random selection, there are 41 simulated remission samples at each depth. 

At 200x, there are 143 simulated MRD/recurrence samples; at 100x, there are 142 simulated 

MRD/recurrence samples; at 50x, there are 128 simulated MRD/recurrence samples. For 

the independent dataset, in each random selection, there are 8 simulated remission samples 

at each depth. At 200x, there are 68 simulated MRD/recurrence samples; at 100x, there 

are 65 simulated MRD/recurrence samples; at 50x, there are 56 simulated MRD/recurrence 

samples.

Simulation of second primary cancer detection

Similar to the simulation of recurrence and MRD detection, to evaluate the sensitivity of 

the method for second primary cancer detection, we generated an in silico dilution series 

by mixing the plasma samples at the second time point and the matched WBC samples 

from the 12 MBC and 6 CRPC patients at varying concentrations of cfDNA reads (from 

1% to 10%: 1%, 3%, 5%, 8%, and 10%) using samtools view and samtools merge. Since 

no training and testing of new models is performed in the detection of second primary 

cancers, this is an independent testing dataset with respect to the detection method. Each 

spike-in sample contained a total number of randomly sampled reads theoretically equivalent 

to 200x depth of the targeted regions. Five independent mixtures were generated at every 

concentration. The tumor fraction in these spike-in samples was quantified by the variant 

supporting reads at the clonal somatic mutations identified in the original plasma sample. 

In this simulation, the original matched WBC samples were used as the WBC samples. 

To demonstrate the specificity of the method, we reused the complete remission samples 

at 200x generated in the simulation of recurrence and MRD detection. To avoid potential 

bias from independently sampling replicates from the same patients, we randomly selected 

1 replicate at every dilution for every patient to calculate the performance (AUC, sensitivity, 

and specificity). To provide a robust estimate, we randomly selected samples and calculated 

the performance 10 times. In each random selection, there were 90 simulated samples from 

patients with second primary disease and 41 simulated samples from patients with complete 

remission. To evaluate the performance, after removing the replicates, the simulation data 

were randomly split into the training set (50%, n = 66) and the testing set (50%, n = 65) 

ten times. A logistic regression model is trained on the training set and used to predict the 

presence of a second primary cancer in the testing set. The performance metrics (AUC, 

sensitivity, and specificity) are evaluated in the testing set on the second primary cancer 

samples grouped by tumor fraction with a 0.1% step size, but always using the complete set 

of remission samples.

Code Availability Statement

cfTrack is implemented in Python and is freely available for academic and research usage 

through https://zhoulab.dgsom.ucla.edu/pages/cfTrack.

Data Availability Statement

The data generated in this study are publicly available in the European Genome-Phenome 

Archive under the accession EGAD00001008454. The public data analyzed in this study 

were obtained from dbGaP under accession code phs001417.v1.p1 and from Sequence 
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Read Archive under NCBI BioProject accession code PRJNA679359, PRJNA641696, and 

PRJNA554329.

Results

Analytical performance of detecting cancer recurrence and MRD.

To evaluate the performance of cfTrack on cancer MRD or recurrence, we use the in silico 
method of preparing spike-in simulation data. If a cancer patient has cancer recurrence 

or MRD, the post-treatment plasma of the patient will contain DNA corresponding to the 

pre-existing tumor. To simulate the post-treatment plasma samples from the patients with 

cancer recurrence or MRD, we computationally mix a plasma sample from a cancer patient 

with a WBC sample from the same patient. The data, with known dilution ratios, can 

provide a sensitivity/specificity assessment of cfTrack.

We generated two sets of in silico spike-in simulation data: (1) validation dataset, using 

the WES data from 12 patients with metastatic breast cancer (MBC) and 6 patients 

with metastatic prostate cancer (castrate-resistant prostate cancer, CRPC) [13] and (2) 

independent dataset, using the WES data from 8 patients with non-small cell lung cancer 

(NSCLC). For both datasets, each patient has sequencing data from two plasma samples 

(collected at two different time points T1 and T2, with 14~138 days in between for MBC and 

CRPC patients, 42 days in between for NSCLC patients), and the matched WBC sample. 

These patients underwent treatment between T1 and T2, so we consider the first plasma 

samples (at T1) the “pre-treatment” samples, and the second plasma samples (at T2) the 

“post-treatment” samples. Tens to hundreds of clonal somatic mutations (for MBC and 

CRPC patients, ranging from 49 to 674 with median 94; for NSCLC patients, ranging from 

30 to 1239 with median 63) are found in the pre-treatment samples when compared to 

their matched WBC samples. We then generate an in silico dilution series for each patient 

by mixing their post-treatment plasma sample with the matched WBC sample at varying 

fractions (the theoretical tumor fraction ranges from 0.001% to 6.114% with median 0.270% 

for the validation dataset, from 0.001% to 1.867% with median 0.103% for the independent 

dataset; see Material and Methods and Figure 2). In addition, we simulate patients who 

achieved complete remission by subsampling the original WBC samples (the tumor fraction 

is 0%, see Material and Methods and Figure 2). The simulation data are generated at three 

different depths, 50x, 100x and 200x.

When applying cfTrack to the simulated datasets, we observe slightly increased detection 

performance with increasing sequencing depth (Figure 3a–d and Figure S6a–d). This trend 

is expected because the higher the sequencing depth, the more tumor DNA fragments can 

be captured. Specifically, on the validation dataset, we achieve an average AUC of 99% 

(standard deviation (SD) = 1%) when the tumor fraction is ≥ 0.05% at 200x depth (Figure 

3a and Figure S6a), with 100% average sensitivity (SD = 0%) and 96% average specificity 

(SD = 1%, Figure 3b and Figure S6b). On the independent dataset, we achieve an average 

AUC of 100% (SD = 0%) when the tumor fraction is ≥ 0.05% at 200x depth (Figure 3c 

and Figure S6c), with 89% average sensitivity (SD = 13%) and 100% average specificity 

(SD = 0%, Figure 3d and Figure S6d). Considering the difference in the sample size and the 

higher specificity in the independent dataset, the performance on the two simulation datasets 
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is comparable. This indicates that our method can achieve sensitive monitoring using only 

200x WES data, offering a cost-effective solution for MRD detection. The detection limit 

can be further enhanced by increasing the sequencing depth.

Our method can achieve high detection power thanks to three key features: the exome-wide 

integration of tumor signals, the sample-specific decision threshold, and the read-level error 

suppression. Read-level error suppression greatly improves the detection power, especially 

in samples with a low tumor fraction. For example, based on our in silico samples with a 

0.05% tumor fraction, employing read-level error suppression improved the AUC by 35% 

on the validation dataset (see Figure 3e and 3f) and improved the AUC by 40% on the 

independent dataset (see Figure S6e and S2f).

Analytical performance of detecting second primary cancers.

Sensitive monitoring of tumor evolution and newly emerging tumors requires the de novo 
detection of mutations from previously unobserved tumors. Pre-treatment plasma samples 

and tumor biopsy samples cannot provide sufficient tumor markers for this purpose. In 

contrast with previous cancer monitoring methods, we can detect de novo tumor-derived 

SNVs in the post-treatment plasma samples, which allows us to identify mutations that 

come from new tumors. In this section, we specifically evaluate cfTrack for the detection of 

second primary cancers, which depends solely on the detection of emerging tumors.

Detecting a second primary cancer is equivalent to detecting a new tumor without prior 

knowledge. To simulate this scenario, we generate an in silico dilution series from the 12 

MBC and 6 CRPC patients by mixing their post-treatment plasma samples with the matched 

WBC samples [13]. The mixed samples are prepared at varying fractions (the theoretical 

tumor fraction ranges from 0.111% to 7.680%, with a median of 2.984%; see Material 

and Methods and Figure 2). For each dilution level, simulation data are generated with 

a depth of 200x. The samples simulating complete remission are the same as those used 

for MRD/recurrence detection (in the previous section). Since the detection of a second 

primary cancer involves no training or testing of new models, this simulation dataset is an 

independent dataset with respect to the detection method. In this simulation, we do not use 

the pre-treatment plasma samples, representing the scenario where no pre-existing tumor 

profile has been observed.

For each pair of simulated plasma and simulated WBC samples, we use cfSNV to identify 

somatic mutations. Then cfSNV estimates a tumor fraction from these mutations. We predict 

a second primary cancer by a logistic regression model using both the tumor fraction and 

the number of detected mutations as features. We randomly split the samples into a training 

set (50%) and a testing set (50%). A patient is predicted to have a second primary cancer if 

they have a large prediction score (≥ 95th percentile of prediction scores from the remission 

samples in the training set). The AUC is calculated based on the prediction results in the 

testing sets for all complete remission samples and for the subset of simulation samples 

with a specific tumor fraction (see Material and Methods). We achieve an average AUC of 

88% (SD = 10%) when tumor fraction ≥ 0.2% at 200x depth (Figure 4a), with an average 

sensitivity of 76% (SD = 23%) and an average specificity of 93% (SD = 5%, Figure 4b). 

The sensitivity of the methodology is lower for detecting second primary cancers than for 
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detecting recurrence and MRD, because no pre-existing tumor information is available and 

all novel somatic mutations need to be confirmed. The detection of a novel somatic mutation 

requires more variant supporting reads than just observing a weak signal at a known locus. 

Nevertheless, cfTrack still achieves high performance in detecting a new tumor. Therefore, 

cfTrack can be used for monitoring tumor evolution and detecting second primary cancers 

and cancer progression.

Monitoring tumors in cancer patients on treatments through cfDNA.

Developments in immunotherapy and targeted therapy have improved the outcomes of 

cancer patients in recent years [29][30][31]. For example, immunotherapy, which activates a 

patient’s own immune system to fight cancer, has remarkably improved clinical outcomes in 

a subset of NSCLC patients [32]. Despite these results, the majority of patients eventually 

develop resistance and fail to respond to treatment [33][34][35]. Therefore, it is essential to 

closely monitor the response of patients and quickly recognize when the need for alternative 

treatment arises. However, since the development of resistance may be associated with 

tumor evolution [36], this type of monitoring cannot only rely on markers derived from the 

pre-existing tumor, but requires constant re-evaluation of the tumor profile during treatment. 

Our WES-based method, which detects mutations from both pre-treatment and treated 

samples, can comprehensively track a patient’s response.

To test our method in this clinical scenario, we not only collected samples from our 

cancer patients but also exhaustively surveyed available datasets from public databases. 

Specifically, we applied our cancer monitoring method to plasma/serum samples (n = 76, 8 

serum samples for 4 ovarian cancer patients and 68 plasma samples for other patients) from 

a cohort of cancer patients (n = 35) who received various treatments. This cohort contains 18 

prostate cancer patients [15][14], 8 lung cancer patients, 4 ovarian cancer patients, 3 glioma 

patients, 1 bladder cancer patient [14], and 1 germ cell cancer patient [14]. All plasma/serum 

samples were collected when the patients didn’t have complete remission or had recurrence, 

so tumor content was expected in all samples. After applying our method, tumor-derived 

DNA was detected in all cfDNA samples except three plasma samples from glioma patients 

(Figure S7). Because the detection of tumor-derived cfDNA is only possible in a very small 

fraction of glioma patients due to the blood-brain barrier [37], our results were reasonable 

and consistent with the literature.

Among the 35 patients, 8 NSCLC patients, 4 ovarian cancer patients and 12 prostate cancer 

patients have at least two plasma/serum samples collected at different time points, between 

which the patients received treatments. To monitor the tumor changes in these patients, two 

tumor fractions are calculated separately for the pre-existing tumor mutations (pre-existing 

tumor fraction) and for the de novo tumor mutations (de novo tumor fraction) from cfTrack. 

The two tumor fractions allow us to track possible tumor mutations during treatment.

The eight NSCLC patients received anti-PD-1 immunotherapy and their plasma samples 

were collected from each patient at 0 weeks (baseline), 6 weeks and 12 weeks, measured 

from the start of treatment. Among these patients, four are “durable responders” whose 

progression-free survival (PFS) is longer than 18 months; the other four patients are “early 

progressors” whose PFS is shorter than 6 months (see Table S3). In general, we observe a 
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decreasing or low tumor fraction in the durable responders and an elevated tumor fraction 

in the early progressors (Figure 5a). An unusual example in the sample is early progressor 

LC-2, whose pre-existing tumor fraction remained at a low level during immunotherapy 

treatment, while de novo tumor fraction increased. This implies a potential clonality change 

during treatment. In other words, the responding clone might have shrunk while the other 

clones grew. Existing cancer monitoring methods, which do not consider newly emerging 

mutations, could not have recognized this tumor growth and would have misled further 

treatments.

The four ovarian cancer patients received chemotherapy (OV1, OV2, and OV3) or 

chemotherapy and surgery (OV4) between the collection of two serum samples (Table 

S4). At the time of the second collection, patients OV1, OV2, and OV3 underwent 

surgery. Surgical and pathologic findings demonstrated a moderate treatment effect from 

chemotherapy. We observed a decrease in both tumor fractions using cfTrack (Figure 5b), 

which indicated a decline in tumor burden. Patient OV4 had a recurrence after chemotherapy 

and surgery at the time of the second serum collection. Consistently, we observed an 

increase in both tumor fractions (Figure 5b). Therefore, our results are consistent with the 

clinical outcomes of these patients.

We also tracked the tumor changes in the 12 prostate cancer patients who received various 

treatment types during the time between the two plasma collections. During treatment, 

9 patients (P8, P9, P10, P14, P15, P16, P18, P19, and P20) had clonal expansion and 

3 patients (P6, P17, and P21) had persistent clones [15]. The clonality change can be 

reflected by the discordance of the two estimated tumor fractions. In general, we observed 

discordance between the two tumor fractions in the majority of the patients with clonal 

expansion (Figure 5c). There are no or only minor differences between the two tumor 

fractions in the patients with relatively stable clones (Figure 5c). These observations are 

consistent with those from the NSCLC patients.

From the analysis of this heterogeneous cohort of cancer patients with different cancer types 

and various treatments, we showed that our method can not only closely track the change in 

tumor fraction, but also detect changes in mutation clonality. The latter is essential for the 

detection of resistance clones in order to promptly guide subsequent treatments, but it cannot 

be achieved by existing cancer monitoring methods.

Discussion

Cancer monitoring is essential to assess the effectiveness of treatment and improve the life 

quality of cancer patients. Unlike traditional tumor biopsies, cfDNA can provide noninvasive 

and continuous monitoring of cancer patients, but the very low tumor content of cfDNA 

remains a major challenge. Most current cfDNA-based methods rely on deeply sequencing a 

small gene panel to detect the weak tumor signal, but this approach cannot comprehensively 

cover the patient population or detect evolving tumors. Therefore, we have developed a new 

cfDNA-based cancer monitoring method that can effectively and sensitively track changes 

in tumors, detect cancer MRD/recurrence, and identify the presence of a second primary 

cancer. We present a new computational method for cancer monitoring using cfDNA WES 
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data to overcome the limitations of previous methods. Taking advantage of the wide genome 

coverage of WES data, cfTrack (1) enhances the tumor signal by integrating a large number 

of clonal tumor mutations identified in pre-treatment samples; (2) suppresses sequencing 

errors at the read level with an accurate random forest model; (3) builds sample-specific 

background noise distributions to predict MRD/recurrence, avoiding biases due to inter-

individual and inter-experimental variations; and (4) detects tumor evolution and second 

primary cancers by de novo identifying emerging tumor mutations.

Combining these techniques, cfTrack achieves sensitive and specific detection of recurrence, 

MRD and second primary cancers. In detecting recurrence in samples with a 0.05% tumor 

fraction, cfTrack achieved an AUC of 99% (100% sensitivity and 96% specificity) on the 

validation dataset and an AUC of 100% (89% sensitivity and 100% specificity) on the 

independent dataset. In detecting second primary cancers in samples with a 0.2% tumor 

fraction, cfTrack yielded an AUC of 88% (76% sensitivity and 93% specificity). Since 

the performance of the method increases with the sequencing depth, these results can 

be further improved in practice. To evaluate cfTrack in clinical scenarios, we not only 

collected samples directly from our cancer patients, but also exhaustively surveyed and 

utilized available datasets in public databases. On these data, we show that cfTrack achieved 

accurate and comprehensive monitoring of the changes in tumors for patients with different 

cancer types and undergoing various treatments, which cannot be accomplished by methods 

focusing only on a small panel of mutations from pre-treatment tumor samples.

This study has its limitations. Firstly, cfTrack has only been validated and evaluated using 

in silico spike-in simulation data and on a limited number of cancer patients. To address 

this limitation, we generated simulation data that mimic real scenarios, including tumor 

evolution during treatment. For example, simulated plasma samples with varying tumor 

contents are generated by subsampling the original plasma sample from the second time 

point, which already contains a different tumor profile compared to the sample at baseline. 

Nevertheless, we acknowledge that real cases of MRD, recurrence and second primary 

cancers could be more complicated. Applying cfTrack to larger datasets would enable a 

more comprehensive evaluation and possible optimization of parameters. Secondly, tumor 

fraction is calculated as an average across all reads for a predefined list of tumor markers. 

Tumor evolution and tumor heterogeneity could bias the selection of markers, resulting in 

the absence of important variant supporting reads in the post-treatment cfDNA samples and 

causing the model to infer a lower tumor fraction. Thirdly, given the medium depth of WES 

data and the low tumor fraction in the cfDNA samples, cfTrack focuses on tracking the 

overall tumor changes rather than specific clones/subclones. For the same reason, cfTrack 
can detect de novo mutations to monitor newly emerging tumors, but it doesn’t guarantee the 

detection of specific variants directly related to treatment targets.

In this study, for some patients, we use plasma samples to detect the pre-existing tumor 

mutations, with no need for solid tumor biopsy samples. This is possible as long as the 

tumor content in plasma samples is sufficient for mutation detection. For patients who 

receive surgical tumor removal or for patients whose tumor biopsy samples are available, 

our method can also use a solid tumor sample to identify the pre-existing tumor mutations. 

However, it is worth noting that a plasma sample may still offer a more comprehensive 
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mutation profile than a biopsy sample [38]. In practice, given a pre-treatment blood sample 

or a solid tumor sample of a patient, we envision cfTrack being used on this patient’s 

post-treatment blood sample to predict MRD/recurrence and the second primary cancers. 

To predict MRD/recurrence, cfTrack uses a within-sample error distribution, which does 

not rely on any baseline samples. To predict the second primary cancers, our classification 

model has only two variables, therefore only a limited number of training samples are 

needed to achieve a good performance.

Currently, cfTrack utilizes tumor somatic mutations to detect cancer. In a future version, 

more cancer-specific features in cfDNA can be incorporated. Recent studies have discovered 

that copy number variations, fragment length, and jagged ends of cfDNA are all associated 

with tumor-derived cfDNA. In our random forest model, we incorporated the fragment 

length of the DNA fragments to discriminate true variants from sequencing errors. By 

integrating other features, we may further empower cancer monitoring to provide actionable 

information and treatment guidance for patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Translational Relevance

Continuous cancer monitoring is clinically necessary for cancer patients to detect 

minimal residual disease (MRD), recurrence, and progression, allowing for early 

intervention and therapy adjustment. Cell-free DNA (cfDNA) in blood has become an 

appealing option due to its non-invasiveness. Until now, cfDNA-based cancer monitoring 

methods have been focused on deep sequencing at a few known mutations, which is 

insufficient when tumors evolve or new tumors emerge. We present the method, cfTrack, 

which uses whole-exome sequencing (WES) of cfDNA to track the full range of cancer 

treatment outcomes for the first time, including MRD, recurrence, evolution, and second 

primary cancer. We demonstrate that, even with very low tumor fractions, cfTrack 

achieves sensitive and specific monitoring of tumor MRD/recurrence/evolution based 

on both simulation data and a cohort of cancer patients. These findings demonstrate the 

clinical utility of cfTrack.
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Figure 1. Cancer monitoring in plasma samples by tracking pre-existing tumor mutations and 
newly emerging tumor mutations.
(a) Illustration of the sample collection for cfDNA-based cancer monitoring. Prior to surgery 

or therapy, a plasma or tumor sample and a white blood cell (WBC) sample are collected 

to generate the pre-existing tumor profile. Serial blood samples are collected to detect 

MRD/recurrence and monitor tumor evolution after treatment. (b) Illustration of the method 

workflow. In the pre-treatment samples, clonal tumor mutations are identified for tumor 

tracking in the post-treatment samples. Given a post-treatment plasma sample, the tumor 
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fraction is calculated from the pre-existing clonal tumor mutations and compared to a 

sample-specific background distribution. The empirical p-value of the tumor fraction is used 

to predict MRD/recurrence. Furthermore, de novo somatic mutations are detected using 

cfSNV between the post-treatment plasma and WBC samples. A second primary cancer 

is predicted by a logistic regression model that accounts for both the amount of de novo 
mutations and the corresponding tumor fraction.
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Figure 2. Settings to generate in silico spike-in simulation data.
The simulation data are generated using WES data taken from (1) 12 MBC and 6 CRPC 

patients and (2) 8 NSCLC patients. Each patient has an early plasma sample (Blood T1), 

a WBC sample (WBC), and a late plasma sample (Blood T2). The three WES datasets 

from a patient are used directly or mixed to generate the simulation samples. To simulate 

the scenario of monitoring a patient for MRD or cancer recurrence, each case contains 

three simulation samples: a pre-treatment plasma sample, a pre-treatment WBC sample, and 

a post-treatment plasma sample. The raw data from Blood T1 are used directly as the pre-

treatment plasma sample for all cases. WBC and Blood T2 are mixed at specified dilutions 

to simulate the post-treatment plasma sample. To simulate remission cases, we generate 

two independent random samplings from the raw WBC data to use as the pre-treatment 

WBC sample and the post-treatment plasma sample. To simulate the emergence of second 

primary cancers, each case contains two simulation samples: a pre-treatment WBC sample 

and a post-treatment plasma sample. The generation of simulation samples for second 

primary cancer monitoring is the same as for MRD/recurrence monitoring, except that the 

pre-treatment plasma sample (Blood T1) is not used.
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Figure 3. Performance of cancer recurrence and MRD detection using the simulation data.
The area under the ROC curve (AUC) of the MRD/recurrence detection on (a) the validation 

dataset and (c) the independent dataset with different tumor fractions and sequencing depths. 

The sensitivity and specificity with different tumor fractions and sequencing depth on (b) the 

validation dataset and (d) the independent dataset. Figure S6 (a–d) is the zoom-in of (a-d) at 

low tumor fraction ranging from 0% to 0.2%. (e) AUCs of MRD/recurrence detection with 

and without error suppression (ES) on the validation dataset at 200x depth with different 

tumor fractions. (f) The sensitivity and specificity of MRD/recurrence detection with and 

without error suppression on the validation dataset at 200x depth with different tumor 

fractions. In (a), (c) and (e), the dots indicate the average AUC, and the vertical bars indicate 

average ± SD of the AUC (see Material and Methods). In (b), (d) and (f), the dots show the 

average sensitivity using a cutoff p-value = 0.05 for the background noise distribution; the 

vertical bars indicate average ± SD of the sensitivity; the specificity is shown in the legend 

in the format of (average specificity, (average - SD, average - SD)). The solid lines show the 

smoothed performance fitted with logit functions.
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Figure 4. Performance of second primary cancer detection with the simulation data.
(a) AUC of the in silico spike-in samples with different tumor fractions at 200x sequencing 

depth. The dots indicate the average AUC, and the vertical bars indicate average ± SD of the 

AUC (see Material and Methods). (b) The sensitivity and specificity in the in silico spike-in 

samples with different tumor fractions at 200x sequencing depth. The dots show the average 

sensitivity using a cutoff of the 95th percentile of prediction scores from the remission 

samples in the training data; the vertical bars indicate average ± SD of the sensitivity; the 

specificity is shown in the text in the format of (average specificity, (average - SD, average + 

SD)). The solid lines show the smoothed performance fitted with a logit function.
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Figure 5. Longitudinal cfDNA monitoring in cancer patients who received treatments.
The lines show the tumor fraction in cfDNA during treatment. (a) Tumor fraction in plasma 

samples of 8 NSCLC patients who received anti-PD-1 immunotherapy. (b) Tumor fraction 

in serum samples of 4 ovarian cancer patients. (c) Tumor fraction in plasma samples of 12 

prostate cancer patients.
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