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Abstract

Purpose: To develop and evaluate an improved strategy for compensating concomitant field 

effects in non-Cartesian MRI at the time of image reconstruction.

Theory: We present a higher-order reconstruction method, denoted MaxGIRF, for non-Cartesian 

imaging that simultaneously corrects off-resonance, concomitant fields, and trajectory errors 

without requiring specialized hardware. Gradient impulse response functions are used to predict 

actual gradient waveforms, which are in turn used to estimate the spatiotemporally varying 

concomitant fields based on analytic expressions. The result, in combination with a reference 

field-map, is an encoding matrix that incorporates a correction for all three effects.

Methods: MaxGIRF reconstruction is applied to noiseless phantom simulations, spiral gradient 

echo imaging of an ISMRM/NIST phantom, axial and sagittal multi-slice spiral spin-echo 

imaging of a healthy volunteer at 0.55T. MaxGIRF was compared against previously established 

concomitant field compensation and image correction methods. Reconstructed images are 

evaluated qualitatively and quantitatively using normalized root mean square error. Finally, a 

low-rank approximation of MaxGIRF is employed to reduce computational burden. The accuracy 

of the low-rank approximation is studied as a function of minimum rank.

Results: MaxGIRF reconstruction successfully mitigated blurring artifacts both in phantoms and 

in vivo and was effective in regions where concomitant fields counteract static off-resonance, 
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superior to the comparator method. A minimum rank of 8 and 30 for axial and sagittal scans, 

respectively, gave less than 2% error compared with the full-rank reconstruction.

Conclusion: MaxGIRF reconstruction simultaneously corrects off-resonance, trajectory errors, 

and concomitant field effects. The impact of this method is greatest when imaging with longer 

readouts and/or at lower field strength.

Keywords

MRI reconstruction; gradient distortion; concomitant fields; gradient impulse response function; 
expanded signal model

INTRODUCTION

Image quality from magnetic resonance imaging (MRI) that utilizes non-Cartesian 

sampling, particularly spirals, has improved continuously over the past 30 years. Current 

state-of-the-art spiral MRI provides quality that is comparable to its 2D/3D Cartesian 

counterparts, and is appropriate for clinical use (1,2). Spiral acquisitions are attractive 

because they provide high scan and SNR efficiency, robustness to motion artifacts, and 

are advantageous for fast imaging applications such as MR fingerprinting (3,4) and cardiac 

imaging (5).

Spiral imaging requires overcoming unique challenges, notably off-resonance, gradient 

distortion, and concomitant field effects. The first two effects are well known in the 

literature; static off-resonance leads to local blurring and gradient distortion results in 

trajectory errors that manifest themselves as halo artifacts near edges. The effects of 

concomitant fields are less widely recognized, but are extremely important for long readouts, 

scan planes farther from isocenter, and at low B0 field strengths. Concomitant fields 

constitute an additional nonrotating magnetic field (Bx, By) in the laboratory reference 

frame whenever linear gradients are active (6). Spatial encoding in MRI is achieved by the 

Larmor frequency, which is proportional to the magnitude of the applied magnetic field. 

The applied magnetic field is a superposition of the homogeneous (Bo) main magnetic field 

and the transverse (Bx(t), By(t)) field and longitudinal field (Bz(t)) produced by a gradient 

coil. The dot product of three gradient fields G(t) =
dBz t

dx ,
dBz t

dy ,
dBz t

dz
T
 with a spatial 

position causes a linear frequency offset. In contrast, the transverse component contributes 

a nonlinear, higher-order frequency offset, which is represented as a sum of products of 

quadratic gradients with higher-order spatial terms (e.g., Gy, i t Gz, i t xz). Therefore, spiral 

imaging accrues a spatiotemporally varying phase due to concomitant fields in addition to 

static off-resonance (7).

Several previous works successfully mitigate concomitant field effects by means of image 

reconstruction method (7–9). King et al. (7) proposed a concomitant field correction 

method based on frequency-segmented deblurring, referred to here as King’s method. 

This approach uses approximations to separate the concomitant field phase into a time-

dependent parameter consisting of the time integral of common gradient terms and the rest 

as a time-independent frequency offset. King’s method then performs frequency-segmented 
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deblurring. Two recent approaches by Chen et al. (8) and Cheng et al. (10) achieve a more 

computationally efficient reconstruction and simultaneously correct static off-resonance and 

concomitant fields based on King’s approximations.

Wilm et al. (11) proposed a powerful general approach using NMR field probes (12,13) in 

conjunction with a higher-order encoding model, which inspires this work. This approach 

incorporates higher-order dynamic fields to the encoding process and has demonstrated 

excellent image quality for several applications, including diffusion (11,14) and structural 

imaging (15). A dynamic field camera (16,17) consisting of spatially distributed NMR 

field probes is used to measure phase evolutions at various positions for high-order field 

expansions with globally smooth functions (11,14,18). The NMR field probes provide real-

time monitoring of field evolutions from various sources, however commercially available 

systems are fairly expensive and building an in-house system from scratch requires expertise 

beyond most MRI labs (12,17,19–21). Therefore, although very promising, the higher-order 

approach relying on field-camera measurements is not widely available.

The characterization of gradient distortions with gradient impulse response functions 

(GIRFs) (22,23) can be a reasonable surrogate for NMR field probes. Assuming a linear 

time invariant (LTI) system model for the gradient chain, GIRFs capture gradient delays, 

eddy current effects, and mechanically induced field oscillations. For each gradient axis, 

an MR system is perturbed with a set of input gradients and field responses are measured 

with either a dynamic field camera or phantom-based methods. Field-camera measurements 

provide both self-responses and cross-responses (e.g., input gradient on the x-axis and field 

response on the y-axis) in a single measurement, thereby allows the full characterization 

of a multiple-input, multiple-output LTI system (23,24). On the other hand, phantom-based 

methods typically measure only self-term GIRFs (25) and B0 cross-terms (26). Phantom-

based GIRFs have proven to be effective in several applications, including RF pulse 

design (27,28), eddy current-induced artifact correction (29), and image reconstruction (30–

32). Therefore, the phantom-based method appears to be a reasonable compromise to an 

accurate, albeit expensive field monitoring device.

In this work, because concomitant fields are analytically expressed with gradients and 

spatial coordinates, we hypothesize that gradients predicted with phantom-based GIRFs 

can better estimate concomitant fields than nominal gradients. Following this, we propose 

a novel higher-order image reconstruction method, denoted MaxGIRF, that incorporates 

concomitant fields, static off-resonance, and GIRF trajectory corrections. The “Max” 

part of the MaxGIRF acronym reflects the fact that the concomitant fields are also 

known as “Maxwell fields” in the literature because they are based on the principles 

of electromagnetism described by Maxwell’s equations. This proposed framework can be 

considered as a surrogate to NMR field probes that requires no special hardware but requires 

a good analytic model of concomitant fields that depends on coil geometry (6,33) and 

severity of gradient nonlinearity (34). Non-Cartesian imaging with long readouts generally 

benefits from this method, but its impact will be greatest at high-performance low-field 

systems (35,36) because the effect of concomitant fields scales quadratically with the 

maximum gradient amplitude and inversely to the main magnetic field B0.
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We first validate the proposed method using noiseless simulations at various field strengths 

and off-center positions. A guideline for selecting an optimal rank is provided when a low-

rank approximation is applied to the MaxGIRF encoding model. MaxGIRF reconstructions 

using nominal and GIRF-predicted gradients are compared at 0.55T using an ISMRM/NIST 

system phantom. Finally, MaxGIRF reconstructions are demonstrated in vivo using axial and 

sagittal spiral spin-echo data of the head and neck, and made available open source.

THEORY

In this work, we address sequences where the net phase of all isochromats within a voxel 

prior to the next RF pulse can be ignored, e.g., any pulse sequences with spoiler gradients at 

the end of each TR.

2.1 MaxGIRF encoding

Figure 1 illustrates the overall steps to calculate MaxGIRF encoding matrices. Let GL t
and GP t  be the gradients in the logical coordinate system and physical coordinate system, 

respectively. Unless clearly specified, we use the physical coordinate system exclusively 

and describe variables without the subscript for clarity, e.g., G t = GP t . Using a modified 

version of the expanded signal model (11,24,37), the measured k-space data over the region 

of interest V  is expressed as:

di, c t = ∫
V

m r Sc r exp −jϕi r, t dr + ni, c t [1]

where di,c denotes the i-th interleaf, c-th receive coil k-space data of the target image m(r), 

Sc(r) the receive coil sensitivity at position r of the c-th coil, ϕi(r, i) the time-varying 

phase of a voxel at position r in radians, and ni, c the measurement noise. The indices i 
and c count the Ni interleaves and Nc receive coils, respectively. The MaxGIRF approach 

models the magnitude of the spatiotemporal magnetic field Bi r, t ℓ2 as a sum of gradients 

G i t = Gx, i t , Gy, i t , Gz, i t T  in millitesla per meter, static off-resonance Δf(r) in hertz, 

and concomitant fields in tesla (6):

Bi r, t ℓ2 = B0 + Gi t ⋅ r + 2πΔf r /γ + ∑
ℓ = 4

Nℓ
ℎℓ, i t pℓ r , [2]

where ℓ counts the Nℓ concomitant field terms, pℓ is the ℓ-th concomitant field basis function 

(in m2 or m3) and hℓ,i is the ℓ-th dynamic coefficient (in T/m2 or T/m3), expressed as a 

function of the i-th gradient waveforms, and γ is the gyromagnetic ratio (in rad/sec/T). 

Analytic expressions of ℎℓ, i t ℓ = 1
Nℓ  and pℓ r ℓ = 1

Nℓ  for a symmetric gradient system 

used in this study (6) are given in Table 1. The linear gradients are described as the first 

three terms in the concomitant field basis functions. Note that linear gradients Gi(t) can 

be either GIRF-predicted gradients Gi
pred t  or nominal gradients Gi

nom t . Time integration 

of the magnetic field (after the demodulation of its carrier frequency) multiplied by the 
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gyromagnetic ratio γ, γ∫0
t Bi r, τ ℓ2dτ, then gives the phase evolution of a voxel at position 

r as:

ϕi r, t = ki t ⋅ r + 2πΔf r t + ∑
ℓ = 4

Nℓ
kℓ, i t pℓ r ,

= ki t ⋅ r + ϕi r, t ,
[3]

where kℓ, i(t) is the ℓ-th phase coefficient obtained by kℓ, i t = γ∫0
tℎℓ, i τ dτ, and ϕi r, t

denotes a phase term consisting of static off-resonance and concomitant fields. Note that 

the reference time point starts at the isodelay of an RF pulse for GRE pulse sequences and 

the echo time (TE) for spin-echo pulse sequences when spiral readouts start at TE. Let 

Nk denote the number of k-space samples per interleaf. Let RLtoP be a 3 × 3 orthogonal 

transformation matrix from the logical coordinate system to the physical coordinate system. 

Note that RLtoP
T = RLtoP

−1 = RPtoL. Then we have

kP , i t = RLtoPkL, i t [4a]

rP = RLtoPrL + rP,offset [4b]

where rP,offset represents the offset of a scan plane from isocenter in the physical coordinate 

system. With Equations 4a and 4b, we can express the k-space phase ki(t⋅r in terms of 

variables in the logical coordinate system:

kP, i t ⋅ rP = kP, i t ⋅ RLtoPrL + rP, offset
= RLtoPkL, i t TRLtoPrL + kP, i t ⋅ rP, offset
= kL, i t ⋅ rL + kP , i t ⋅ rP , offset

[5]

The received signal can be expressed using variables both in the logical and physical 

coordinate systems:

di, c t = ∫
V

m r Sc r exp −jkP, i t ⋅ rP exp −jϕi rP, t dr + ni, c t

= exp −jkP, i t ⋅ rP, offset × ⋯

∫
V

m r Sc r exp −jkL, i t ⋅ rL exp −jϕi rP , t dr + ni, c t
[6]

Equation 6 indicates that measured k-space data is modulated by a time-varying phase 

term due to a slice offset. If this time-varying phase term is not compensated during data 

acquisition (38), then the received signal must be demodulated first before further processing 

because concomitant field correction would not be accurate when voxels are displaced from 

their true locations. Note that a Fourier matrix is computed with the gradients in the logical 

coordinate system as done in conventional FFT/NUFFT and a higher-order encoding matrix 
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is computed with k-space trajectories and spatial coordinates in the physical coordinate 

system. See Supporting Information Text S1 for details about coordinate transformations.

Suppose that an underlying object can be represented as a weighted sum of N ideal voxel 

shapes defined on an N1×N2 Cartesian grid, i.e., m r = ∑ρ = 1
N m rρ δ r − rρ . Inserting this 

representation into Equation 1 and discretizing in time leads to

di, c = EiScm + ni, c, [7]

where di, c = di, c t1 , …, di, c tNk
T ∈ ℂNk contains the i-th interleaf, c-th coil (demodulated) 

k-space data, Ei ∈ ℂNk × N denotes the i-th encoding matrix, Sc ∈ ℂN × N is a diagonal 

matrix containing the receive coil sensitivities of the c-th coil, m = m r1 , …, m rN
T ∈ ℂN

is a vector of complex image values, and ni, c = ni, c t1 , …, ni, c tNk
T ∈ ℂNk contains the 

i-th interleaf, c-th coil measurement noise. The i-th encoding matrix Ei is expressed 

as the Hadamard product (element-wise multiplication, denoted ⊙) of a Fourier matrix 

Fi ∈ ℂNk × N containing only linear phase terms and a higher-order encoding matrix 

Hi ∈ ℂNk × N containing other remaining phase terms:

Ei = Fi ⊙ Hi, [8]

Where

Fi =
exp −jkL, i t1 ⋅ rL, 1 ⋯ exp −jkL, i t1 ⋅ rL, N

⋮ ⋱ ⋮
exp −jkL, i tNk ⋅ rL, 1 ⋯ exp −jkL, i tNk ⋅ rL, N

, [9]

and

Hi =
exp −jϕi rP, 1, t1 ⋯ exp −jϕi rP, N, t1

⋮ ⋱ ⋮
exp −jϕi rP, 1, tNk ⋯ exp −jϕi rP, N, tNk

. [10]

It is important to note that the forward signal model in Equation 1 is described with the 

forward Fourier transform as commonly done in standard textbooks, but the choice of FFT 

versus IFFT for transforming k-space data to an image is vendor-specific, and critical for a 

successful implementation (7,39).

2.2 Image reconstruction

Image reconstruction for MaxGIRF encoding can be formulated as a linear least-squares 

problem similar to (11,14,37). Specifically, the MaxGIRF approach employs a multi-shot 

extension of (11):
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m = argmin
m

∑
i = 1

Ni
∑

c = 1

Nc
di, c − EiScm ℓ2

2 . [11]

Equation 11 often needs to be expressed in the form of A(m) = b to be solved with iterative 

algorithms (e.g., LSQR (40)). Such a form is obtained by taking the derivative of a cost 

function with respect to m and setting it equal to zero:

∑
i = 1

Ni
∑

c = 1

Nc
Ai, c

H Ai, c m = ∑
i = 1

Ni
∑

c = 1

Nc
Ai, c

H di, c , [12]

where Ai, c x = EiScx:ℂN ℂNk denotes the linear forward operator that maps a length-N 

vector of image values to a length-Nk vector of k-space samples of the i-th interleaf and c-th 

coil, and Ai, c
H y = Sc

HEi
Hy:ℂNk ℂN denotes its adjoint. The superscript (⋅)H denotes the 

transposed complex conjugate.

2.3 Low-rank approximation to higher-order encoding matrices

To reduce the computational burden of explicit matrix-vector multiplications and reduce 

memory requirements, we introduce a low-rank approximation to higher-order encoding 

matrices following previous approaches (41,42). Suppose the singular value decomposition 

(SVD) of the i-th higher-order encoding matrix Hi ∈ ℂNk × N is given by

Hi = ∑
ℓ = 1

Lmax
uℓ, iσℓ, ivℓ, i

H = ∑
ℓ = 1

Lmax
uℓ, ivℓ, i

H , [13]

where uℓ, i ∈ ℂNk denotes the ℓ-th left singular vector, σℓ, i ∈ ℝ the ℓ-th singular value, 

vℓ, i ∈ ℂN the ℓ-th right singular vector, and Lmax is the true rank of the higher-order 

encoding matrix Hi. A singular value and the corresponding right singular vector can be 

combined to yield vℓ, i ∈ ℂN. The vectors uℓ, i ∈ ℂNk and vℓ, i ∈ ℂN are hereafter referred 

to as temporal and spatial basis vectors for the i-th higher-order encoding matrix Hi, 

respectively. Note that the relation in Equation 13 is exact (no loss in accuracy) and 

Lmax is large (>50) in general. According to the Eckart-Young theorem (43), the rank-L 

SVD truncation Hi = ∑ℓ = 1
L uℓ, ivℓ, i

H  provides the best rank-L approximation to Hi in a 

least-squares sense:

Hi − Hi F = argmin
rank B ≤ L

Hi − B F = σL + 1
2 + ⋯ + σLmax

2 . [14]

We select only one L and apply it to all higher-order encoding matrices. Substituting 

Hi = ∑ℓ = 1
L uℓ, ivℓ, i

H  into Equation 8 yields
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Ei ≈ Fi ⊙ ∑
ℓ = 1

L
uℓ, ivℓ, i

H

≈ ∑
ℓ = 1

L
Fi ⊙ uℓ, ivℓ, i

H

≈ ∑
ℓ = 1

L
diag uℓ, i Fidiag vℓ, i* ,

[15]

where diag uℓ, i ∈ ℂNk × Nk and diag vℓ, i* ∈ ℂN × N are diagonal matrices containing the 

elements of the vectors uℓ, i and vℓ, i*  (the complex conjugate of vℓ, i in the main diagonal, 

respectively. The last expression is obtained using the special property of the Hadamard 

product of a dense matrix Fi with a rank-1 matrix uℓ, ivℓ, i
H . Using Equation 15, the forward 

and adjoint operators can be expressed as:

Ai, c x = EiScx ≈ ∑
ℓ = 1

L
diag uℓ, i Fidiag vℓ, i* Scx, [16a]

Ai, c
H y = Sc

HEi
Hy ≈ Sc

H ∑
ℓ = 1

L
diag vℓ, i Fi

Hdiag uℓ, i* y . [16b]

Equation 16 indicates that an expensive, explicit matrix-vector multiplication with an 

encoding matrix Ei (and Ei
H  can be replaced by L summations of a fast routine for Fi such 

as FFT followed by inverse gridding (44) or non-uniform fast Fourier transforms (NUFFT) 

(45).

2.4 Static off-resonance map estimation

MaxGIRF reconstruction requires an accurate and spatially smooth static off-resonance 

map. For this purpose, we acquire a series of Cartesian GRE datasets at different echo 

times. Since the MaxGIRF encoding model does not separate water/fat components, we 

consider the image content ρ = ρ r1 , …, ρ rN
T ∈ ℂN as a sum of water/fat, and model 

static off-resonance Δf = Δf r1 , …, Δf rN
T ∈ ℝN (in Hz) as a sum of E0 inhomogeneity 

and the water/fat chemical shift (e.g., −3.8 ppm, −88 Hz at 0.55T). We perform image-based 

parameter estimation using nonlinear inversion optimization (NLINV), inspired by a recent 

work on water/fat separation and B0 inhomogeneity mapping (46,47). Specifically, the 

forward signal model is defined as:
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Fm x = ρ ⊙ exp j2πΔfTEm =
ρ r1

⋮
ρ rN

⊙
exp j2πΔf r1 TEm

⋮
exp j2πΔf rN TEm

= diag exp j2πΔfTEm ρ = diag ρ exp j2πΔfTEm
with unknown x = ρT , ΔfT T and m = 1, . . . Ne,

[17]

where Fm x ∈ ℂN is a length-N vector of the estimated m-th echo-time image, Ne denotes 

the number of echo times, TEm is the m-th echo time in sec, and the symbol ⊙ denotes the 

Hadamard product. Equation 17 is solved with the a slight modification of the iteratively 

regularized Gauss-Newton method (IRGNM) as described by (46). The modified cost 

function is given as:

Φ x = argmin
x

y − G x ℓ2
2 + α x − x0 ℓ2

2 with x = Wx and G x = F Wx , [18]

where y ∈ ℂNeN × 1 is a length-NeN vector of the concatenation of all noisy reconstructed 

echo images, F x = F1 x T , …, FNe x T T ∈ ℂNeN × 1, α is the regularization parameter, and 

x0 is a starting initial guess. A preconditioning matrix W ∈ ℂ2N × 2N contains a Sobolev 

norm that enforces spatial smoothness on the static off-resonance map:

ρ
Δf =

IN 0

0 F−1 1 + w k ℓ2
2 −ℎ

ρ
Δf

,

1 + w k ℓ2
2 −ℎΔf ≜

1 + w k 1 ℓ2
2 −ℎ

0 0

0 ⋱ 0

0 0 1 + w k N ℓ2
2 −ℎ

Δf1
⋮

ΔfN

,
[19]

where IN ∈ ℝN × N is an identity matrix, F−1 ∈ ℂN × N is a unitary 2D inverse Fourier 

transform matrix, k ∈ ℝ2 × 1 is normalized Cartesian k-space coordinates defined in 

[−0.5,0.5]×[−0.5,0.5], and w, ℎ ∈ ℝ are constants set to 32 and 16, respectively. Equation 

18 is solved with the IRGNM (see Appendix).

METHODS

3.1 Reconstruction and image processing

Cartesian and spiral image reconstructions and post-processing were performed in 

MATLAB R2020b (MathWorks, Natick, MA) on a PC equipped with one 1.60-GHz 4-core 

Intel i5–8250U CPU and 20 GB of RAM. A vendor proprietary raw data format was 

converted into the ISMRMRD format (48) and read in MATLAB (49). For both Cartesian 

and spiral reconstructions, FFT was applied to transform from k-space to image-space. 

Coil sensitivity maps were estimated using the Walsh method (50) from the 32 × 32 

Hanning-windowed center of k-space data (gridded k-space data for spiral acquisitions). 

Lee et al. Page 9

Magn Reson Med. Author manuscript; available in PMC 2023 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Neither intensity normalization nor gradient nonlinearity correction were applied. Spiral 

trajectories were generated with (51). A sample density compensation function (52) was 

computed with (53). NUFFT code was downloaded from (54). MaxGIRF reconstructions 

were performed with the LSQR algorithm with maximum number of iterations = 15 and 

tolerance = 1e-5. For static off-resonance map calculation, a coil sensitivity map from the 

first echo image was used to reconstruct coil-combined images of the other echoes. A 

smooth static off-resonance map was estimated by the IRGNM with: αmin = 1e-6 (55), GN 

iterations = 35, maximum number of LSQR iterations = 250, and tolerance of LSQR = 

1e-10.

3.2 Selection of an optimal rank L

We chose an optimal L that gives less than 2% error in normalized root mean 

square error (NRMSE) between complex-valued full-rank and low-rank reconstructions: 

NRMSE = mfull − mlow ℓ2/ mfull ℓ2. In-vivo multi-slice spiral spin-echo axial and slightly 

oblique sagittal datasets were used for evaluation. A randomized SVD algorithm as 

described in Supporting Information Text S2 was used to compute the SVD of a higher-

order encoding matrix. Singular values up to 50/80 (axial/sagittal) were calculated and 

considered as full rank. Image reconstructions were performed with a conjugate phase 

reconstruction, i.e., the right side of Equation 12.

3.3 Numerical simulation

To validate the proposed MaxGIRF approach, noiseless simulations on brain images with 

simulated 8-channel coil sensitivity maps, 256 × 256 matrix, were performed. A sagittal 

slice was obtained from a 3D MIDA brain phantom (56) and coil sensitivity maps were 

obtained from (57). The 116 tissue types of a MIDA phantom were categorized into 

13 tissue labels used in a Brainweb phantom (58) by visual matching. MR parameters 

(T1/T2/T2*/M0) were obtained from a Brainweb phantom acquired at 1.5 T and the 

dependence of relaxation parameters on the main magnetic field strength was ignored. A 

20-interleaf, variable-density spiral acquisition (9.2 msec readout) was simulated with Gmax 

= 24 mT/m, Smax = 144 T/m/sec, ADC dwell time = 2.5 μsec, resolution = 0.9375 × 

0.9375 mm2, and FOV decreasing from 240 × 240 mm2 to 180 × 180 mm2. The base spiral 

interleaf was similar to that used in 3D brain MR fingerprinting (59). Direct matrix-vector 

multiplications using Equations 7 and 8 were used to generate noiseless k-space data. 

System imperfections such as static off-resonance and eddy currents were not simulated. 

The B0 dependence (0.55T, 1.5T, 3T, 7T) and off-isocenter dependence (z = 0, 50, 100, 150, 

200 mm) of concomitant fields were simulated. MaxGIRF reconstructions were performed 

with a low-rank approximation (L/Lmax =50/80) and NUFFT. The NRMSE between a 

Cartesian reference and spiral reconstructions were calculated. A time-averaged concomitant 

field map for the first interleaf (in Hz), fc, 1(r), over the spiral readout duration (T) was 

calculated to demonstrate its relative magnitude compared with a static off-resonance map 

(60):
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fc, 1 r = 1
2πT ∑

ℓ = 4

Nℓ ∫
0

T
ℎℓ, 1 τ dτ pℓ r = 1

2πT ∑
ℓ = 4

Nℓ
kℓ, 1 T pℓ r . [21]

3.4 Imaging system

All imaging experiments were performed on a high-performance 0.55T scanner (prototype 

MAGNETOM Aera, Siemens Healthcare, Erlangen, Germany) with gradients capable of 45 

mT/m amplitude and 200 T/m/sec slew rate (35,36). A 16-channel head/neck receive coil 

was used for phantom and in vivo experiments.

3.5 GIRF measurements

GIRF measurements were obtained using a set of triangular input functions and a spherical 

phantom as described by (30). A body coil was used for both RF transmission and signal 

reception. The Brodsky method (26) was used to estimate both B0 cross-terms and first-

order self-term GIRFs as described by (32). Only self-term GIRFs were used in this study.

3.6 Phantom experiments

Spiral scans (axial and sagittal) of an ISMRM/NIST system phantom were acquired with 

a 2D gradient-echo (GRE) pulse sequence. An 8-interleaf, uniform-density spiral-out 

trajectory was designed to have 11.8 ms readout duration. A target axial slice was imaged 

at isocenter and 75 mm off-isocenter in the z-direction. A sagittal slice was imaged at 

isocenter. Imaging parameters were: FOV = 224 × 224 mm2, resolution = 1.4 × 1.4 mm2, 

slice thickness = 8 mm, flip angle = 20°, TR = 100 ms, TE = 1 ms, and number of signal 

averages = 1. Ten repetitions were performed to reach steady-state. For a static off-resonance 

map, a single-echo 2D Cartesian GRE sequence was repeated to acquire datasets at different 

echo times (2.5, 3.7, 4.7, 5.7, 6.7, and 7.7 ms).

3.7 Human experiments

All volunteers were scanned under a protocol approved by our local institutional review 

board (clinicaltrials.gov NCT03331380) and provided written informed consent. In-vivo 

human brain scans (axial and sagittal) were acquired with a 2D interleaved multi-slice 

spiral spin-echo pulse sequence. A slice-rephasing gradient and the left crusher of a 

refocusing pulse were combined with a waveform reshaping technique (61) to minimize 

the concomitant-field phase. Spoiler gradients were applied on all three axes at the end 

of a readout. Imaging parameters were: FOV = 240 × 240 mm2, resolution = 0.75 × 

0.75 mm2, slice thickness = 5 mm, slice gap = 15 mm, flip angle = 90°, TR = 745/500 

(spiral/Cartesian) ms, TE = 15 ms, ADC dwell time = 2.5 μsec, readout duration = 11.89 

msec, number of readout samples = 4756, number of interleaves = 24, and number of 

signal averages = 14. For comparison, King’s method was used for both axial and sagittal 

scans. Additionally, a modified King’s method including static off-resonance correction was 

performed for axial scans. Specifically, after correcting a time-varying global frequency 

offset (through-plane correction of concomitant field-induced phase), frequency-segmented 
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deblurring was performed for in-plane blurring correction, using an ordinary time parameter 

and a static off-resonance map for Equations 26 and 30 in Ref (7), respectively.

RESULTS

Figure 2 shows the NRMSEs between full-rank and low-rank reconstructions from in 

vivo multi-slice spiral spin echo axial and sagittal datasets. NRMSEs are provided as a 

function of rank L when (A and D) only static off-resonance is included, (B and E) only 

concomitant fields are included, and (C and F) both static off-resonance and concomitant 

fields are included in the higher-order encoding matrices. For axial orientation, since the 

effect of concomitant fields is a time-dependent receive frequency shift, its contribution 

to the rank is minimal (Figure 2B) and thus the static off-resonance contributes mostly to 

the rank (Figure 2A). For non-axial orientations, since the effect of concomitant fields is 

spatiotemporal blurring, a large rank is required compared with that in axial orientation. 

The rank of static off-resonance is less than 8 like axial orientation and smaller than the 

rank of concomitant fields in absolute sense (Figure 2D vs 2E). The low-rank (L/Lmax=8/50) 

reconstruction in Figure 2C gives almost perfect reconstruction for all axial slices and 

the low-rank (L/Lmax=30/80) reconstruction in Figure 2F gives <2% error for all sagittal 

slices. The signal intensity attenuation is primarily in regions with high off-resonance. 

The maximum deviation within the brain cortex of the difference between full-rank and 

low-rank (L=30) reconstructions is <2% for all sagittal slices (only a slice at x = 50.0 mm 

is shown). The reconstruction time for the non-iterative, conjugate phase-based MaxGIRF 

(also iterative MaxGIRF) is linearly scaled by the rank, i.e., number of singular values. The 

reconstruction times per singular value for axial and sagittal orientations were 5 secs and 8 

secs, respectively. Thus the reconstruction times (low-rank/full-rank) for axial and sagittal 

orientations were 40/250 secs (8/50 rank) and 240/640 secs (30/80 rank), respectively.

Figure 3 demonstrates noiseless numerical simulations of MaxGIRF reconstruction, using 

a low-rank approximation (L/Lmax=50/80). The NRMSEs for MaxGIRF at x = 0 mm 

decreased gradually from 8.6% to 8.0% as the field strength increases. This small decrease 

in NRMSEs is attributed to weaker concomitant fields at higher field strengths and did 

not make any noticeable difference in image quality. This minimum error (8.6%) is mainly 

caused by the difference between Cartesian and spiral image reconstructions. Application 

of MaxGIRF reconstruction on off-isocenter acquisitions achieved this minimum error, 

indicating perfect correction of the concomitant fields.

Figure 4 shows MaxGIRF reconstruction (L=8) on axial spiral scans of a NIST/ISMRM 

phantom at 0.55T. The blurring caused by the static off-resonance and concomitant fields is 

successfully removed as compared to the conventional conjugate gradient based iterative 

SENSE (CG-SENSE) reconstruction. The inclusion of a static off-resonance map in 

MaxGIRF reconstruction further improves the sharpness of features in regions with non-zero 

off-resonance.

Figures 5 and 6 compares images reconstructed by MaxGIRF reconstruction (L=8), King’s 

method without static off-resonance correction, and King’s method with static off-resonance 

correction for a slice at z = 17.5 mm and z = 105.0 mm, respectively, from multi-slice axial 
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spiral spin echo imaging of a healthy volunteer at 0.55T. For non-oblique axial spiral scans, 

the concomitant fields generate a time-varying global frequency offset and thus King’s 

method removed most spatial blurring. King’s method with static off-resonance correction 

achieved further improvements in regions with slowly varying off-resonance (Figure 6E) 

and the sharpness in such regions are comparable with MaxGIRF reconstruction. However, 

it achieved only minor improvements in regions with sharply varying static off-resonance 

(Figure 5E). Since most noniterative off-resonance methods (62,63) assume that the static 

off-resonance map varies slowly in space, iterative MaxGIRF reconstruction achieved 

superior performance compared with King’s method with static off-resonance correction, 

in line with (64). The MaxGIRF reconstruction time was 20 mins per slice with a 

reconstruction matrix size of 320 × 320.

Figures 7 and 8 compares images reconstructed by NUFFT, King’s method (without B0 

correction), and MaxGIRF (L=30) for a sagittal slice at x = 0.0 mm and z = 50.0 mm, 

respectively, from multi-slice spiral spin echo imaging of a healthy volunteer at 0.55T. 

Because the spine region in Figure 7E is reconstructed without static off-resonance, 

the improvements by MaxGIRF are solely attributed to the methodological difference 

between King’s method and MaxGIRF. A green box in Figure 8 shows an exemplary 

region where King’s method adversely increases blurring artifacts (compared to NUFFT) 

when concomitant fields counteract static off-resonance. In contrast, MaxGIRF with static 

off-resonance correction correctly handles such complex situations. MaxGIRF provides 

“sharper” delineation of brain tissue boundaries in Figure 8E compared to King’s method. 

The MaxGIRF reconstruction time was 3 hours per slice with a reconstruction matrix size of 

640 × 640.

Figure 9 provides a further analysis on MaxGIRF reconstructions including 1) lowest-order 

(L) vs full-order (F) concomitant field compensation; and 2) iterative reconstruction (CG) 

vs non-iterative conjugate phase reconstruction (CP). The difference between CP-based 

MaxGIRF (F) and CP-based MaxGIRF (L) was negligible and thus compensating only 

lowest-order terms is sufficient in this case. Given the system’s gradient strength and field 

strength, it is not surprising that the higher order terms are having a negligible effect. The 

difference between CG-based MaxGIRF (L) and CP-based MaxGIRF (L) shows mainly 

aliasing artifacts. The difference between CP-based MaxGIRF (L) and King’s method 

(King) (both non-iterative methods) showed negligible structured artifacts that resemble 

the shape of concomitant fields at this slice, even in the areas with aliasing artifacts (e.g., 

face). This indicates that both methods perform robustly under the influence of aliasing and 

the methodological difference is manifested as the negligible structured artifacts. However, 

the CP-based MaxGIRF (L) was only able to compensate strong concomitant fields (> 150 

Hz, Figure 7H) near the spine (orange box) while King’s method showed residual blurring. 

To further characterize the structured artifacts, noiseless spiral numerical simulations were 

performed at 0.55T and 3T using the same geometry as the human mid-sagittal scan but with 

a larger spiral FOV to remove any potential effects of aliasing on the performance of King’s 

method (See Supporting Information Figures S1 and S2). The difference image shows that 

structured artifacts are of identical shape (oval shape centered at isocenter) regardless of 

field strength (not shown) and distance from isocenter. This simulation indicates that King’s 
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method performs well within the boundary of the oval shape but gradually deteriorates 

beyond this boundary. The size of this oval shape is fixed and not a function of neither 

imaging parameters nor spiral trajectories. The reconstruction times (axial/sagittal) for 

non-iterative MaxGIRF methods and King’s method were 40/240 secs and 10/20 secs, 

respectively.

DISCUSSION

We have demonstrated that the MaxGIRF higher-order encoding matrix approach can be 

used to simultaneously correct concomitant fields and off-resonance for spiral acquisitions 

at 0.55T. This method uses GIRF-based gradient waveform corrections to accurately 

calculate spatiotemporally varying concomitant field estimates and statis off-resonance 

maps to generate a hybrid signal equation with variables in the physical and logical 

coordinate system for image reconstruction. We characterized the accuracy of a low-

rank approximation of higher-order encoding matrices to improve reconstruction times 

with NRMSEs, and implement a randomized SVD to mitigate memory requirements. 

The MaxGIRF approach provides improved sharpness in regions with large concomitant 

fields (including off-isocenter) and/or non-zero static off-resonance, compared to King’s 

method. The effectiveness of the proposed method has been demonstrated with numerical 

simulations, phantom, and in vivo human spiral acquisitions.

Here, we applied MaxGIRF to spiral imaging using a lower field strength (0.55T) 

MRI system. Concomitant fields effects are increased at lower field strength, higher 

gradient amplitudes, longer readouts and distance from isocenter. Therefore, this method 

is generalizable for several other MRI applications including systems with gradient inserts 

permitting higher peak gradient amplitude, large FOV imaging, and all field-strengths.

The phantom-based GIRF measurements used by the MaxGIRF approach can be a viable 

alternative to NMR field probes when gradient nonlinearity is not too severe, gradient 

systems are approximately LTI over the duration of a scan, and models of concomitant 

fields are well matched to real measurements. We presumed zero gradient nonlinearity but 

noticed image distortions both in Cartesian and spiral reconstructions (e.g. sagittal slice 

of the NIST phantom). The concomitant fields derived without gradient nonlinearity may 

be sufficient for FOVs used in the current study, but a further investigation is required 

for large-FOV spiral acquisitions (e.g., cardiac, abdominal, or fetal imaging) especially in 

large bore MR systems or MR systems with a high-performance gradient insert (34,65–67). 

Because gradient nonlinearity along each gradient direction can be modeled by a product 

of spherical harmonics (68,69) and a linear gradient normalized by a reference gradient 

(70,71), concomitant field terms incorporating the spherical harmonics expansion (possibly 

up to 9th order) (72) of gradient nonlinearity could be derived following the approach 

described in (18). Because gradient nonlinearity and a new set of concomitant fields under 

gradient nonlinearity are a function of linear gradients, both could be predicted by phantom-

based GIRFs with high accuracy and incorporated within the MaxGIRF framework.

An optimal rank criterion should depend on the specific MR application. In this study, we 

choose an optimal rank that gives less than 2% error in both magnitude and phase NRMSEs. 
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This stringent requirement can be relaxed when signal intensity in regions with high off-

resonance (e.g., fat regions) may not be of interest. In the case of water-fat separated 

imaging or when fat suppression is used, the static off-resonance map may become smoother 

because the discrete water/fat chemical shift is removed. In this case, the optimal rank may 

be lower because singular values of smoother images decay more rapidly (73).

One notable advantage of the MaxGIRF approach is that it can be easily adapted to many 

clinical sites without NMR field probes. MaxGIRF only requires good analytic models 

of concomitant fields and GIRFs measured with a simple pulse sequence and a spherical 

phantom. Because analytic expressions of concomitant fields for asymmetric gradient coils 

can be derived (74), the MaxGIRF approach would be applicable to clinical systems with 

asymmetric gradient coils that have well-documented analytic expressions. Pulse sequences 

for GIRF measurements can be developed and shared via a vendor-independent pulse 

sequence framework (e.g., Pulseq and TOPPE) (75,76). This would enable clinical sites 

without expertise in sequence programming to obtain GIRF measurements on their own 

scanners. Note that a pulse sequence for GIRF measurements described in (23) is provided 

by TOPPE (77). Because of its simple reconstruction procedure, the MaxGIRF approach can 

be easily integrated into any existing gridding or NUFFT based non-Cartesian reconstruction 

routines provided in open-source reconstruction platforms such as BART (78), Gadgetron 

(79), and GPI (80). Therefore, reconstruction software can potentially be shared among sites 

without difficulty.

This work has several limitations. We did not consider acquisitions where an accumulated 

concomitant phase affects the net phase of spin isochromats after following excitation or 

refocusing pulses. This specifically includes balanced steady-state free precession and fast 

spin echo sequences, each of which may require additional assumptions (e.g., a perfect 180 

refocusing pulse for fast spin echo) or additional pulse sequence modifications to formulate 

a tractable forward model that can be solved with an extension of the MaxGIRF framework.

Another drawback is reconstruction time. The SVD needs to be computed for each subject 

with a unique static off-resonance map and whenever a slice prescription is changed. 

The SVD computation time was 1 and 6 mins for axial and sagittal scans, respectively, 

using a non-parallelized implementation. However, this long computation time could 

be reduced by switching from a CPU-based randomized SVD implementation (used in 

this study) to one implemented in parallel architectures such as Graphical Processing 

Units (GPUs). The other computation bottleneck is L repetitions of NUFFTs. Because 

the current MATLAB implementation does not utilize parallel computing via multicore 

CPUs, MaxGIRF reconstruction is relatively slow (L times longer than CG-SENSE). This 

limitation could be partially overcome with simultaneous computations of L×Ni NUFFTs 

using multiple GPUs. This may be particularly beneficial for 3D spiral and/or very high-

resolution spiral scans.

CONCLUSION

We demonstrate a higher-order image reconstruction method, called MaxGIRF, that 

incorporates concomitant fields and GIRF-based gradient waveform prediction for spoiled 
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gradient echo and spin echo spiral imaging. Simulations indicate that MaxGIRF successfully 

mitigates local blurring caused by concomitant fields at various field strengths and distances 

from isocenter. MaxGIRF was able to mitigate concomitant fields both in phantom and in 

vivo brain spiral imaging at 0.55T, superior to the most notable existing solution. Including 

an accurate static off-resonance map further improves its performance in regions with 

large static off-resonance. The impact of this method is greatest when imaging with longer 

readouts, high gradient amplitudes and/or at lower field strength.
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Refer to Web version on PubMed Central for supplementary material.
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Appendix

The nonlinear signal model G x  is first linearized with the Taylor expansion around the 

current estimate xn:

G xn + dx ≈ G xn + DG xn dx, [A1]

where DG xn = ∂G
∂ρ

∂G
∂Δf  is the Fréchet derivative of G evaluated at xn. Substituting x with 

xn + dx in Equation 18 leads to the cost function that provides the update dx for the n-th 

Gauss-Newton iteration xn + 1 = xn + dx:

Φ(dx) = argmin
dx

‖y − G xn − DG xn dx‖ℓ2
2 + αn‖xn + dx − x0‖ℓ2

2 . [A2]

Equation A2 can be simplified to

DG xn
HDG xn + αnI2N dx = DG xn

H y − G xn + αn xn − x0 . [A3]

Since DG x ≜ d
dxG x = d

dxF x = d
dxF x dx

dx = DF x W, Equation A3 can be expressed in 

terms of DF xn  and solved with LSQR:

WH DF xn
HDF xn W + αnI2N dx = WH DF xn

H y − F xn + αn xn − x0
.

[A4]
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The regularization parameter is set to decrease per iteration as αn = α0qn, where q = 2/3, until 

it reaches a minimum regularization parameter αmin. The data vector y ∈ ℂNeN × 1 is scaled 

to have “100.0 L2 norm” (81) and scaling of unknowns is not used. The derivative operator 

DF x ∈ ℂNeN × 2N is defined as:

DF x = ∂F
∂ρ

∂F
∂Δf =

∂F1
∂ρ

∂F1
∂Δf

⋮ ⋮
∂FNe

∂ρ
∂FNe
∂Δf

=
diag exp j2πΔfTE1 diag ρ diag exp j2πΔfTE1 j2πTE1

⋮ ⋮
diag exp j2πΔfTENe diag ρ diag exp j2πΔfTENe j2πTENe

.

[A5]

Using Equation A5, the matrix-vector product dy = DF x Wdx ∈ ℂNeN × 1 is calculated as:

dy =
dy1
⋮

dyNe

= DF x dρ
dΔf =

diag ψ1 dρ + diag ρ diag ψ1 j2πTE1 dΔf
⋮

diag ψNe dρ + diag ρ diag ψNe j2πTENe dΔf

,

[A6]

where we define ψm = exp j2πΔfTEm . Similarly, the matrix-vector product 

dx = DF x Hdy ∈ ℂ2N × 1 involving the adjoint of the derivative operator can be calculated 

as:

dy = dρ
dΔf = DF x

H
dy1
⋮

dyNe

=
∑

m = 1

Ne
diag ψm* dym

ℜ ∑
m = 1

Ne
diag ρ diag ψm* −j2πTEm dym

, [A7]

where ℜ ⋅  denotes the real operator that keeps only the real part of a complex-valued 

input.

DATA AVAILABILITY STATEMENT

The code and sample data (ISMRMRD format) that support the findings of this study 

are openly available in GitHub at https://www.github.com/usc-mrel/lowfield_maxgirf and 

https://www.github.com/usc-mrel/nlinv_estimation.
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Figure 1. 
MaxGIRF reconstruction flowchart. (A) Computation of concomitant field model: Gradient 

waveforms in the logical coordinate system are first transformed into the physical coordinate 

system. Distorted gradients in the physical coordinate system are estimated by GIRFs. 

Analytic expressions of concomitant fields derived from the coil geometry, presumed 

gradient nonlinearity, and GIRF-predicted gradients, are calculated for each spatial position 

in the physical coordinate system. (B) Encoding model: The MaxGIRF encoding model 

is an extension of the SENSE model that additionally includes phase terms due to static 

off-resonance and concomitant fields. The phase evolution per voxel is represented as the 

sum of phase contributions from static off-resonance (red) and spatial basis functions (blue) 

that includes both linear gradients and concomitant field terms.
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Figure 2. 
Low-rank approximations of the MaxGIRF higher-order encoding matrix are effective. 

NRMSEs are measured between full-rank image reconstructions and low-rank 

approximations from in vivo multi-slice spiral spin echo axial and sagittal datasets. 

NRMSEs when (A and D) only static off-resonance is included, (B and E) only concomitant 

fields are included, (C and F) both static off-resonance and concomitant fields are included 

in the higher-order encoding matrices. The inset images show the difference between full-

rank (50/80 for axial/sagittal) and L-rank reconstructions. Note that a different range of the 

x-axis is used for clarity.
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Figure 3. 
Evaluation of concomitant field correction using MaxGIRF reconstruction of noiseless 

numerical simulations. (A) Dependence of concomitant fields on B0, using field strengths 

(0.55T, 1.5T, 3T, 7T) at a slice position of 0 mm from isocenter. A reference image used 

to simulate non-Cartesian k-space data is shown along with the physical coordinate system. 

The NRMSE between the ground truth and spiral reconstruction is shown (green), with 8.6% 

(neglecting small changes at higher field strengths) being the minimum achievable error 

from the difference between Cartesian and spiral image reconstructions. (B) Dependence 

of concomitant fields on off-isocenter distance are demonstrated for sagittal prescription. A 

time-averaged concomitant field map indicates the relative strength of concomitant fields 

at various B0 and distances from isocenter. NUFFT reconstruction shows increased spatial 

blurring as the field strength decreases and the distance from isocenter increases.
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Figure 4. 
Spiral axial imaging of an ISMRM/NIST phantom at 0.55T. (top row) isocenter; (bottom 

row) off-isocenter with z = 75 mm. A 2D Cartesian GRE reference is also shown (TE 

and SNR are not matched). CG-SENSE (1st column) clearly shows spatial blurring caused 

by both concomitant fields and static off-resonance. MaxGIRF can be applied without 

(2nd column) and with (3rd column) a separately acquired static off-resonance map. 

MaxGIRF without a static off-resonance map dramatically improves the image quality from 

CG-SENSE and further improvements are achieved with a static off-resonance map (one 

exemplary region shown in the orange box).
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Figure 5. 
Axial spiral spin-echo imaging of a healthy volunteer at 0.55T close to isocenter (z 

= 17.5mm). Comparison of image reconstructions using (A) comparator Cartesian spin-

echo image, (B) MaxGIRF reconstruction with static off-resonance correction (Low-rank 

approximation L = 8), (C) King’s method without static off-resonance correction, and (D) 

King’s method with static off-resonance correction. (E) Zoomed-in image of a region with 

large static off-resonance (orange box). (F) Static off-resonance map. King’s method with 

static off-resonance correction shows minor improvements compared to without static off-

resonance correction in regions with strong, sharply varying static off-resonance. In contrast 

to both King’s methods, MaxGIRF reconstruction successfully resolves local blurring due 

to strong off-resonance and provides features comparable to the Cartesian spin-echo image 

(e.g., orange box).
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Figure 6. 
Axial spiral spin-echo imaging of a healthy volunteer at 0.55T far from isocenter (z 

= 105.0mm). Comparison of image reconstructions using (A) comparator Cartesian spin-

echo image, (B) MaxGIRF reconstruction with static off-resonance correction (Low-rank 

approximation L = 8), (C) King’s method without static off-resonance correction, and 

(D) King’s method with static off-resonance correction. (E) Zoomed-in image (orange 

box). (F) Static off-resonance map. For an axial slice without angulation, the effect of 

concomitant fields is merely a time-varying global frequency offset and thus all three 

methods successfully resolve spatial blurring due to concomitant fields when compared 

to NUFFT (not shown). In contrast to its performance in Figure 5, King’s method with 

static off-resonance correction performs well particularly in this slice because a static off-

resonance map varies slowly in space, which is required for successful application of most 

noniterative off-resonance correction methods. MaxGIRF reconstruction based on iterative 

CG shows improved delineation of tissue boundaries compared to King’s method without 

static off-resonance correction, regardless of characteristics (slowly varying or sharply 

varying) in a static off-resonance map.
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Figure 7. 
Sagittal spiral spin-echo imaging of a healthy volunteer at 0.55T at isocenter (x = 0.0 mm). 

Comparison of image reconstructions using (A) comparator Cartesian spin-echo image, 

(B) NUFFT reconstruction, (C) King’s method without static off-resonance correction, and 

(D) MaxGIRF reconstruction with static off-resonance correction (Low-rank approximation 

L = 30). (E) Zoomed-in image of a brain region (blue box). (F) Zoomed-in image of a 

neck region (orange box). (G) Static off-resonance map. (H) Time-averaged concomitant 

fields map. (I) Sum of the static off-resonance map and time-averaged concomitant fields 

map. Although MaxGIRF utilizing static off-resonance is shown in (F), MaxGIRF without 

static off-resonance (not shown) is of comparable quality. Thus, this indicates that the 

improvements in the spine region by MaxGIRF are largely attributed to the methodological 

difference between King’s method and MaxGIRF.
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Figure 8. 
Sagittal spiral spin-echo imaging of a healthy volunteer at 0.55T off-isocenter (x = 

50.0 mm). Comparison of image reconstructions using (A) comparator Cartesian spin-

echo image, (B) NUFFT reconstruction, (C) King’s method without static off-resonance 

correction, and (D) MaxGIRF reconstruction with static off-resonance correction (Low-rank 

approximation L = 30). (E) Zoomed-in image of a brain region (orange box). (F) Zoomed-in 

image (blue box). (G) Static off-resonance map. (H) Time-averaged concomitant fields map. 

(I) Sum of the static off-resonance map and time-averaged concomitant fields map. King’s 

method may adversely increase blurring artifacts (e.g., blue box) compared to NUFFT 

reconstruction when the static off-resonance in a region counteracts the concomitant fields. 

However, MaxGIRF with static off-resonance correction correctly handles such regions as 

shown in (F) and provides “sharper” delineation of brain tissue boundaries in (E) compared 

to King’s method.

Lee et al. Page 29

Magn Reson Med. Author manuscript; available in PMC 2023 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. 
Comparison of reconstruction methods compensating a different number of concomitant 

field terms. Mid-sagittal spiral imaging of a healthy volunteer at isocenter at 0.55T. (1st 

column) NUFFT. (2nd column) King’s method without static off-resonance correction. (3rd 

column) Conjugate phase reconstruction-based MaxGIRF using only lowest-order terms 

in the concomitant fields. (4th column) Conjugate phase reconstruction-based MaxGIRF 

using entire terms in the concomitant fields (full-order). (5th column) CG-based MaxGIRF 

using full-order terms. (Bottom) Absolute difference images between reconstructions. GIRF-

predicted gradients were used in all reconstructions. Static off-resonance correction was not 

performed, in order to isolate the difference due to concomitant field correction. The spiral 

trajectory was designed for 224 × 224 mm2 FOV and reconstructed at twice the FOV with 

the same spatial resolution, which causes the aliasing at the back of the neck.
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Table 1

Concomitant field basis functions pl r l = 1
Nl  and dynamic coefficients ℎl, i t l = 1

Nl  for an MR system with 

symmetric gradient coils and zero gradient nonlinearity.

Concomitant field basis functions Dynamic coefficients Type

p1 r = x ℎ1, i t = Gx, i t

gradientp2 r = y ℎ2, i t = Gy, i t

p3 r = z ℎ3, i t = Gz, i t

p4 r = x2 ℎ4, i t = Gz, i
2 t / 8Bo

lowest-order

p5 r = y2 ℎ5, i t = Gz, i
2 t / 8Bo

p6 r = z2 ℎ6, i t = Gx, i
2 t + Gy, i

2 t / 2Bo

p7 r = xy ℎ7, i t = 0

p8 r = yz ℎ8, i t = − Gy, i t Gz, i t / 2Bo

p9 r = xz ℎ9, i t = − Gx, i t Gz, i t / 2Bo

p10 r = x3 ℎ10, i t = − Gx, i t Gz, i
2 t / 8Bo

2

1/Bo
2 order

p11 r = y3 ℎ11, i t = − Gy, i t Gz, i
2 t / 8Bo

2

p12 r = z3 ℎ12, i t = − Gz, i t Gx, i
2 t + Gy, i

2 t / 2Bo
2

p13 r = x2y ℎ13, i t = − Gy, i t Gz, i
2 t / 8Bo

2

p14 r = x2z ℎ14, i t = − Gz, i
3 t /4 − Gx, i

2 t Gz, i t / 2Bo
2

p15 r = xy2 ℎ15, i t = − Gx, i t Gz, i
2 t / 8Bo

2

p16 r = y2z ℎ16, i t = − Gz, i
3 t /4 − Gy, i

2 t Gz, i t / 2Bo
2

p17 r = xz2 ℎ17, i t = − Gx, i t Gx, i
2 t + Gy, i

2 t − Gx, i t Gz, i
2 t / 2Bo

2

p18 r = yz2 ℎ18, i t = − Gy, i t Gx, i
2 t + Gy, i

2 t − Gy, i t Gz, i
2 t / 2Bo

2

p19 r = xyz ℎ19, i t = Gx, i t Gy, i t Gz, i t /Bo
2
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