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Modulating the number of muscle stems cells, called satellite cells, during early postnatal 

development produces long-term effects on muscle growth. We tested the hypothesis that high 

expression levels of the anti-aging protein Klotho in early postnatal myogenesis increase satellite 

cell numbers by influencing the epigenetic regulation of genes that regulate myogenesis. Our 

findings show that elevated klotho expression caused a transient increase in satellite cell numbers 

and slowed muscle fiber growth, followed by a period of accelerated muscle growth that leads to 

larger fibers. Klotho also transcriptionally downregulated the H3K27 demethylase Jmjd3, leading 

to increased H3K27 methylation and decreased expression of genes in the canonical Wnt pathway, 

which was associated with a delay in muscle differentiation. In addition, Klotho stimulation 

and Jmjd3 downregulation produced similar but not additive reductions in the expression of 

Wnt4, Wnt9a, and Wnt10a in myogenic cells, indicating that inhibition occurred through a 

common pathway. Together, our results identify a novel pathway through which Klotho influences 

myogenesis by reducing the expression of Jmjd3, leading to reductions in the expression of Wnt 

genes and inhibition of canonical Wnt signaling.
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1 | INTRODUCTION

The life-long health and function of skeletal muscle can be strongly influenced by a 

population of muscle stem cells that reside in the muscle. These cells, called satellite cells, 

experience extensive and complex regulation by numerous factors intrinsic to muscle cells, 

by factors produced by other cells, and by interactions with the extracellular matrix.1 Each 

of those regulatory influences has direct, immediate effects on satellite cells that determine 

their state of activation, proliferation, and differentiation during muscle development. 

However, the responses of satellite cells to those signals also have long-term influences 

on muscle mass and regenerative capacity that can affect the vitality of organisms.1–3

Although establishing and maintaining a sufficient population of satellite cells is necessary 

for normal muscle homeostasis and health throughout life, the period of early postnatal 

development may be particularly important in determining the life-long function of muscle. 

The first 28 days following birth (P28) in mice is an especially dynamic period influencing 

satellite cell numbers and fate. During that period, ~80% of rodent satellite cells are actively 

proliferating4,5 but by 6 to 8 weeks of age, fewer than 1% of satellite cells are in the 

cell cycle6,7 and the satellite cell pool number is established.8 Measurements of changes 

in satellite cell numbers during muscle development and maturation indicate that growth 

of muscle fibers in mice until ~P21 may be influenced by the number of satellite cells 

present.9,10 In addition, the adult numbers of satellite cells and muscle fiber nuclei are 

largely established in mice by ~P28,9 although the numbers can be modified in mature 

organisms by exercise, injury, or disease.11,12 Furthermore, reductions of satellite cell 

numbers at ~P28 that are caused by limb irradiation produce smaller muscle fibers and 

fewer myonuclei in mice which persist until the mice are at least 14 months old.13,14 Thus, 

factors that regulate satellite cell number and differentiation early in life may have long-term 
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influences on muscle mass and function because maintaining a sufficient pool of satellite 

cells is necessary for successful muscle regeneration through-out life.15

Satellite cell numbers increase when quiescent, non-proliferative satellite cells that express 

the Pax7 transcription factor become activated to a proliferative population that expresses 

Pax7 and the transcription factor MyoD. MyoD plays a central role in regulating the early 

stages of muscle differentiation.16–18 Those Pax7+/MyoD+ cells can continue to proliferate 

or they can return to a Pax7+/MyoD-quiescent state, or they can withdraw from the cell 

cycle and express myogenin.19 Myogenin, also a transcription factor, regulates the terminal 

differentiation of myogenic cells and their fusion into mature muscle fibers.20,21 Thus, any 

factor that increases the cycling of Pax7+/MyoD+ myogenic cells or inhibits the transition of 

proliferative myogenic cells to post-mitotic cells could expand satellite cell numbers during 

early postnatal development.

Several observations suggest that the anti-aging protein Klotho could potentially influence 

the large, rapid increase of Pax7+ satellite cells in early postnatal myogenesis. First, 

stimulation of myogenic cells in vitro with recombinant Klotho more than doubles their 

proliferation during 48-h period.12 Also, Klotho hypomorphic mice show large reductions 

in the number of Pax7+ myogenic cells at P14.22 In addition, elevated expression of Klotho 

in dystrophic muscle causes large increases in satellite cells that persist into late stages of 

pathology, showing a positive relationship between Klotho expression levels and satellite 

cell numbers.12 Finally, Klotho expression in healthy skeletal muscle is greatest during early 

postnatal development (P14) and then rapidly declines12 over a time course that resembles 

the reduction of numbers of proliferative satellite cells in postnatal development.4–7,10

In this investigation, we test the hypothesis that high levels of Klotho expression in 

early postnatal myogenesis increase satellite cell numbers, in part, through effects on the 

epigenetic regulation of genes that regulate myogenesis. We explore a potential role for 

Klotho in affecting epigenetic regulatory mechanisms that control the transition of myogenic 

cells from a proliferative population to a post-mitotic, terminally-differentiated population. 

For example, changes in the expression of enzymes that affect the methylation of lysine 27 

on histone 3 (H3K27) located at the regulatory region of specific genes have large influences 

on myogenic cell proliferation and differentiation. H3K27 methylation can be increased 

by the polycomb repressive complex 2 (PRC2) which includes the methyltransferase Ezh2 

and the regulatory protein Jarid2, leading to gene repression.23,24 Deletion or inhibition of 

either Ezh2 or Jarid2 in myogenic cells reduces Pax7+ cell numbers and disrupts satellite 

cell activation and differentiation.25 Conversely, UTX (KDM6A) and Jmjd3 (KDM6B) 

demethylate H3K27 to allow transcriptional activation that is essential for muscle terminal 

differentiation.26,27 UTX is an important, positive regulator of myogenin expression in 

vitro,28 and deletion of Utx in satellite cells inhibits the expression of myogenin following 

muscle injury.29 Perturbing Jmjd3 expression also affects the expression of myogenic 

transcription factors; the transient, ectopic expression of Jmjd3 in pluripotent stem cells 

induces expression of Pax7.30,31 Thus, if Klotho modifies the expression or activity of any 

of the key epigenetic regulatory enzymes that control myogenesis, the high levels of Klotho 

expression that occur in early postnatal muscle could play important roles in influencing the 

numbers and development of satellite cells.
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2 | MATERIALS AND METHODS

2.1 | Mice

C57 BL/6 (wild-type/Wt mice) were purchased from The Jackson Laboratory (Jax Labs, Bar 

Harbor, ME, USA) and transgenic mice overexpressing Klotho (KL Tg+) were generously 

gifted by Dr. Makoto Kuro-o. The klotho transgene is under the control of the constitutively 

expressed human elongation factor-1alpha promotor (EFmKL46). Mice overexpressing 

Klotho were back-crossed onto the C57 BL/6 background and were genotyped at weaning 

to ensure the presence of mutant alleles. Mice were housed in a specific pathogen-free 

facility under 12-h light and dark cycles. Only male mice were used in these studies. 

Mice were euthanized by inhalation of isoflurane and weighed prior to muscle collection. 

Individual muscles were collected, weighed, and flash-frozen for subsequent RNA isolation 

or histological analysis. Experimental group size ranges from 4 to 5 mice per group.

2.2 | Muscle fiber cross-sectional area

Frozen quadriceps muscles were cross-sectioned at the midbelly and stained for 10 min 

with hematoxylin followed by three, double-distilled H2O rinses. Fiber cross-sectional 

area measurements were taken for no fewer than 500 fibers for each section analyzed. 

Fibers were sampled from five or more separate locations within the muscle cross-section 

and digitally measured using ImageJ.32,33 Classification of small and large fibers was 

determined by setting three standard deviations from the mean cross-sectional area for the 

control group and quantifying the percent of fibers that fell within those ranges.34,35

2.3 | RNA isolation and quantitative PCR

Whole muscle tissue was mechanically homogenized (Dupont, Wilmington, DE, USA) 

in Trizol (Invitrogen, Waltham, MA, USA). RNA was extracted with chloroform and 

precipitated with isopropanol. RNA was DNase-treated and purified with RNeasy Mini 

Kit (Qiagen, Hilden, Germany) according to the manufacturer’s protocol. The total RNA 

was quantified by spectrophotometry (Beckman, Brea, CA, USA) at 260 nm absorbance. 

RNA samples used for analysis had a concentration greater than or equal to 0.2 µg/µl and 

an absorbance ratio of 1.8 or higher. RNA quality was determined by the clear separation 

of 28S and 18S ribosomal RNA by electrophoresis. Two micrograms of total RNA were 

reverse transcribed with Super Script Reverse Transcriptase II (Invitrogen, Waltham, MA, 

USA) using Oligo(dT)12–18 Primers (Invitrogen, Waltham, MA, USA) for product extension. 

cDNA was used to measure the expression for the genes of interest using SYBR Green 

qPCR Master Mix (Bio-Rad, Hercules, CA, USA) or iTaq Universal SYBR Green Supermix 

(Bio-Rad, Hercules, CA, USA). Real-time quantitative PCR was performed on an iQ5 

thermocycler system with optical system software (Bio-Rad, Hercules, CA, USA) or on a 

QuantStudio 5 system (Thermo Fisher, Waltham, MA, USA). To increase scientific rigor and 

because genes used to normalize qPCR data can vary with age, disease, or treatments,36–38 

we empirically determined that Srp14, Hprt1, and Rnps1 were suitable reference genes 

based on methods previously described.39 The normalization factor for each sample was 

calculated using the geometric mean of the Ct-values measured from the reference genes. 

The highest relative expression value for each gene was set to 1 and all other expression 

values were scaled accordingly. QPCR primer sequences are listed in Table 1.
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2.4 | Production of Pax7 antibody

Hybridoma cells expressing antibodies to Pax7 were purchased from the Developmental 

Studies Hybridoma Bank (DSHB, University of Iowa). Cells were cultured in ventilated 

T-75 flasks with a complete medium consisting of Iscove’s Modified Dulbecco’s Medium 

(Sigma, St. Louis, MO, USA) supplemented with sodium bicarbonate, 1% penicillin-

streptomycin (Gibco, Waltham, MA, USA), and 20% fetal bovine serum (FBS) according 

to the DSHB culturing protocol. Complete medium was added every other day until day 

6 in the culture at which the time serum-free complete medium was added to cultures to 

maintain a cell density between 5 × 105 to 1 × 106 cells/ml. After 14 days in culture, 

cells were split evenly into non-ventilated flasks and diluted with equal volumes serum-free 

complete medium. After 14 days of culturing, Pax7 conditioned medium was collected 

and sterile filtered prior to antibody purification. Anti-Pax7 was affinity-purified from a 

conditioned medium and eluted with 0.1 M glycine. Antibody concentration was determined 

by measuring absorbance at 280 nm with a spectrophotometer (Beckman, Brea, CA, USA). 

Antibody specificity was determined by western blot and immunohistochemistry.

2.5 | Immunohistochemistry

Quadriceps muscles were dissected and rapidly frozen in isopentane cooled in liquid 

nitrogen. Frozen, OCT embedded cross-sections were cut at a thickness of 10 μm. Sections 

were air-dried for 30 min and fixed with 4% paraformaldehyde (PFA) or ice-cold acetone 

for 10 min and washed for 15 min in phosphate-buffered saline (PBS). Prior to labeling 

with antibodies for Pax7, sections were subject to 40 min of antigen retrieval in sodium 

citrate buffer containing 0.05% Tween-20 (pH 6.0) and heated in a water bath to 95–

100°C. Endogenous peroxidases were quenched for 10 min with 0.3% H2O2. Sections were 

treated with blocking buffer from a mouse-on-mouse immunohistochemistry kit (M.O.M 

Kit; Vector Laboratories, Burlingame, CA, USA) supplemented with 0.3 M glycine for 

1 h. Sections were incubated with mouse anti-dystrophin (1:30; RRID:AB_442081), anti-

Pax7 (1:500), or anti-MyoD (1:50; RRID:AB_395255) primary antibodies in a humidified 

chamber, overnight at 4°C. Sections were subsequently incubated with the M.O.M. kit 

biotinconjugated anti-mouse IgG (1:200) for 30 min, followed by 15 min of PBS washes 

and a 30-min incubation with M.O.M. kit ABC reagents. Immunolabeling was visualized 

with the peroxidase substrate 3-amino-9-ethylcarbazole (AEC kit; Vector Laboratories, 

Burlingame, CA, USA), causing a dark red reaction product. Following the development, 

sections labeled for dystrophin were stained with hematoxylin as described above. The 

number of myonuclei per fiber was determined by counting the number of myonuclei 

stained for hematoxylin within dystrophin-stained fibers and the total number of fibers 

within a field of view. The number of immunolabeled cells per 100 fibers was determined by 

counting the number of immunolabeled cells and the total number of muscle fibers in muscle 

cross-sections.

2.6 | Immunofluorescence

For sections immunolabeled with two or more antibodies, tissue was fixed with 4% PFA 

for 10 min, subject to 40-min antigen retrieval and a 1-h blocking incubation (M.O.M. 

kit) with 0.3 M glycine. Sections were co-labeled with anti-Pax7 (1:500) or anti-Pax7 
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(1:50; RRID:AB_2159836) and goat anti-Klotho (1:10; RRID:AB_2296612), chicken 

anti-laminin (1:200; RRID:AB_2134058), rabbit anti-Jmjd3 (1:200; RRID:AB_10987745), 

rabbit anti-H3K27me3 (1:1000; RRID:AB_2616029), or antibodies probing the active, non-

phosphorylated (Ser45) β-catenin (1:1500; RRID:AB_2650576). Sections were incubated 

with primary antibodies overnight in a humidified chamber at 4°C. Sections were 

subsequently washed and incubated for 30 min with horse anti-mouse Dylight-594 (1:200; 

RRID:AB_2336412) and horse anti-rabbit Dylight-488 (1:100; RRID:AB_2336403), 

anti-chicken IgY H&L Alexa-488 (1:200; RRID:AB_2827653), or biotinylated anti-

goat secondary (1:200; RRID:AB_2336123) followed by avidin-Dylight 488 (1:500, 

RRID:AB_2336405). Sections were mounted with Prolong Gold Antifade Mountant 

containing DNA stain DAPI (#P36931; Invitrogen, Waltham, MA, USA). For data expressed 

as a percent of Pax7+ cells beneath the basal lamina, cells were determined to be Pax7 and 

DAPI positive and then determined to be beneath the anti-laminin labeled basal lamina or 

outside the anti-laminin labeled basal lamina. For data expressed as a percent co-labeled, 

cells were determined to be Pax7 and DAPI positive then determined to be Klotho, Jmjd3, 

H3K27me3 or β-catenin positive. Data are expressed as the percentage of total Pax7+ 

satellite cells that are under laminin or as the total Pax7+ satellite cells that also express 

Jmjd3, H3K27me3, or active β-catenin (Jmjd3+ Pax7+, H3K27me3+ Pax7+ or β-catenin+ 

Pax7+/total Pax7+).

2.7 | Cell culture and in vitro treatments

C2C12 myoblasts were seeded on 60 mm culture plates at 100 000 cells per dish or in 6-well 

plates at 40,000 cells per well. Myoblasts were maintained in growth medium (Dulbecco’s 

Modified Eagle Medium (DMEM) containing 10% FBS, penicillin and streptomycin) at 

37°C and in 5% CO2. The culture medium was refreshed every other day unless otherwise 

stated. Myogenic cells were serumstarved to induce differentiation and collected at the 1 

day, 5 days, or 7 days following differentiation.

2.8 | Klotho stimulation of myoblasts in vitro

C2C12 myoblasts were seeded and cultured as out-lined above. Cultures were stimulated 

with 10 μg/ml heparin (Sigma, St. Louis, MO, USA) or heparin and 1 μg/ml Klotho 

(R&D Systems, Minneapolis, MN, USA) in a growth medium at 24- and 48-h post-plating. 

Following 48 h of stimulation, cells were collected in Trizol reagent for RNA isolation.

2.9 | Klotho stimulation with subsequent siRNA knock-down of Jmjd3

C2C12 myoblasts were seeded in 6-well dishes, cultured in antibiotic-free DMEM 

containing 10% heat-inactivated FBS at 37°C and 5% CO2. After 24 h in culture, cells 

were rinsed three times with 1 ml of DPBS and cultured in Opti-MEM (Gibco, Waltham, 

MA, USA). Cells were transfected with 50 pmol/ml of Stealth siRNA oligos targeting 

Kdm6b/Jmjd3 (#1320001; Invitrogen, Waltham, MA, USA) or Stealth siRNA medium GC 

control oligos (#12935300; Invitrogen, Waltham, MA, USA) using RNAiMAX reagent 

(Invitrogen, Waltham, MA, USA) for 6 h according to the manufacturer’s protocol. 

Following transfection, cells were collected for RNA or protein analysis.
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2.10 | Jmjd3 overexpression in myogenic cells

C2C12 myoblasts were cultured in 6-well dishes, as described above. After 24 h in culture, 

the cells were rinsed three times with 1 ml of DPBS and cultured in Opti-MEM. Cells 

were transfected with pCS2-Jmjd3-F expression plasmid (RRID:Addgene_17440) or a pCS2 

control vector using Lipofectamine 3000 Transfection Reagent (Invitrogen, Waltham, MA, 

USA) for 6 h according to the manufacturer’s protocol. Following transfection, myoblasts 

were cultured in a differentiation medium for 72-h and RNA and protein were collected for 

analysis.

2.11 | GSK-J4 treatment of C2C12 myoblasts

C2C12 myoblasts were seeded on 6-well plates and treated with 1.2 mM of GSK-J440,41 

(Cayman Chemical, Ann Arbor, MI, USA) at 24- and 48-h post-plating. Following 48 h of 

treatment, cells were collected for RNA analysis.

2.12 | Western blot following differentiation

C2C12 myoblasts were cultured to specified confluency and subject to differentiation. Cells 

were washed three times with ice-cold DPBS and collected in reducing sample buffer (80 

mM Tris-HCl, pH 6.8, 0.1 M DTT, 70 mM SDS and 10% glycerol) supplemented with 

proteinase inhibitor cocktail (#P8340; Sigma, St. Louis, MO, USA), 0.2 M Na3VO4, and 5 

M NaF and passed through a 23-gauge needle five or more times. Cell lysates were boiled 

for 3 min and centrifuged at 12 000 g for 1 min at 4°C. A portion of the supernatant fraction 

was used to determine total protein concentration by filter paper assay. Protein homogenates 

containing 30 μg of total protein were separated on a 10% SDS-PAGE gel and transferred 

by electrophoresis to a nitrocellulose membrane for 3 h in transfer buffer (0.2 M glycine, 25 

mM Tris base, and 20% methanol). Equal loading and efficiency of transfer were verified 

by staining with Ponceau S solution (#P-7170; Sigma, St. Louis, MO, USA). Nitrocellulose 

membranes were incubated in blocking buffer containing 0.1% Tween-20, 0.2% gelatin, and 

3% dry milk overnight at 4°C. Membranes were probed with anti-Jmjd3 (1:100), anti-Klotho 

(1:50), or anti-myogenin (1:100) for 3 h at room temperature or overnight at 4°C, washed 

six times for 10 min in wash buffer (0.05% Tween-20, 0.2% gelatin, and 3% dry milk) 

or in wash buffer containing 25 mM Tris, pH 7.4, 0.15 M NaCl (TBS) containing 0.05% 

Tween-20 (0.05% TBST) and overlayed with ECL horseradish peroxidase anti-rabbit IgG 

(1:100 000; RRID:AB_772206) or ECL horseradish peroxidase anti-mouse IgG (1:10,000; 

RRID:AB_772210) for 1 h at room temperature. Membranes were washed six times for 

10 min in wash buffer prior to development. Membranes were developed with FemtoGlow 

Western Plus (#FWPD02; Michigan Diagnostics, Royal Oak, MI, USA) and imaged on 

a SynGene PXi imager (Bangalore, Karnataka, India) using GeneSys V1.5.4.0 software. 

Relative quantities of Jmjd3 and myogenin proteins were determined using ImageJ software 

and normalized to input protein.

2.13 | Western blot following Jmjd3 inhibition with Klotho and siRNA

After 48 h of Klotho treatment followed by a 6-h transfection with siRNA targeting Jmjd3, 

C2C12 cells were washed three times with ice-cold DPBS and collected in reducing sample 

buffer supplemented with proteinase inhibitor cocktail, 0.2 M Na3VO4, and 5 M NaF and 
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passed through a 23-gauge needle five or more times. Cell lysates were then prepared 

and analyzed by western blotting as described above, using anti-Jmjd3 (1:100) or rabbit 

antidesmin (1:50; RRID:AB_476910). Primary antibodies were applied to the blots for 3 

h at room temperature. Prior to incubation with Wnt-related antibodies probing for rat 

anti-Wnt4 (1:200; RRID:AB_2215448), rabbit anti-Wnt9a (1:500; RRID:AB_2772907), or 

rabbit anti-Wnt10a (1:500; RRID:AB_1277809), membranes were incubated over-night at 

4°C in blocking buffer containing 25 mM Tris pH 7.4, 0.15 M NaCl, 0.1% Tween 20 

and 3%–5% dry milk. The following day, membranes were washed in 0.1% TBST wash 

buffer three to six times for 10 min and probed with primary antibodies in a humidified 

chamber overnight at 4°C. Following primary incubation, membranes were washed in 

0.1% TBST three to six times. Membranes probed with anti-Wnt4 were overlaid with 

ECL horseradish peroxidase anti-rat IgG (1:10 000; RRID:AB_772207) for 1 h at room 

temperature. Membranes probed with anti-Wnt9a or anti-Wnt10a were overlaid with ECL 

horse-radish peroxidase anti-rabbit IgG for 1 h at room temperature. All membranes were 

washed three to six times in 0.1% TBST, developed with FemtoGlow Western Plus, and 

imaged on a SynGene PXi imager (Bangalore, Karnataka, India).

2.14 | Chromatin immunoprecipitation on Klotho treated myoblasts

C2C12 myoblasts were seeded at 2.0 × 105 on 100-mm culture dishes maintained in growth 

medium and treated with Klotho as outlined above. Following 48 h of stimulation, cells 

were washed with DPBS, released with 0.05% trypsin EDTA (Gibco, Waltham, MA, USA), 

and quenched with a growth medium. Cells were fixed in 1% formaldehyde on an end-to-

end rotator (Barnstead/Thermolyne) for 10 min at room temperature. 1% formaldehyde 

solution was quenched with 2 M glycine for a final concentration of 125 mM glycine 

and incubated on rotation for 10 min. Cells were washed 3 times with cold DPBS prior 

to lysing. Subsequent steps were done following the ChIP-IT High Sensitivity Kit (Active 

Motif, Carlsbad, CA, USA) manufacturer’s protocol. Cells were lysed in chromatin prep 

buffer (Active Motif, Carlsbad, CA, USA) containing proteinase inhibitor cocktail and 

100 mM phenylmethylsulfonyl fluoride (PMSF) and incubated on ice for 10 min. The 

lysate was transferred to an ice-cold Dounce homogenizer for mechanical dissociation. The 

homogenate was then centrifuged at 2350 rpm for 3 min at 4°C. The pellet fraction was 

resuspended in ChIP buffer containing proteinase inhibitor cocktail and PMSF, transferred 

to a 1.5 ml sonication tube (Active Motif, Carlsbad, CA, USA), and incubated on ice for 10 

min. Chromatin was sheared by sonication (Active Motif, Carlsbad, CA, USA) at 20 amp 

for cycles of 15 s on and 15 s off to reach a fragmented side of approximately 200 bp. DNA 

fragments were electrophoresed on a 2.0% agarose gel and digitally visualized (SynGene, 

Bangalore, Karnataka, India) with gel red staining. ~17 μg of chromatin were incubated with 

ChIP-verified anti-H3K27me2/3 (RRID:AB_2793246) or IgG negative control antibodies 

on end-to-end rotation overnight at 4°C. The following day, Protein G agarose beads 

were washed and added to each sample for chromatin immunoprecipitation (ChIP). The 

chromatin-bead mixtures were incubated for 3.5 h on an end-to-end rotator at 4°C. Each 

sample was loaded onto a ChIP filtration column, washed, and dried by centrifugation at 

1250 g for 3 min at room temperature. ChIP DNA was eluted twice with 50 μl of Elution 

Buffer AM4. ChIP-DNA was reverse cross-linked and purified with the ChIP-IT DNA 

Isolation Kit (Active Motif, Carlsbad, CA, USA) per the manufacturer’s protocol. Briefly, 
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eluted ChIP DNA was mixed with Proteinase K and incubated in a thermomixer (Eppendorf, 

Hamburg, Germany) set to at 900 rpm and 55°C for 30 min, followed by 80°C for 2 h. 

DNA was diluted with DNA Purification Binding Buffer with 10 μl of 3 M sodium acetate 

for pH adjustment yielding a bright yellow reaction mixture. Each sample was placed in a 

DNA purification column and washed with DNA purification wash buffer. Purified DNA 

was eluted in 40 μl of DNA purification elution buffer and stored at −20°C prior to DNA 

sequencing.

2.15 | Chromatin immunoprecipitation-sequencing (ChIP-Seq) analysis

DNA quality control and sequencing were done at the UCLA Technology Center for 

Genomics and Bioinformatics at the University of California, Los Angeles. Single-end DNA 

sequencing was performed on an Illumina (San Diego, CA, USA) HiSeq3000 instrument 

with ~39 to 45 million reads per sample and a read length of 50 base pairs (bp). Raw 

fastq files were aligned to the mm10 genome using Bowtie242 with default parameters, 

achieving an alignment rate between 95 and 98%. The resulting SAM files were converted 

to BAM format and sorted using Samtools.43 Broad peaks were called using Model-based 

analysis of ChIP-Seq44 (macs2 callpeak function) with the sorted ChIP and input alignments 

(BAM files) as the treatment and control files, respectively, and specifying the following 

parameters: --broad --broad-cutoff 0.1 -g mm --nomodel. We calculated peaks found after 

Klotho treatment but not in a control condition, and quantified read density around peak 

centers (±1 kb) using computeMatrix from DeepTools45 with the --skipZeros parameter 

and the output of bamCoverage45 as inputs. The resulting matrix was then used with 

plotHeatmap45 for visualization. Genomic regions and functional analyses were done using 

R on peaks falling within −3000 to +300 bp from the transcription start site (TSS) of 

genes defined by the bioconductor46,47 package TxDb.Mmusculus.UCSC.mm10.ensGene.48 

We used R to identify gene promoters that overlap with H3K27me2/3 peaks and quantify 

the percent overlap. Promoters with H3K27me2/3 peak occupancy after Klotho treatment 

only are shown in Table 2 and by definition have 0% H3K27me2/3 overlap in the vehicle-

treated control condition. Gene ontology (GO) analysis and Kyoto encyclopedia of genes 

and genomes (KEGG)49 was done using the database for annotation, visualization, and 

integrated discovery (DAVID)50,51 which uses a modified Fisher’s Exact test to examine 

the statistical significance of enrichment for each term. KEGG results were verified using 

the KEGG.db package from Bioconductor and a hypergeometric test to measure statistical 

significance for each term. Raw ChIP-seq data were uploaded to the National Center for 

Biotechnology Information’s Gene Expression Omnibus and are available under accession 

number GSE189109.

2.16 | Statistics

Data are presented as the mean ± standard error of the mean (SEM). Non-parametric 

student’s t-test was used when determining differences between two groups and one-way 

analysis of variance (ANOVA) with Dunnett’s multiple comparison test when comparing 

more than one group to one control group or Tukey’s post hoc was used when comparing 

more than two groups. Groups were determined to be significantly different at p < .05.
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3 | RESULTS

3.1 | Klotho modulates muscle development during early postnatal growth

Klotho expression in skeletal muscle declines from early postnatal development until 

maturity, which suggests that Klotho may affect muscle development in young animals.12 

Our findings show that klotho mRNA expression is highest in wild-type mice at 14 

days after birth (P14), declines during the mid-stage of postnatal development at 28 

days after birth (P28) and is further reduced in 3 months old adult muscles (Figure 

1A). Immunohistological observations at P14 show that Klotho protein is located in Pax7-

expressing cells (Pax7+), on the surface of some myofibers, and in other cells in the 

interstitium (Figure 1B). However, by 3 months of age, the proportion of Pax7+ cells that 

expressed Klotho significantly declined (Figure 1C,D), confirming that the reductions of 

Klotho mRNA levels in the muscle that occurred between P14 and 3 months of age (Figure 

1A) were mirrored by reductions in the proportion of Pax7+ cells that expressed detectible 

levels of Klotho protein. Because Klotho protein is expressed in Pax7+ cells and muscle 

fibers during development and klotho expression declines during postnatal muscle growth, 

we tested whether modifying klotho expression would affect muscle growth in young mice 

(Figure S1). QPCR data confirmed that the klotho transgene (KL Tg) produced elevated 

levels of klotho mRNA during skeletal muscle development and in adult skeletal muscle 

(Figure S1A). However, the expression of the transgene had only slight effects on reducing 

total body mass or the mass of individual muscles at P14 and no effect on body or muscle 

mass at P28 or 3 months old (Figure S1B–H).

Despite the small effects of KL Tg expression on muscle mass in young mice, we observed 

significant effects on muscle fiber growth. The mean cross-sectional area of quadriceps 

muscle fibers was reduced by more than 30% in KL Tg+ mice during early postnatal 

development (Figure 1E–H). However, fiber size did not differ between KL Tg+ and wild-

type mice at P28 (Figure 1I–L) and the fiber size of KL Tg+ mice exceeded wild-type fibers 

by more than 24% at 3 months of age (Figure 1M–P). These changes in fiber cross-sectional 

areas represented a ~4-fold increase in wild-type muscles and a ~10-fold increase in KL Tg+ 

fibers between P14 and 3 months of age (Figure 1G,O). Collectively, these data show that 

increased expression of klotho during early postnatal growth delays muscle development, 

but subsequently the transgene accelerates muscle growth.

We also tested whether the differences in muscle fiber cross-sectional area between 

transgenic and control mice were reflected by differences in myonuclei per fiber by assaying 

whether transgene expression affected the number of hematoxylin-stained myonuclei in anti-

dystrophin-stained sections. Our measurements show that at P14 when transgenic muscle 

fibers have smaller CSA (Figure 1G), there are fewer myonuclei per fiber (Figure 1Q–S). 

At 3 months, when transgenic muscle fibers have greater CSA (Figure 1O), there are more 

myonuclei per fiber (Figure 1S).

3.2 | Klotho increases numbers of activated satellite cells during postnatal development

Because the number of satellite cells that are present in muscle in the first weeks of postnatal 

muscle development can influence the growth of muscle fibers,9,10 we tested whether KL Tg 
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expression affected numbers of quiescent or activated satellite cells that expressed Pax7. We 

found that elevated levels of KL Tg expression increased the number of Pax7+ cells at P14 

and P28, but not at 3 months of age (Figure 2A–C). Notably, the reduction of Pax7+ cells 

in wild-type muscles that occurred between P14 and 3 months coincided with the reduction 

of klotho expression that occurred between P14 and 3 months (Figure 1A). Similarly, the 

presence of the transgene increased the number of activated myoblasts indicated by elevated 

numbers of MyoD+ cells at P14, P28, and at 3 months (Figure 2D–F). We also tested 

whether KL Tg expression affected the proportion of Pax7+ cells that are located underneath 

the basal lamina, using double-immunohistochemistry for Pax7 and laminin (Figure 2G,H,I). 

These data show that at P14 the proportion of Pax7+ cells that are beneath the basal lamina 

is reduced by the KL Tg, although transgene expression at that age increased the numbers 

of Pax7+ cells (Figure 2C), supporting our interpretation that expression of the transgene in 

young neonatal animals increases the numbers of activated, Pax7+ cells.

3.3 | Klotho reduces the expressionof the H3K27 demethylase Jmjd3 in myogenic cells in 
vitro

We tested whether the effects of Klotho on early myogenesis could result from influences 

on the expression of epigenetic regulatory factors that may contribute to silencing or 

activating myogenic genes. In particular, we assayed whether Klotho stimulation of 

myoblasts in vitro affected the expression of proteins that control the methylation of H3K27 

because H3K27 methylation is a well-established, negative regulator for the expression 

of myogenic transcription factors that include Pax7, Myod1, and Myog.28,52,53 QPCR 

analysis showed that Klotho stimulation significantly reduced the expression of Jmjd3, 

an H3K27 demethylase (Figure 3A). However, the expression of Utx (another H3K27 

demethylase), Jarid2 (which promotes the methylation of H3K27), and Ezh2 (an H3K27 

methyltransferase) were not affected at the mRNA level by Klotho stimulation (Figure 3B–

D).

3.4 | Jmjd3 promotes muscle differentiation in vitro

Our findings showing that Klotho affects muscle development and decreases Jmjd3 
expression suggested the possibility that some of Klotho’s effects on myogenesis could 

be mediated by its downregulation of Jmjd3. Several observations support that possibility. 

First, qPCR data show that Jmjd3 expression increased at the onset of muscle differentiation 

and then remained elevated for at least 7 days (Figure 4A). In addition, western blots showed 

more Jmjd3 protein in myotubes than in myoblasts (Figure 4B) and the increase in Jmjd3 

in myotubes coincided with a shift in the expression of Klotho isoforms. Western blot 

probing for full-length, transmembrane αKlotho (αKL) and truncated, soluble Klotho (sKL) 

showed sKL is the dominant form of Klotho in myoblasts and αKL is highly upregulated in 

myotubes (Figure 4B). We also observed that the downregulation of sKL and upregulation of 

Jmjd3 during myogenesis coincided with a small increase in Myod1 expression (Figure 4C) 

and a greater than 680-fold increase in Myog expression (Figure 4D), linking elevations of 

Jmjd3 levels in myogenesis with increased terminal differentiation of myogenic cells.

We then assayed whether Jmjd3 may have influenced these changes in expression 

of myogenic transcription factors by treating myoblasts with siRNA that targeted the 
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gene sequence encoding the catalytic domain of the Jmjd3 demethylase protein. Jmjd3 
downregulation in siRNA treated myoblasts was confirmed by qPCR (Figure 4E). Although 

Pax7 mRNA (Figure 4F) and Myod1 mRNA (Figure 4G) levels were unaffected by 

Jmjd3 inhibition, Myog transcripts were reduced by more than 50% (Figure 4H). We 

also assayed whether increased expression of Jmjd3 affected the expression of myogenic 

transcription factors by transfecting myoblasts with a pCS2-Jmjd3-F expression plasmid 

or a pCS2-control plasmid. Overexpression of Jmjd3 (Figure 4I) produced no change in 

the expression of Pax7 (Figure 4J) or Myod1 mRNAs (Figure 4K) but increased Myog by 

nearly twofold (Figure 4L). Similarly, transfection of myoblasts with the Jmjd3 expression 

plasmid increased Jmjd3 protein relative to total protein compared to myoblasts transfected 

with control plasmid and likewise increased myogenin protein in Jmjd3 overexpressing 

myoblasts (Figure 4M–O). Together, these observations indicate that Jmjd3 positively 

modulates myogenesis as muscle cells transition from proliferative, MyoD+ myoblasts into 

differentiated, myogenin-expressing cells.

3.5. | Klotho treatment of myoblasts promotes H3K27 methylation and reduces 
expression of Wnt-family genes

Our observations showing that Klotho is a negative regulator of Jmjd3 expression and that 

Jmjd3 is a positive regulator of Myog expression suggested that Klotho could possibly 

affect myogenesis by influencing the H3K27 methylation at myogenic regulatory genes, 

especially myogenin. We tested whether Klotho influences the methylation state of H3K27 

in myoblasts using chromatin immunoprecipitation followed by DNA sequencing (ChIP-

seq) but found no evidence of changes in H3K27 di- and tri-methylation of nucleosomes 

occupying Myog. However, a heat map showing H3K27me2/3 ChIP-seq peaks that appear 

after Klotho treatment but not in control samples (Figure 5A), demonstrated significant 

enrichment of the H3K27me2/3 signal around multiple, other loci. Prominent among those 

loci, Klotho-stimulated myoblasts had more H3K27me2/3 silencing marks at the promoter 

regions of genes classified by KEGG as part of the renin-angiotensin system, Jak-STAT 

signaling, sugar and lipid metabolism, pluripotent stem cell regulation, the Hippo signaling 

pathway, and the Wnt signaling pathway (Figure 5B). Gene Ontology (GO) analysis for 

the biological process (BP) terms of genes with increased H3K27 methylation following 

Klotho stimulation were associated with regulation of developmental processes, stem cell 

regulatory processes, ion, and metabolic homeostasis, the Ras signaling pathway, and 

the canonical Wnt signaling pathway (Figure 5C). The accumulation of H3K27me2/3 

silencing marks at the promoter regions of Wnt family genes in Klotho-treated samples 

could be developmentally important because silencing those genes could disrupt normal 

myogenesis.54–57 QPCR analysis showed significant reductions in expression of 3 Wnt 

ligands (Wnt4, Wnt9a, Wnt10a) and 2 Wnt receptors (Fzd3 and Fzd9) in cells stimulated 

with Klotho (Figure 5D–H), confirming that increased H3K27 methylation at these Wnt-

family genes is associated with their suppression in muscle cells.

3.6 | Inhibition of H3K27 demethylases reduces expression of Wnt4 and Wnt10a in 
myogenic cells

Because our data showed that Klotho reduces Jmjd3 expression and promotes the 

accumulation of H3K27 di- and tri-methylation at the promoter of Wnt family members, 
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we examined whether the reductions in Wnt transcript levels were directly related to the 

inhibition of H3K27 demethylase activity. QPCR data from myoblasts treated with GSK-J4, 

a pharmacological inhibitor targeting H3K27 demethylases, showed that expression of Wnt4 
(Figure 6A) and Wnt10a (Figure 6C) were reduced by the treatment, although Wnt9a, Fzd3, 

and Fzd9 (Figure 6B,D,E) were unaffected.

3.7 | Klotho stimulation and Jmjd3 knock-down do not have additive, inhibitory effects on 
the expression of Wnt4, Wnt9a, or Wnt10a

We next addressed whether inhibition of Jmjd3 expression and Klotho stimulation would 

produce additive, inhibitory effects on the expression of Wnt family genes or Wnt target 

genes in myoblasts, which would indicate that they inhibited expression through separate 

pathways. Our qPCR data showed that treatments with recombinant Klotho and siRNA for 

Jmjd3 each reduced Jmjd3 expression compared to controls, although siRNA for Jmjd3 was 

more effective at reducing Jmjd3 transcripts (Figure 7A). We also found that expression of 

each Wnt transcript assayed (Wnt4, Wnt9a, Wnt10a) was significantly reduced by siRNA 

for Jmjd3 but adding Klotho treatment to the inhibition with siRNA did not produce more 

inhibition than achieved with siRNA alone (Figure 7B–D). These findings indicate that 

transcriptional inhibition of these genes by blocking H3K27 demethylation through siRNA 

for Jmjd3 is not further enhanced by activating Klotho. Unlike the influence of siRNA for 

Jmjd3 on Wnt genes, no effects on the expression of the Wnt receptors Fzd3 and Fzd9 were 

observed (Figure 7E,F); however, Fzd9 expression was reduced by Klotho treatment alone 

(Figure 7F). Thus, Klotho may inhibit Fzd9 through a pathway not regulated by Jmjd3. 

We also tested whether the reductions in Wnt ligand mRNA correlated with changes in 

downstream target molecules by assaying for mRNA levels of Axin2, a negative regulator 

of the Wnt pathway58 and Ccnd1 which encodes cyclin D1, a positive regulator of cell 

cycle progression.59,60 Similar to our findings with Fzd9, expression of Axin2 and Ccnd1 
was reduced by Klotho but not by Jmjd3 siRNA (Figure 7G,H), which may indicate Klotho 

inhibition of these genes was independent of Jmjd3.

We next assayed whether reductions in Jmjd3 and Wnt gene expression that occurred in 

Klotho or Jmjd3 siRNA treated myoblasts were detectible by western blot at the protein 

level (Figure 7I). Both Klotho and Jmjd3 siRNA produced clear reductions in Jmjd3 protein 

when administered separately or combined, compared to the control group (Figure 7I). 

Although treatment effects on Wnt4 protein levels were less apparent (Figure 7I), Wnt10a 

protein was reduced by Jmjd3 siRNA treatment, by Klotho stimulation, and by the combined 

treatment groups compared to controls (Figure 7I). Wnt9a protein was undetectable in the 

control and treatment groups.

3.8 | Klotho modulates Jmjd3 and H3K27 methylation in satellite cells

We tested whether our observations that stimulation with recombinant Klotho decreased 

Jmjd3 expression and elevated H3K27 methylation in myoblasts in vitro reflected the 

actions of Klotho during muscle development in vivo. QPCR analysis on whole quadriceps 

muscles shows Jmjd3 expression is reduced at P14 and P28 but not at 3 months of age 

in KL Tg+ mice, compared to wild-type mice (Figure 8A). Furthermore, we observed that 

Jmjd3 is present in Pax7+ cells (Figure 8B) and the proportion of Pax7+ cells expressing 
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detectible Jmjd3 protein was reduced in KL Tg+ muscles at P14 (Figure 8C,D) and P28 

(Figure 8D) but not at 3 months (Figure 8D). Next, we probed for H3K27me3 in Pax7+ 

cells to determine whether the reduction in Jmjd3 reflects changes in H3K27 methylation 

and observed that H3K27me3 was located in Pax7+ and Pax7-cells in developing muscle 

tissue (Figure 8E,F). However, the proportion of Pax7+ cells that contained detectible 

H3K27me3 was greater in KL Tg+ mice compared to wild-type at P14 (Figure 8E–G) 

and P28 (Figure 8G) but not at 3 months (Figure 8G). We emphasize that the absence 

of detectible anti-H3K27me3 binding to some satellite cell nuclei does not indicate that 

those cells were devoid of H3K27 methylation; the observation shows that the quantity of 

H2K27 marks in those cells was lower than the detection limits of the technique. These 

findings indicate that Klotho activation reduces Jmjd3 levels, and consequently H3K27me3, 

in developing muscle in vivo through 28 days.

3.9 | Klotho reduces the expression of Wnt4, Wnt9a, and Wnt10a during early postnatal 
muscle growth

Because Jmjd3 expression was reduced in KL Tg+ muscle during early postnatal 

development and accompanied by elevated H3K27 methylation, we assayed for 

corresponding reductions in the expression of Wnt pathway genes that we found to 

experience increased H3K27 methylation in Klotho-stimulated myoblasts. Similar to our 

in vitro findings, we found that KL Tg expression decreased expression of Wnt4, Wnt9a, 

and Wnt10a in P14 mice (Figure 9A–C). However, only Wnt4 expression was reduced in 

KL Tg+ muscles at P28 or 3 months. We also observed that Fzd9 expression was decreased 

at P14 resembling the effect of Klotho stimulation of myoblasts in vitro, but not affected 

at other ages tested (Figure 9E). Also similar to our in vitro findings, KL Tg expression 

did not reduce expression of Fzd3 or Ccnd1 (Figure 9D,E); instead the transgene produced 

elevations in the expression of both at P28, showing that Klotho-driven reduction of Jmjd3 

is not an important regulator of the expression of either gene. Although KL Tg expression 

reduced the expression of Axin2 in muscles, the effect occurred only in 3-month-old mice 

(Figure 9F) when the transgene did not influence Jmjd3 expression (Figure 8A), which 

also suggests that the transgene does not influence Axin2 expression in muscle via Klotho 

suppression of Jmjd3 function, resembling our observation on myoblasts in vitro.

3.10 | Klotho represses Wnt-signaling in Pax7-expressing cells during postnatal 
development and early adulthood

Our results pertaining to the effects of Klotho on developmental myogenesis and the 

inhibition of the expression of Wnt ligands, Wnt receptors, and Wnt target genes suggest 

that muscle growth during development is influenced by fluctuating levels of Klotho. 

Because myogenesis is driven in part by canonical Wnt-signaling,54 we assayed for 

activation of the Wnt-signaling pathway in Pax7+ cells during development and in early 

adult-hood, using an antibody to detect activated β-catenin which medicates canonical 

Wnt-signaling.61,62 Our findings show that ~25 to 35% of Pax7+ cells expressed detectible 

levels of activated β-catenin during early postnatal development in wild-type muscle (Figure 

10A,C) but the KL Tg significantly reduced the proportion of Pax7+ cells with activated 

β-catenin to less than 20% (Figure 10B,C). However, we also observed that active β-catenin 

in wild-type, Pax7+ cells declines between P28 and 3 months, and elevated levels of 
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Klotho continue to inhibit Wnt-signaling during early adulthood (Figure 10C), indicating 

that Klotho influences Wnt-signaling in myogenic cells from early postnatal development 

until maturity.

4 | DISCUSSION

The function of klotho as an anti-aging gene has been validated in many organs and tissues 

in which its age-related loss contributes to senescence. For example, theprogressive decline 

in Klotho in aging skeletal muscle diminishes mitochondrial function in myogenic cells 

and reduces the regenerative capacity of muscle.63 In addition, the accelerated, epigenetic 

silencing of klotho expression in dystrophic muscle contributes to losses of muscle function, 

reductions in satellite cell numbers, and increases in muscle fibrosis, all of which are 

characteristics of aging muscle.12 Because of those associations between reductions of 

klotho expression in aging and diseased muscle and physiological changes associated 

with aging, we were surprised to learn that the period of most rapid reduction of klotho 
expression occurs in the first few weeks of postnatal muscle development,12 suggesting that 

Klotho may play a significant, regulatory role in development, as well as aging. The findings 

of our investigation show that increases in klotho expression during postnatal muscle growth 

cause transient increases in satellite cell numbers and affect the rate of muscle fiber growth 

in young mice. Furthermore, our results identify a novel pathway through which Klotho can 

influence myogenesis by reducing expression of the histone demethylase Jmjd3 in muscle, 

leading to reductions in the expression of Wnt family genes and inhibition of canonical Wnt 

signaling in satellite cells.

The transient increase in Pax7+ cells in the postnatal muscle that was caused by expression 

of the KL Tg indicates that Klotho stimulates the expansion of populations of activated 

myogenic cells, but does not influence satellite cell activation. Furthermore, those increases 

in numbers of myogenic cells are attributable to increased proliferation because Klotho 

stimulation of activated myogenic cells increases the proportion that contains nuclear Ki67, 

a marker of cell proliferation, without affecting apoptosis or necrosis.12 At P14, when over 

80% of satellite cells are activated,4,5 we found that elevated Klotho production caused the 

greatest expansion of Pax7+ cell numbers. However, our data show that the transgene had no 

effect on numbers of Pax7+ cells at 3 months of age when fewer than 1% of satellite cells 

are in the cell cycle.7 The amplification of satellite cell numbers during the first 3 weeks 

of postnatal development can have long-term consequences on muscle growth because the 

majority of those cells fuse with existing fibers to become myonuclei and the adult number 

of myonuclei is established by P21.9 Although the Klotho-mediated amplification of Pax7+ 

cell proliferation in early postnatal development was short-lived, we found that muscle fibers 

in Klotho transgenic mice were over 24% larger in diameter than fibers in wild-type muscles 

at 3 months of age, which corresponds to ~24 years of age for humans. This long-term 

increase in muscle fiber size that extends into adulthood is converse to the consequence 

of ablating satellite cells from early postnatal muscle. Experimental depletion of ~70% 

of satellite cells from P28 mouse muscles significantly reduced the subsequent growth 

of muscle fibers.10 These observations indicate that the developmental significance of the 

relatively high levels of Klotho expression that occur in muscles of early postnatal mice is 

to amplify the numbers of activated myogenic cells, which then increase muscle growth at 
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subsequent stages of development. They also show that the transient delivery of exogenous 

factors to growing muscles during early postnatal growth could lead to larger muscle fibers 

in adulthood.

Because of the well-established importance of epigenetic regulatory factors for controlling 

the proliferation and differentiation of myogenic cells, we assayed whether the influence 

of Klotho on myogenesis could be mediated by changes in the expression of enzymes that 

are involved in epigenetic modification of myogenic genes. Although Klotho did not affect 

the expression of some of the best-characterized epigenetic regulatory factors involved in 

myogenesis, we observed a strong downregulation of Jmjd3 in myoblasts stimulated with 

Klotho in vitro and in muscles expressing the KL Tg in vivo. Jmjd3 plays a significant 

role in removing silencing histone marks from genes that regulate development from the 

earliest stages of embryogenesis through to differentiation of specific cell lineages in adult 

organisms. In the early mesodermal lineage, from which skeletal muscle eventually arises, 

Jmjd3 influences mesoderm differentiation, and Jmjd3 mutation in embryonic stem cells 

increase H3K27 methylation at the promoter of the mesodermal regulator, Brachyury, 

leading to reductions in Wnt-induced mesodermal differentiation.64 Although a role for 

Jmjd3 in affecting myogenesis has not been identified in previous investigations, the forced 

expression of ectopic Jmjd3 in human pluripotent stem cells can induce their expression 

of muscle-specific genes, including Pax7.30 That observation suggested the possibility that 

Jmjd3 may also regulate the development of committed myogenic cells, which our data 

now verify. Notably, the downregulation of Jmjd3 expression and the reduced proportion 

of Pax7+ cells that expressed detectible Jmjd3 in Klotho transgenic muscles occurred 

in young muscles, but not in adult muscles. This indicates that the regulatory roles 

of Klotho modulation of Jmjd3 may be complementary to the role of another H3K27 

demethylase, UTX, in adult myogenesis. Although no defects in developmental myogenesis 

were observed in mice in which Utx was ablated in satellite cells, myogenesis in adult 

muscle following acute injury was impaired in the mutants, leading to slower muscle growth 

and regeneration following injury.29

Our findings that Klotho reduced the expression of Wnt genes in muscle in vivo and in 

vitro and that the inhibitory effects on Wnt4, Wnt9a, Wnt10a, and Fzd9 expression generally 

declined as postnatal development proceeded, indicates that the effects of Klotho on early 

postnatal myogenesis occur, in part, through inhibition of Wnt signaling. The reduced 

expression of Wnt genes specifically in early postnatal development is important because 

signaling initiated by Wnt binding to receptors in the Fzd family has powerful influences 

on myogenesis. For example, signaling through the canonical, β-catenin-dependent Wnt 

pathway is required for satellite cell differentiation54 and pharmacological activation of the 

canonical pathway enhances muscle differentiation.54,65–67 Wnt4, Wnt9a, and Wnt10a can 

increase β-catenin activity leading to activation of the canonical pathway.68–73 Similarly, 

Wnt ligation of Fzd9 can increase activation of the canonical pathway.74–76 Numerous 

observations support the conclusion that Wnt4, Wnt9a, and Wnt10a can promote muscle 

differentiation. The expression of each is elevated at the onset of muscle differentiation, 

coinciding with increases in β-catenin activation56,57 and overexpression of Wnt4 in 

differentiating muscles increased expression of target genes in the canonical pathway.57 

In addition, overexpression of either Wnt4 or Wnt9a increased muscle differentiation in 
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vitro.56,57 Although inhibition of Wnt signaling by Klotho could also potentially occur 

through Jmjd3-independent mechanisms that have not been identified, our findings show 

that the primary pathway activated by Klotho for inhibition of at least some Wnt family 

members involves Jmjd3. We found that the magnitude of inhibition of expression of Wnt4, 

Wnt9a, and Wnt10a in Klotho-treated cells was not further increased by Jmjd3 siRNA 

treatments, indicating that reductions in the expression of those Wnt family members by 

Klotho and Jmjd3 siRNA occurred predominantly through a common pathway.

The negative regulation of the expression of Wnt family members by Klotho introduces 

a novel, epigenetic mechanism through which Klotho can influence Wnt function and 

myogenesis. Previous investigators have shown that Klotho can bind to Wnt1, Wnt3a, Wnt4, 

Wnt5a, and Wnt7a77,78 and have shown that the binding can inhibit the activity of at least 

Wnt3a in a cell-free system.77 Furthermore, Klotho treatment of isolated muscle fibers in 

vitro diminished Wnt signaling, which was attributed to Klotho binding to extracellular 

Wnt.22 However, our findings show that Klotho can influence Wnt function and myogenesis 

through an epigenetic pathway. There are important, physiological differences between 

Wnt inhibition by binding soluble Klotho in the extracellular space versus the novel 

mechanism we propose. First, Wnt inhibition achieved by maintaining gene silencing of 

Wnt family members would provide a mechanism for long-term inhibition that does not 

require continuous secretion of Klotho. In addition, the mechanism that we propose would 

suppress the expression of specific Wnt receptors only in cells that express Klotho receptors. 

This would provide more specific targeting of the inhibitory influence than achieved by 

Klotho acting only as an extracellular Wnt antagonist.

Although our findings show that Klotho decreases the expression of Wnt family members 

in myogenic cells, which is associated with increases in myogenic cell proliferation and 

reductions in their differentiation, there may be other less direct pathways through which 

increases in Klotho influence Wnt-mediated regulation of myogenesis that we have not 

identified in this investigation. For example, because Wnt4 is a secreted ligand that can 

act through autocrine or paracrine pathways, there may be non-muscle cell types in 

vivo in which Wnt4 expression is reduced by Klotho, leading to less activation of the 

canonical Wnt pathway in muscle cells through a paracrine effect. Nevertheless, as shown 

by previous investigators,56 knock-down of Wnt4 expression in myoblasts is sufficient 

to significantly reduce their differentiation, expression of myogenin, and their subsequent 

growth as myotubes, following fusion. Thus, the reduction of Wnt expression in myogenic 

cells that are stimulated with Klotho or in which Jmjd3 expression is reduced is sufficient to 

explain the reductions in myogenin expression, muscle differentiation, and fiber growth that 

we report in our investigation.

The most parsimonious interpretation of our findings in light of current knowledge of 

the role of Wnt signaling in muscle differentiation is that Klotho acts on myogenic cells 

after their activation, leading to inhibition of Wnt expression and diminished signaling 

through the canonical Wnt pathway. That disruption in Wnt signaling slows myogenic 

cell differentiation which produces a transient amplification of myogenic cell numbers. 

In addition to expanding numbers of myogenic cells by delaying their differentiation, the 

pro-mitotic influence of Klotho on activated myogenic cells would further increase their 
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numbers.12 In natural, postnatal myogenesis this regulatory influence of Klotho would 

be limited, in part, by the decline in Klotho production in young mice as development 

proceeds. However, as our findings show when reductions in klotho expression in muscle are 

prevented by the expression of a KL Tg, the influences of Klotho on the numbers of Pax7+ 

cells and the level of expression of Jmjd3 and specific members of the Wnt family still occur 

only in early postnatal myogenesis. That observation shows that additional, unidentified 

mechanisms are in place that limits the influences of Klotho in early postnatal muscle 

development, in addition to changes in klotho expression. Those mechanisms are subject to 

continuing studies.
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Abbreviations:

AEC 3-amino-9-ethylcarbazole

BAM binary sequence alignment/map

BP biological processes

ChIP chromatin immunoprecipitation

ChIP-Seq chromatin immunoprecipitation with sequencing

DAVID database for annotation, visualization, and integrated 

discovery

EFmKL46 human elongation factor-1alpha promoter

Ezh2 enhancer of zeste 2 polycomb repressive complex 2 subunit

GO gene ontology
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H3K27 histone 3 lysine 27

H3K27me2/3 di-methylated or tri-methylated histone 3 lysine 27

H3K27me3 tri-methylated histone 3 lysine 27

Jarid2 Jumonji, AT-rich interactive domain 2

Jmjd3 Jumonji domain-containing 3, histone lysine demethylase

KEGG Kyoto encyclopedia of genes and genomes

KL Klotho

KL Tg/KL Tg+ Klotho transgene

Macs model-based analysis of ChIP-Seq

Myod1 myogenic differentiation 1

Myog myogenin

Pax7 paired-box protein 7

PRC2 polycomb repressive complex 2

SAM sequence alignment/map

sKL soluble KL

TSS transcriptional start site

UTX ubiquitously-transcribed X chromosome tetratricopeptide, 

histone lysine demethylase

Wnt wingless-type MMTV integration site family, member

αKL alpha Klotho

REFERENCES

1. Dumont NA, Wang YX, Rudnicki MA. Intrinsic and extrinsic mechanisms regulating satellite cell 
function. Development 2015;142(9):1572–1581. doi:10.1242/dev.114223 [PubMed: 25922523] 

2. Dhawan J, Rando TA. Stem cells in postnatal myogenesis: molecular mechanisms of satellite 
cell quiescence, activation and replenishment. Trends Cell Biol 2005;15(12):666–673. doi:10.1016/
j.tcb.2005.10.007 [PubMed: 16243526] 

3. Cornelison D “Known unknowns”: current questions in muscle satellite cell biology. Curr Top Dev 
Biol 2018;126:205–233. doi:10.1016/bs.ctdb.2017.08.006 [PubMed: 29304999] 

4. Schultz E Satellite cell proliferative compartments in growing skeletal muscles. Dev Biol 
1996;175(1):84–94. doi:10.1006/dbio.1996.0097 [PubMed: 8608871] 

5. Shinin V, Gayraud-Morel B, Gomès D, Tajbakhsh S. Asymmetric division and cosegregation of 
template DNA strands in adult muscle satellite cells. Nat Cell Biol 2006;8(7):677–687. doi:10.1038/
ncb1425 [PubMed: 16799552] 

6. Moss FP, Leblond CP. Satellite cells as the source of nuclei in muscles of growing rats. Anat Rec 
1971;170(4):421–435. doi:10.1002/ar.1091700405 [PubMed: 5118594] 

McKee et al. Page 19

FASEB J. Author manuscript; available in PMC 2022 April 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



7. Ontell M, Feng KC, Klueber K, Dunn RF, Taylor F. Myosatellite cells, growth, and regeneration 
in murine dystrophic muscle: a quantitative study. Anat Rec 1984;208(2):159–174. doi:10.1002/
ar.1092080203 [PubMed: 6703334] 

8. Gattazzo F, Laurent B, Relaix F, Rouard H, Didier N. Distinct phases of postnatal skeletal muscle 
growth govern the progressive establishment of muscle stem cell quiescence. Stem Cell Rep 
2020;15(3):597–611. doi:10.1016/j.stemcr.2020.07.011

9. White RB, Biérinx AS, Gnocchi VF, Zammit PS. Dynamics of muscle fibre growth during postnatal 
mouse development. BMC Dev Biol 2010;10:21. doi:10.1186/1471-213X-10-21 [PubMed: 
20175910] 

10. Bachman JF, Klose A, Liu W, et al. Prepubertal skeletal muscle growth requires Pax7-
expressing satellite cell-derived myonuclear contribution. Development 2018;145(20):dev167197. 
doi: 10.1242/dev.167197 [PubMed: 30305290] 

11. Kurosaka M, Naito H, Ogura Y, Kojima A, Goto K, Katamoto S. Effects of voluntary wheel 
running on satellite cells in the rat plantaris muscle. J Sports Sci Med 2009;8(1):51–57. [PubMed: 
24150556] 

12. Wehling-Henricks M, Li Z, Lindsay C, et al. Klotho gene silencing promotes pathology in the mdx 
mouse model of Duchenne muscular dystrophy. Hum Mol Genet 2016;25(12): 2465–2482. doi: 
10.1093/hmg/ddw111 [PubMed: 27154199] 

13. Bachman JF, Blanc RS, Paris ND, et al. Radiation-induced damage to prepubertal Pax7+ 
skeletal muscle stem cells drives lifelong deficits in myofiber size and nuclear number. iScience 
2020;23(11):101760. doi:10.1016/j.isci.2020.101760 [PubMed: 33241204] 

14. Bachman JF, Chakkalakal JV. Insights into muscle stem cell dynamics during postnatal 
development. FEBS J 2021. doi:10.1111/febs.15856

15. Fry CS, Lee JD, Mula J, et al. Inducible depletion of satellite cells in adult, sedentary mice 
impairs muscle regenerative capacity without affecting sarcopenia. Nat Med 2015;21(1):76–80. 
doi:10.1038/nm.3710 [PubMed: 25501907] 

16. Tapscott SJ, Davis RL, Thayer MJ, Cheng PF, Weintraub H, Lassar AB. MyoD1: a nuclear 
phosphoprotein requiring a Myc homology region to convert fibroblasts to myoblasts. Science 
1988;242(4877):405–411. doi:10.1126/science.3175662 [PubMed: 3175662] 

17. Rudnicki MA, Schnegelsberg PN, Stead RH, Braun T, Arnold HH, Jaenisch R. MyoD 
or Myf-5 is required for the formation of skeletal muscle. Cell 1993;75(7):1351–1359. 
doi:10.1016/0092-8674(93)90621-v [PubMed: 8269513] 

18. Yablonka-Reuveni Z, Rudnicki MA, Rivera AJ, Primig M, Anderson JE, Natanson P. The 
transition from proliferation to differentiation is delayed in satellite cells from mice lacking MyoD. 
Dev Biol 1999;210(2):440–455. doi:10.1006/dbio.1999.9284 [PubMed: 10357902] 

19. Kuang S, Gillespie MA, Rudnicki MA. Niche regulation of muscle satellite cell self-renewal 
and differentiation. Cell Stem Cell 2008;2(1):22–31. doi:10.1016/j.stem.2007.12.012 [PubMed: 
18371418] 

20. Rawls A, Valdez MR, Zhang W, Richardson J, Klein WH, Olson EN. Overlapping functions 
of the myogenic bHLH genes MRF4 and MyoD revealed in double mutant mice. Development 
1998;125(13):2349–2358. doi:10.1242/dev.125.13.2349 [PubMed: 9609818] 

21. Vivian JL, Olson EN, Klein WH. Thoracic skeletal defects in myogenin- and MRF4-deficient mice 
correlate with early defects in myotome and intercostal musculature. Dev Biol 2000;224(1):29–41. 
doi:10.1006/dbio.2000.9788 [PubMed: 10898959] 

22. Ahrens HE, Huettemeister J, Schmidt M, Kaether C, von Maltzahn J. Klotho expression is a 
prerequisite for proper muscle stem cell function and regeneration of skeletal muscle. Skelet 
Muscle 2018;8(1):20. doi:10.1186/s13395-018-0166-x [PubMed: 29973273] 

23. Caretti G, Di Padova M, Micales B, Lyons GE, Sartorelli V. The Polycomb Ezh2 
methyltransferase regulates muscle gene expression and skeletal muscle differentiation. Genes 
Dev 2004;18(21):2627–2638. doi:10.1101/gad.1241904 [PubMed: 15520282] 

24. Juan AH, Derfoul A, Feng X, et al. Polycomb EZH2 controls self-renewal and safeguards 
the transcriptional identity of skeletal muscle stem cells. Genes Dev 2011;25(8):789–794. 
doi:10.1101/gad.2027911 [PubMed: 21498568] 

McKee et al. Page 20

FASEB J. Author manuscript; available in PMC 2022 April 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



25. Adhikari A, Davie J. JARID2 and the PRC2 complex regulate skeletal muscle differentiation 
through regulation of canonical Wnt signaling. Epigenetics Chromatin 2018;11(1):46. 
doi:10.1186/s13072-018-0217-x [PubMed: 30119689] 

26. Hong S, Cho YW, Yu LR, Yu H, Veenstra TD, Ge K. Identification of JmjC domain-
containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc Natl Acad Sci U S A 
2007;104(47):18439–18444. doi:10.1073/pnas.0707292104 [PubMed: 18003914] 

27. Agger K, Cloos PAC, Christensen J, et al. UTX and JMJD3 are histone H3K27 demethylases 
involved in HOX gene regulation and development. Nature 2007;449(7163):731–734. doi:10.1038/
nature06145 [PubMed: 17713478] 

28. Seenundun S, Rampalli S, Liu Q-C, et al. UTX mediates demethylation of H3K27me3 at muscle-
specific genes during myogenesis. EMBO J 2010;29(8):1401–1411. doi:10.1038/emboj.2010.37 
[PubMed: 20300060] 

29. Faralli H, Wang C, Nakka K, et al. UTX demethylase activity is required for satellite cell-mediated 
muscle regeneration. J Clin Invest 2016;126(4):1555–1565. doi:10.1172/JCI83239 [PubMed: 
26999603] 

30. Akiyama T, Wakabayashi S, Soma A, et al. Transient ectopic expression of the histone 
demethylase JMJD3 accelerates the differentiation of human pluripotent stem cells. Development 
2016;143(20):3674–3685. doi:10.1242/dev.139360 [PubMed: 27802135] 

31. Akiyama T, Wakabayashi S, Soma A, et al. Epigenetic manipulation facilitates the generation 
of skeletal muscle cells from pluripotent stem cells. Stem Cells Int 2017;2017:7215010. 
doi:10.1155/2017/7215010 [PubMed: 28491098] 

32. Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for biological-image 
analysis. Nat Methods 2012;9(7):676–682. doi:10.1038/nmeth.2019 [PubMed: 22743772] 

33. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat 
Methods 2012;9(7):671–675. doi:10.1038/nmeth.2089 [PubMed: 22930834] 

34. White JP, Baltgalvis KA, Sato S, Wilson LB, Carson JA. Effect of nandrolone decanoate 
administration on recovery from bupivacaine-induced muscle injury. J Appl Physiol 
2009;107(5):1420–1430. doi:10.1152/japplphysiol.00668.2009 [PubMed: 19745189] 

35. Welc SS, Wehling-Henricks M, Kuro-O M, Thomas KA, Tidball JG. Modulation of Klotho 
expression in injured muscle perturbs Wnt signalling and influences the rate of muscle growth. 
Exp Physiol 2020;105(1):132–147. doi:10.1113/EP088142 [PubMed: 31724771] 

36. Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative 
RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 
2002;3(7):RESEARCH0034. doi:10.1186/gb-2002-3-7-research0034

37. Thomas KC, Zheng XF, Garces Suarez F, et al. Evidence based selection of commonly used 
RT-qPCR reference genes for the analysis of mouse skeletal muscle. PLoS One 2014;9(2):e88653. 
doi:10.1371/journal.pone.0088653 [PubMed: 24523926] 

38. Hildyard JCW, Finch AM, Wells DJ. Identification of qPCR reference genes suitable for 
normalizing gene expression in the mdx mouse model of Duchenne muscular dystrophy. PLoS 
One 2019;14(1):e0211384. doi:10.1371/journal.pone.0211384 [PubMed: 30699165] 

39. Villalta SA, Rinaldi C, Deng B, Liu G, Fedor B, Tidball JG. Interleukin-10 reduces the pathology 
of mdx muscular dystrophy by deactivating M1 macrophages and modulating macrophage 
phenotype. Hum Mol Genet 2011;20(4):790–805. doi:10.1093/hmg/ddq523 [PubMed: 21118895] 

40. Kruidenier L, Chung C-W, Cheng Z, et al. A selective jumonji H3K27 demethylase 
inhibitor modulates the proinflammatory macrophage response. Nature 2012;488(7411):404–408. 
doi:10.1038/nature11262 [PubMed: 22842901] 

41. Heinemann BO, Nielsen JM, Hudlebusch HR, et al. Inhibition of demethylases by GSK-J1/J4. 
Nature 2014;514(7520):E1–E2. doi:10.1038/nature13688 [PubMed: 25279926] 

42. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 
2012;9(4):357–359. doi:10.1038/nmeth.1923 [PubMed: 22388286] 

43. Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools. 
Bioinformatics 2009;25(16):2078–2079. doi:10.1093/bioinformatics/btp352 [PubMed: 19505943] 

44. Zhang Y, Liu T, Meyer CA, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol 
2008;9(9):R137. doi:10.1186/gb-2008-9-9-r137 [PubMed: 18798982] 

McKee et al. Page 21

FASEB J. Author manuscript; available in PMC 2022 April 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



45. Ramírez F, Ryan DP, Grüning B, et al. deepTools2: a next generation web server for deep-
sequencing data analysis. Nucleic Acids Res 2016;44(W1):W160–W165. doi:10.1093/nar/gkw257 
[PubMed: 27079975] 

46. Gentleman RC, Carey VJ, Bates DM, et al. Bioconductor: open software development 
for computational biology and bioinformatics. Genome Biol 2004;5(10):R80. doi:10.1186/
gb-2004-5-10-r80 [PubMed: 15461798] 

47. Huber W, Carey VJ, Gentleman R, et al. Orchestrating high-throughput genomic analysis with 
Bioconductor. Nat Methods 2015;12(2):115–121. doi:10.1038/nmeth.3252 [PubMed: 25633503] 

48. Team BC, Maintainer BP, TxDb.Mmusculus.UCSC.mm10.ens-Gene: Annotation Package for 
TxDb Object(s). R Package Version 3.4.0 2016.

49. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource 
for gene and protein annotation. Nucleic Acids Res 2016;44(D1):D457–D462. doi:10.1093/nar/
gkv1070 [PubMed: 26476454] 

50. Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the 
comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009;37(1):1–13. 
doi:10.1093/nar/gkn923 [PubMed: 19033363] 

51. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists 
using DAVID bioinformatics resources. Nat Protoc 2009;4(1):44–57. doi:10.1038/nprot.2008.211 
[PubMed: 19131956] 

52. Palacios D, Mozzetta C, Consalvi S, et al. TNF/p38α/polycomb signaling to Pax7 locus in 
satellite cells links inflammation to the epigenetic control of muscle regeneration. Cell Stem Cell 
2010;7(4):455–469. doi:10.1016/j.stem.2010.08.013 [PubMed: 20887952] 

53. Dilworth FJ, Blais A. Epigenetic regulation of satellite cell activation during muscle regeneration. 
Stem Cell Res Ther 2011;2(2):18. doi:10.1186/scrt59 [PubMed: 21542881] 

54. Brack AS, Conboy IM, Conboy MJ, Shen J, Rando TA. A temporal switch from notch to 
Wnt signaling in muscle stem cells is necessary for normal adult myogenesis. Cell Stem Cell 
2008;2(1):50–59. doi:10.1016/j.stem.2007.10.006 [PubMed: 18371421] 

55. Le Grand F, Jones AE, Seale V, Scimè A, Rudnicki MA. Wnt7a activates the planar cell polarity 
pathway to drive the symmetric expansion of satellite stem cells. Cell Stem Cell 2009;4(6):535–
547. doi:10.1016/j.stem.2009.03.013 [PubMed: 19497282] 

56. Bernardi H, Gay S, Fedon Y, Vernus B, Bonnieu A, Bacou F. Wnt4 activates the canonical 
β-catenin pathway and regulates negatively myostatin: functional implication in myogenesis. 
Am J Physiol Cell Physiol 2011;300(5):C1122–C1138. doi:10.1152/ajpcell.00214.2010 [PubMed: 
21248078] 

57. Tanaka S, Terada K, Nohno T. Canonical Wnt signaling is involved in switching from cell 
proliferation to myogenic differentiation of mouse myoblast cells. J Mol Signal 2011;6:12. 
doi:10.1186/1750-2187-6-12 [PubMed: 21970630] 

58. Lustig B, Jerchow B, Sachs M, et al. Negative feedback loop of Wnt signaling through 
upregulation of conductin/axin2 in colorectal and liver tumors. Mol Cell Biol 2002;22(4):1184–
1193. doi:10.1128/mcb.22.4.1184-1193.2002 [PubMed: 11809809] 

59. Baldin V, Lukas J, Marcote MJ, Pagano M, Draetta G. Cyclin D1 is a nuclear protein required for 
cell cycle progression in G1. Genes Dev 1993;7(5):812–821. doi:10.1101/gad.7.5.812 [PubMed: 
8491378] 

60. Sherr CJ. The Pezcoller lecture: cancer cell cycles revisited. Cancer Res 2000;60(14):3689–3695. 
[PubMed: 10919634] 

61. Cadigan KM, Nusse R. Wnt signaling: a common theme in animal development. Genes Dev 
1997;11(24):3286–3305. doi:10.1101/gad.11.24.3286 [PubMed: 9407023] 

62. Phosphorylation Sakanaka C. and regulation of beta-catenin by casein kinase I epsilon. J Biochem 
2002;132(5):697–703. doi:10.1093/oxfordjournals.jbchem.a003276 [PubMed: 12417018] 

63. Sahu A, Mamiya H, Shinde SN, et al. Age-related declines in α-Klotho drive progenitor cell 
mitochondrial dysfunction and impaired muscle regeneration. Nat Commun 2018;9(1):4859. 
doi:10.1038/s41467-018-07253-3 [PubMed: 30451844] 

McKee et al. Page 22

FASEB J. Author manuscript; available in PMC 2022 April 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



64. Ohtani K, Zhao C, Dobreva G, et al. Jmjd3 controls mesodermal and cardiovascular differentiation 
of embryonic stem cells. Circ Res 2013;113(7):856–862. doi:10.1161/CIRCRESAHA.113.302035 
[PubMed: 23856522] 

65. Polesskaya A, Seale P, Rudnicki MA. Wnt signaling induces the myogenic specification of resident 
CD45+ adult stem cells during muscle regeneration. Cell 2003;113(7):841–852. doi:10.1016/
s0092-8674(03)00437-9 [PubMed: 12837243] 

66. Rochat A, Fernandez A, Vandromme M, et al. Insulin and wnt1 pathways cooperate to 
induce reserve cell activation in differentiation and myotube hypertrophy. Mol Biol Cell 
2004;15(10):4544–4555. doi:10.1091/mbc.e03-11-0816 [PubMed: 15282335] 

67. van der Velden JLJ, Schols AMWJ, Willems J, Kelders MCJM, Langen RCJ. Glycogen synthase 
kinase 3 suppresses myogenic differentiation through negative regulation of NFATc3. J Biol Chem 
2008;283(1):358–366. doi:10.1074/jbc.M707812200 [PubMed: 17977834] 

68. Narita T, Sasaoka S, Udagawa K, et al. Wnt10a is involved in AER formation during chick limb 
development. Dev Dyn 2005;233(2):282–287. doi:10.1002/dvdy.20321 [PubMed: 15789446] 

69. Carron C, Pascal A, Djiane A, Boucaut JC, Shi DL, Umbhauer M. Frizzled receptor dimerization 
is sufficient to activate the Wnt/beta-catenin pathway. J Cell Sci 2003;116(Pt 12):2541–2550. 
doi:10.1242/jcs.00451 [PubMed: 12734397] 

70. Später D, Hill TP, O’sullivan RJ, Gruber M, Conner DA, Hartmann C. Wnt9a signaling is required 
for joint integrity and regulation of Ihh during chondrogenesis. Development 2006;133(15):3039–
3049. doi:10.1242/dev.02471 [PubMed: 16818445] 

71. Cawthorn WP, Bree AJ, Yao Y, et al. Wnt6, Wnt10a and Wnt10b inhibit adipogenesis and 
stimulate osteoblastogenesis through a β-catenin-dependent mechanism. Bone 2012;50(2):477–
489. doi:10.1016/j.bone.2011.08.010 [PubMed: 21872687] 

72. Ring L, Neth P, Weber C, Steffens S, Faussner A. β-Catenin-dependent pathway activation by 
both promiscuous “canonical” WNT3a-, and specific “noncanonical” WNT4- and WNT5a-FZD 
receptor combinations with strong differences in LRP5 and LRP6 dependency. Cell Signal 
2014;26(2):260–267. doi:10.1016/j.cellsig.2013.11.021 [PubMed: 24269653] 

73. Zhang B, Wu X, Zhang XU, et al. Human umbilical cord mesenchymal stem cell 
exosomes enhance angiogenesis through the Wnt4/β-catenin pathway. Stem Cells Transl Med 
2015;4(5):513–522. doi:10.5966/sctm.2014-0267 [PubMed: 25824139] 

74. Umbhauer M, Djiane A, Goisset C, et al. The C-terminal cytoplasmic Lys-thr-X-X-X-Trp motif 
in frizzled receptors mediates Wnt/beta-catenin signalling. EMBO J 2000;19(18):4944–4954. 
doi:10.1093/emboj/19.18.4944 [PubMed: 10990458] 

75. Karasawa T, Yokokura H, Kitajewski J, Lombroso PJ. Frizzled-9 is activated by Wnt-2 and 
functions in Wnt/beta -catenin signaling. J Biol Chem 2002;277(40):37479–37486. doi:10.1074/
jbc.M205658200 [PubMed: 12138115] 

76. Winn RA, Marek L, Han S-Y, et al. Restoration of Wnt-7a expression reverses non-small cell lung 
cancer cellular transformation through frizzled-9-mediated growth inhibition and promotion of cell 
differentiation. J Biol Chem 2005;280(20):19625–19634. doi:10.1074/jbc.M409392200 [PubMed: 
15705594] 

77. Liu H, Fergusson MM, Castilho RM, et al. Augmented Wnt signaling in a mammalian model 
of accelerated aging. Science 2007;317(5839):803–806. doi:10.1126/science.1143578 [PubMed: 
17690294] 

78. Zhou L, Li Y, Zhou D, Tan RJ, Liu Y. Loss of Klotho contributes to kidney injury by 
derepression of Wnt/β-catenin signaling. J Am Soc Nephrol 2013;24(5):771–785. doi:10.1681/
ASN.2012080865 [PubMed: 23559584] 

McKee et al. Page 23

FASEB J. Author manuscript; available in PMC 2022 April 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 1. 
Expression of a KL Tg affects muscle development. (A) QPCR data showing relative mRNA 

expression of klotho in quadriceps muscle lysates of P14, P28, and 3 months Wt mice. 

N = 5 per time point. *Indicates significantly different from P14 at p < .05 analyzed by 

one-way ANOVA followed by Dunnett’s multiple comparisons test. Error bar represents 

SEM. (B, C) Sections of P14 and months Wt quadriceps muscles labeled with anti-Pax7 

(red), anti-Klotho (green), and DNA labeled with DAPI (blue). *Indicates Pax7+ cells that 

are also Klotho+. Open arrowhead (>) indicates Pax7+ single-labeled cells. Bars = 10 μm. 

(D) Ratio of Klotho+/Pax7+ cells to total Pax7+ cells in sections of quadriceps muscles. 

(E,F) Representative images of Wt (E) and KL Tg+ (F) quadriceps muscle at P14 stained 

with hematoxylin. Bar = 50 μm. (G) Mean cross-sectional area for quadriceps muscle fibers 

from P14 Wt and KL Tg+ mice. (H) Frequency distribution of fiber cross-sectional areas for 

quadriceps muscles at P14 from Wt and KL Tg+ mice. N = 5. (I, J) Representative images 

of Wt (I) and KL Tg+ (J) quadriceps muscle at P28 stained with hematoxylin. Bar = 50 
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μm. (K) Mean cross-sectional area for quadriceps muscle fibers from P28 Wt and KL Tg+ 

mice. (L) Frequency distribution of fiber cross-sectional areas for quadriceps muscles at P28 

from Wt and KL Tg+ mice. (M, N) Representative images of Wt (M) and KL Tg+ (N) 

quadriceps at 3 months stained with hematoxylin. Bar = 50 μm. (O) Mean cross-sectional 

area for quadriceps muscle from 3 months Wt and KL Tg+ mice. (P) Frequency distribution 

of fiber cross-sectional areas for quadriceps muscles at 3 months from Wt and KL Tg+ 

mice. For G, K, and O, * indicates significantly different from the mean cross-sectional 

area of age-matched Wt fibers at p < .05 analyzed by t-test. Error bar represents SEM. N 
= 5. For H, L, and P, * indicates significantly different from age-matched Wt fibers of the 

same sized group at p < .05 analyzed by t-test. Error bar represents SEM. N = 5. (Q, R) 

Representative images of Wt (Q) KL Tg+ (R) quadriceps at P14 stained with anti-dystrophin 

and hematoxylin. Open arrowhead (>) indicates myonuclei. Bar = 50 μm. (S) Numbers 

of myonuclei per fiber in quadriceps from Wt and KL Tg+ mice at P14 and 3 months. 

*Indicates significantly different from age-matched Wt fibers at p < .05 analyzed by t-test. 

Error bar represents SEM. N = 5
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FIGURE 2. 
KL Tg expression increases numbers of satellite cells and activated myoblasts during early 

postnatal development (A, B) Representative images of Wt (A) and KL Tg+ (B) quadriceps 

muscle at P14 immunolabeled for Pax7 (reddish-brown nuclei). (C) Numbers of Pax7+ cells 

per 100 fibers in quadriceps from Wt and KL Tg+ at P14, P28, and 3 months mice. (D, E) 

Representative images of Wt (D) and KL Tg+ (E) quadriceps muscle at P14 immunolabeled 

for MyoD (reddish-brown nuclei). (F) Numbers of MyoD+ cells per 100 fibers in quadriceps 

from Wt and KL Tg+ at P14, P28, and 3 months mice. For A, B, D, and E, open arrowheads 

(>) indicate Pax7+ (A, B) or MyoD+ (D, E) labeled cells. Bar = 50 μm. For C and F, 

*indicates significantly different from age-matched Wt control at p < .05 analyzed by t-test. 
#Indicates significantly different from P14 Wt at p < .05 analyzed by one-way ANOVA with 

Tukey’s multiple comparisons test. ϕIndicates significantly different from P14 KL Tg+ at 

p < .05 analyzed by one-way ANOVA with Tukey’s multiple comparisons test. Error bar 

represents SEM. N = 4 or 5. (G, H) Representative images of Wt (G) and KL Tg+ (H) 

quadriceps muscle at P14 immunolabeled for Pax7 (red), laminin (green), and DNA labeled 

with DAPI (blue). *Indicates Pax7+ cells under the basal lamina. Open arrowheads (>) 

indicate Pax7+ cells outside of laminin. Bars = 10 μm. (I) Ratio of Pax7+ cells under the 

basal lamina to total Pax7+ cells in sections of quadriceps muscles from P14 and P28 Wt 

and KL Tg+ mice. *Indicates significantly different from age-matched Wt control at p < .05 

analyzed by t-test. Error bar represents SEM. N = 4 or 5
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FIGURE 3. 
Klotho reduces Jmjd3 expression in myogenic cells in vitro. QPCR data showing relative 

expression of Jmjd3 (A), Utx (B), Ezh2 (C), and Jarid2 (D) in cultured myoblasts treated 

with recombinant Klotho for 48-h. *Indicates significantly different from vehicle-treated 

cells at p < .05 analyzed by t-test. Error bar represents SEM. N = 4 or 5 for each data set
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FIGURE 4. 
Klotho treatment of myoblasts increases H3K27 methylation and reduces expression of 

Wnt-family genes. (A) H3K27me2/3 ChIP-seq heatmap centered around peaks observed 

after Klotho treatment that are not observed in the Control, showing higher read density in 

the Klotho condition. Color scale indicates low (black) to high (pale yellow) read density. 

(B) KEGG analysis of genes with promoter H3K27me2/3 occupancy in the presence of 

recombinant Klotho. −log10(p-value) indicates the significance of the hypergeometric test 

results based on the number of gene promoters identified in each category relative to the 

total number of genes within each term. N = 1 for each ChIP and input sample. (C) GO 

Biological Process analysis of genes with promoter H3K27me2/3 occupancy in the presence 

of recombinant Klotho treatment. N = 1 for each ChIP and input sample. Data graphed 

as −log10(p-value) based on the number of gene promoters identified in each category 

relative to the total number of genes within each term. (D–H) QPCR data showing relative 
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expression of Wnt4 (D), Wnt9a (E), Wnt10a (F), Fzd3 (G), and Fzd9 (H) in cultured 

myoblasts treated with recombinant Klotho for 48-h. *Indicates significantly different from 

vehicle-treated cells at p < .05 analyzed by t-test. Error bar represents SEM. N = 4 or 5 for 

each data set
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FIGURE 5. 
Jmjd3 promotes muscle differentiation in vitro. (A) QPCR data showing relative expression 

of Jmjd3 in sub-confluent (70%) and confluent (100%) myoblasts and in myogenic cells 

at 1 day, 5 days, and 7 days following the onset of differentiation. *Indicates significantly 

different from 70% confluent myoblast control group at p < .05 analyzed by one-way 

ANOVA with Dunnett’s multiple comparison test. Error bar represents SEM. N = 5 for each 

data set. (B) Western blot showing relative expression of Jmjd3 and KL in sub-confluent 

myoblasts and differentiated myotubes. (C, D) QPCR data showing relative expression 

of Myod1 (C) and Myog (D) in myogenic cell cultures. *Indicates significantly different 

from 70% confluent myoblast control group at p < .05 analyzed by one-way ANOVA with 

Dunnett’s multiple comparison test. Error bar represents SEM. N = 5 for each data set. 

(E–H) QPCR data showing relative expression for Jmjd3 (E), Pax7 (F), Myod1 (G), and 

Myog (H) in cultured myoblast cells transfected with control siRNA or siRNA targeting 

Jmjd3. *Indicates significantly different from cells transfected with control siRNA at p < 

.05 analyzed by t-test. Error bar represents SEM. N = 3 for all data sets. (I–L) QPCR data 

showing relative expression for transcripts of Jmjd3 (I), Pax7 (J), Myod1 (K), and Myog 
(L) in cultured myoblasts transfected with control pCS2-vector plasmid or pCS2-Jmjd3-

F expression plasmid for 6-h followed by 72-h in differentiation conditions. *Indicates 

significantly different from cells transfected with control pCS2-vector plasmid at p < .05 

analyzed by t-test. Error bar represents SEM. N = 3 for all data sets. (M) Western blot 

showing relative levels of Jmjd3 and myogenin in myogenic cells transfected with control 

pCS2-vector plasmid or pCS2-Jmjd3-F expression plasmid for 6-h followed by 72-h in 

differentiation conditions. (N, O) Quantification of total Jmjd3 protein (N) or myogenin 

protein (O) relative to protein loaded per gel lane. *Indicates significantly different from 

cells transfected with control pCS2-vector plasmid at p < .05 analyzed by t-test. Error bar 

represents SEM. N = 3 for all data sets
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FIGURE 6. 
Inhibition of H3K27 demethylases reduces expression of Wnt4 and Wnt10a in myogenic 

cells. (A–E) QPCR data showing relative expression of Wnt4 (A), Wnt9a (B), Wnt10a (C), 

Fzd3 (D), and Fzd9 (E) in cultured myoblasts treated with 1.2 mM of GSK-J4 for 48-h. 

*Indicates significantly different from vehicle-treated cells at p < .05 analyzed by t-test. 

Error bar represents SEM. N = 4 or 5 for each data set
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FIGURE 7. 
Klotho stimulation and Jmjd3 knock-down do not have additive, inhibitory effects on the 

expression of Wnt4, Wnt9a, and Wnt10a. (A–I) Myoblasts were treated with vehicle and 

control siRNA (Veh + Control siRNA), Klotho and control siRNA (KL + Control siRNA), 

vehicle and Jmjd3 siRNA (Veh + Jmjd3 siRNA) or Klotho and Jmjd3 siRNA (KL + Jmjd3 

siRNA). (A–H) QPCR data showing relative expression of Jmjd3 (A), Wnt4 (B), Wnt9a (C), 

Wnt10a (D), Fzd3 (E), Fzd9 (F), Axin2 (G), and Ccnd1 (H) in KL + Control siRNA, Veh + 

Jmjd3 siRNA or KL + Jmjd3 siRNA treated myoblasts compared to vehicle-treated controls. 

For all bar charts, *indicates significantly different from Veh + Control siRNA treated cells 

at p < .05 analyzed by one-way ANOVA with Tukey’s multiple comparisons test. #Indicates 

significantly different from KL + Control siRNA treated cells at p < .05 analyzed by 

one-way ANOVA with Tukey’s multiple comparisons test. ϕIndicates significantly different 

from Veh + Jmjd3 siRNA treated cells at p < .05 analyzed by one-way ANOVA with 
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Tukey’s multiple comparisons test. Error bar represents SEM. N = 5 for all QPCR data 

sets. (I) Western blot analysis showing effects of Klotho, Jmjd3 RNAi or Jmjd3 RNAi with 

Klotho on Jmjd3 (180 kDa), Wnt4 (50 kDa), Wnt10a (46 kDa), and loading control desmin 

(60 kDa). Wnt9a protein was undetected in all groups. N = 3 for all groups
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FIGURE 8. 
KL Tg expression reduces Jmjd3 transcripts and localization in Pax7+ cells and increases 

H3K27 methylation Pax7+ cells in early postnatal development. (A) QPCR analysis showing 

Jmjd3 in quadriceps muscle lysates of Wt and KL Tg+ mice. (B, C) Representative 

images of quadriceps muscle sections from P14 Wt (B) and KL Tg+ (C) mice showing 

immunofluorescent double-labeling for Pax7 and Jmjd3. *Indicates Pax7+ cells that were 

also Jmjd3+. Open arrowheads (>) indicate Pax7+ single-labeled cells. (D) The ratio 

of Jmjd3+/Pax7+ cells to total Pax7+ cells in sections of quadriceps muscles. (E,F) 

Representative images of P14 Wt (E) and KL Tg+ (F) showing immunofluorescent 

double labeling for Pax7 and trimethylated H3K27 (H3K27me3) in quadriceps muscle 

cross-sections. *Indicates Pax7+ cells that were also H3K27me3+. Open arrowheads (>) 

indicate Pax7+ single-labeled cells. (G) The ratio of H3K27me3+/Pax7+ cells to total Pax7+ 

cells in quadriceps muscles sections. For all bar charts, *indicates significantly different 

from age-matched Wt at p < .05 analyzed by t-test. Error bar represents SEM. N = 4 or 5 for 

each data set
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FIGURE 9. 
KL Tg expression reduces the expression of Wnt4, Wnt9a, and Wnt10a during early 

postnatal muscle growth. (A–G) QPCR data showing relative expression for transcripts 

of Wnt4 (A), Wnt9a (B), Wnt10a (C), Fzd3 (D), Fzd9 (E), Axin2 (F), and Ccnd1 (G) 

in quadriceps muscles of Wt and KL Tg+ mice. *Indicates significantly different from 

age-matched Wt at p < .05 analyzed by t-test. Error bar represents SEM. N = 3–5 for each 

data set
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FIGURE 10. 
KL Tg expression reduces Wnt-signaling in Pax7+ cells during early postnatal muscle 

growth. (A, B) Sections of Wt (A) and KL Tg+ (B) quadriceps muscle at P14 labeled 

with anti-Pax7 (red), anti-β-catenin (green), and DNA labeled with DAPI (blue). *Indicates 

Pax7+ cells also expressing active β-catenin+. Open arrowheads (>) indicate Pax7+ single-

labeled cells. Bar = 10 μm. (C) Ratio of Pax7+ cells that showed activated β-catenin relative 

to total Pax7+ cells in Wt and KL Tg+ quadriceps muscles. *Indicates significantly different 

from age-matched Wt at p < .05 analyzed by t-test. Error bar represents SEM. N = 5 for each 

data set

McKee et al. Page 36

FASEB J. Author manuscript; available in PMC 2022 April 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

McKee et al. Page 37

TA
B

L
E

 1

Pr
im

er
s 

se
qu

en
ce

s 
us

ed
 f

or
 P

C
R

G
en

e
F

or
w

ar
d

R
ev

er
se

A
xi

n2
G

A
C

G
C

A
C

T
G

A
C

C
G

A
C

G
A

T
T

C
C

T
G

C
G

A
T

G
C

A
T

C
T

C
T

C
T

C
T

G
G

C
cn

d1
C

G
A

G
G

A
G

C
T

G
C

T
G

C
A

A
A

T
G

G
G

G
T

T
G

G
A

A
A

T
G

A
A

C
T

T
C

A
C

A
T

C

E
zh

2
C

T
G

C
T

G
A

G
C

G
TA

TA
A

A
G

A
C

A
C

C
T

TA
G

A
G

G
A

G
C

T
G

G
A

C
G

T

Fz
d3

G
G

A
A

C
G

C
T

G
C

A
G

A
G

A
G

TA
T

C
A

C
G

G
A

A
T

C
C

C
A

A
C

TA
T

G
A

G
A

G
C

C

Fz
d9

T
G

T
G

T
T

G
G

TA
C

C
C

C
TA

T
C

T
T

G
C

C
T

T
C

T
C

C
A

G
C

T
T

C
T

C
C

G
TA

T
T

G

H
pr

t1
G

C
A

A
A

C
T

T
T

G
C

T
T

T
C

C
C

T
G

G
A

C
T

T
C

G
A

G
A

G
G

T
C

C
T

T
T

T
C

A
C

C

Ja
ri

d2
G

G
T

C
T

G
C

T
C

A
G

G
A

C
T

TA
C

G
G

T
T

G
G

G
T

T
T

G
G

T
T

T
C

C
T

T
G

A
C

Jm
jd

3
A

G
T

G
A

G
G

A
A

G
C

C
G

TA
T

G
C

T
G

A
G

C
C

C
C

A
TA

G
T

T
C

C
G

T
T

T
G

T
G

K
lo

th
o

G
T

C
T

C
G

G
G

A
A

C
C

A
C

C
A

A
A

A
G

C
TA

T
G

C
C

A
C

T
C

G
A

A
A

C
C

G
T

C

M
yo

d1
G

A
G

C
G

C
A

T
C

T
C

C
A

C
A

G
A

C
A

G
A

A
A

T
C

G
C

A
T

T
G

G
G

G
T

T
T

G
A

G

M
yo

g
C

C
A

G
TA

C
A

T
T

G
A

G
C

G
C

C
TA

C
A

C
C

G
A

C
T

C
C

A
G

T
G

C
A

T
T

G
C

Pa
x7

C
T

C
A

G
T

G
A

G
T

T
C

G
A

T
TA

G
C

C
G

A
G

A
C

G
G

T
T

C
C

C
T

T
T

G
T

C
G

C

R
np

s1
A

G
G

C
T

C
A

C
C

A
G

G
A

A
T

G
T

G
A

C
C

T
T

G
G

C
C

A
T

C
A

A
T

T
T

G
T

C
C

T

Sr
p1

4
A

G
A

G
C

G
A

G
C

A
G

T
T

C
C

T
G

A
C

C
G

G
Y

G
C

T
G

A
T

C
T

T
C

C
T

T
T

T
C

W
nt

4
G

A
G

A
A

G
T

T
T

G
A

C
G

G
T

G
C

C
A

C
G

T
C

C
T

C
A

T
C

T
G

TA
T

G
T

G
G

C
T

T
G

W
nt

9a
G

A
C

T
T

C
C

A
C

A
A

C
A

A
C

C
T

C
G

T
G

A
G

G
A

G
C

C
A

G
A

C
A

C
A

C
C

A
T

G

W
nt

10
a

C
G

A
A

T
G

A
G

A
C

T
C

C
A

C
A

A
C

A
A

C
C

G
C

G
T

G
G

C
A

T
T

T
G

C
A

C
T

TA
C

G
C

U
tx

G
G

T
G

C
T

T
TA

T
G

T
C

G
A

T
C

C
C

A
G

C
A

G
C

A
T

T
G

G
A

C
A

A
A

G
T

G
C

A
G

G

FASEB J. Author manuscript; available in PMC 2022 April 13.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

McKee et al. Page 38

TA
B

L
E

 2

W
nt

-r
el

at
ed

 g
en

es
 w

ho
se

 p
ro

m
ot

er
s 

(3
00

0 
bp

 u
ps

tr
ea

m
 to

 3
00

 b
p 

do
w

ns
tr

ea
m

 o
f 

T
SS

) 
ov

er
la

p 
w

ith
 H

3K
27

m
e2

/3
 p

ea
ks

 in
 K

lo
th

o-
st

im
ul

at
ed

 C
2C

12
 

m
yo

bl
as

ts

Sy
m

bo
l

C
hr

:S
ta

rt
-E

nd
G

en
e 

ID
H

3K
27

2/
3 

pe
ak

(s
) 

in
 K

L
-t

re
at

ed
 c

el
ls

P
ro

m
ot

or
 o

ve
rl

ap
 (

%
)

W
nt

4
ch

r4
:1

37
27

74
89

–1
37

29
97

26
E

N
SM

U
SG

00
00

00
36

85
6

ch
r4

:1
37

27
46

34
–1

37
27

48
77

; c
hr

4:
13

72
76

22
4–

13
72

77
06

9
33

W
nt

9a
ch

r1
1:

59
30

69
28

–5
93

33
55

2
E

N
SM

U
SG

00
00

00
00

12
6

ch
r1

1:
59

30
43

49
–5

93
05

66
4

40

W
nt

10
a

ch
r1

:7
47

91
51

6–
74

80
41

79
E

N
SM

U
SG

00
00

00
26

16
7

ch
r1

:7
47

89
94

6–
74

79
04

93
17

Fz
d3

ch
r1

4:
65

20
10

26
–6

52
62

46
3

E
N

SM
U

SG
00

00
00

07
98

9
ch

r1
4:

65
26

17
01

–6
52

63
59

1
43

Fz
d9

ch
r5

:1
35

24
89

38
–1

35
25

12
30

E
N

SM
U

SG
00

00
00

49
55

1
ch

r5
:1

35
25

28
31

–1
35

25
31

53
10

Fr
zb

ch
r2

:8
04

11
97

0–
80

44
76

25
E

N
SM

U
SG

00
00

00
27

00
4

ch
r2

:8
04

46
16

5–
80

44
74

28
3

W
is

p3
ch

r1
0:

39
15

09
71

–3
91

63
79

4
E

N
SM

U
SG

00
00

00
62

07
4

ch
r1

0:
39

16
47

63
–3

91
65

02
2;

 c
hr

10
:3

91
66

08
9–

39
16

78
11

29

C
sn

k2
a2

ch
r8

:9
54

46
09

6–
95

48
88

20
E

N
SM

U
SG

00
00

00
46

70
7

ch
r8

:9
54

91
36

4–
95

49
22

99
14

Pp
2c

b
ch

r8
:3

35
99

62
1–

33
61

97
94

E
N

SM
U

SG
00

00
00

09
63

0
ch

r8
:3

35
97

56
4–

33
59

88
58

39

Sf
rp

2
ch

r3
:8

37
66

32
1–

83
77

43
16

E
N

SM
U

SG
00

00
00

27
99

6
ch

r3
:8

37
66

03
0–

83
76

67
74

18

C
sn

k1
e

ch
r1

5:
79

41
78

56
–7

94
43

91
9

E
N

SM
U

SG
00

00
00

22
43

3
ch

r1
5:

79
44

46
79

–7
94

46
18

9
46

N
kd

2
ch

r1
3:

73
81

85
34

–7
38

47
63

1
E

N
SM

U
SG

00
00

00
21

56
7

ch
r1

3:
73

84
87

80
–7

38
50

04
5

38

N
kd

1
ch

r8
:8

85
21

34
4–

88
59

48
87

E
N

SM
U

SG
00

00
00

31
66

1
ch

r8
:8

85
20

96
9–

88
52

42
73

20

Sh
is

a2
ch

r1
4:

59
62

52
81

–5
96

31
65

8
E

N
SM

U
SG

00
00

00
44

46
1

ch
r1

4:
59

62
53

08
–5

96
26

30
7

8

N
ot

e:
 P

ro
m

ot
er

 o
ve

rl
ap

 p
er

ce
nt

ag
e 

in
di

ca
te

s 
th

e 
pe

rc
en

t o
f 

a 
gi

ve
n 

pr
om

ot
er

 o
ve

rl
ap

pi
ng

 w
ith

 H
3K

27
m

e2
/3

 p
ea

k(
s)

 in
 th

e 
K

lo
th

o-
tr

ea
te

d 
co

nd
iti

on
. N

ot
ab

ly
, a

ll 
lis

te
d 

pr
om

ot
er

s 
ha

ve
 0

%
 o

ve
rl

ap
 w

ith
 

H
3K

27
m

e2
/3

 p
ea

ks
 in

 th
e 

ve
hi

cl
e-

tr
ea

te
d 

co
nt

ro
l c

on
di

tio
n,

 w
hi

ch
 s

ug
ge

st
s 

th
at

 th
es

e 
W

nt
-r

el
at

ed
 p

ro
m

ot
er

s 
ha

ve
 p

re
fe

re
nt

ia
l h

et
er

oc
hr

om
at

ic
 m

ar
k 

de
po

si
tio

n 
un

de
r 

K
lo

th
o 

st
im

ul
at

io
n.

 C
ol

um
n 

na
m

es
 

in
di

ca
te

: g
en

e 
sy

m
bo

l, 
ge

ne
 lo

ca
tio

n 
(c

hr
:s

ta
rt

-e
nd

),
 E

ns
em

bl
e 

ge
ne

 I
D

, l
oc

at
io

n 
of

 b
ro

ad
 p

ea
ks

, a
nd

 p
ro

m
ot

or
 o

ve
rl

ap
 (

%
) 

w
ith

 H
3K

27
m

e2
/3

 p
ea

ks
 in

 C
2C

12
 c

el
ls

 tr
ea

te
d 

w
ith

 r
ec

om
bi

na
nt

 K
lo

th
o 

fo
r 

48
 

h.

FASEB J. Author manuscript; available in PMC 2022 April 13.


	Abstract
	INTRODUCTION
	MATERIALS AND METHODS
	Mice
	Muscle fiber cross-sectional area
	RNA isolation and quantitative PCR
	Production of Pax7 antibody
	Immunohistochemistry
	Immunofluorescence
	Cell culture and in vitro treatments
	Klotho stimulation of myoblasts in vitro
	Klotho stimulation with subsequent siRNA knock-down of Jmjd3
	Jmjd3 overexpression in myogenic cells
	GSK-J4 treatment of C2C12 myoblasts
	Western blot following differentiation
	Western blot following Jmjd3 inhibition with Klotho and siRNA
	Chromatin immunoprecipitation on Klotho treated myoblasts
	Chromatin immunoprecipitation-sequencing (ChIP-Seq) analysis
	Statistics

	RESULTS
	Klotho modulates muscle development during early postnatal growth
	Klotho increases numbers of activated satellite cells during postnatal development
	Klotho reduces the expressionof the H3K27 demethylase Jmjd3 in myogenic cells in vitro
	Jmjd3 promotes muscle differentiation in vitro
	Klotho treatment of myoblasts promotes H3K27 methylation and reduces expression of Wnt-family genes
	Inhibition of H3K27 demethylases reduces expression of Wnt4 and Wnt10a in myogenic cells
	Klotho stimulation and Jmjd3 knock-down do not have additive, inhibitory effects on the expression of Wnt4, Wnt9a, or Wnt10a
	Klotho modulates Jmjd3 and H3K27 methylation in satellite cells
	Klotho reduces the expression of Wnt4, Wnt9a, and Wnt10a during early postnatal muscle growth
	Klotho represses Wnt-signaling in Pax7-expressing cells during postnatal development and early adulthood

	DISCUSSION
	References
	FIGURE 1
	FIGURE 2
	FIGURE 3
	FIGURE 4
	FIGURE 5
	FIGURE 6
	FIGURE 7
	FIGURE 8
	FIGURE 9
	FIGURE 10
	TABLE 1
	TABLE 2

