Skip to main content
. Author manuscript; available in PMC: 2023 Apr 7.
Published in final edited form as: Wiley Interdiscip Rev Comput Stat. 2022 Apr 8;15(1):e1581. doi: 10.1002/wics.1581

TABLE 1.

Three estimation strategies (OR = outcome regression, IPW = inverse probability weighting, AIPW = augmented IPW) for the ATE in the target population, when either the combined sample (generalizability, the ATE is τ) or the S = 0 sample (transportability, the ATE is τ0) is a random sample of the target population. We present three representation of E [Y (a)] and E [Y (a) | S = 0], a = 0 or 1, to simplify exposition.

Generalizability (E [Y (a)]) Transportability (E [Y (a) | S = 0])
(S1) Covariates are measured on all individuals in the S = 0 sample, i.e., we have (X, S = 0)
OR E {ma (X)} E{ma(X)S=0}=E{1(S=0)P(S=0)ma(X)}
IPW E{1(S=1,A=a)P(S=1,A=aX)Y}**(1) E{1(S=1,A=a)P(S=0X)P(S=1,A=aX)P(S=0)Y}=E{1(S=1,A=a)P(S=0X)P(S=1,A=aX)Y}E{1(S=1,A=a)P(S=0X)P(S=1,A=aX)}**(2)
AIPW E{1(S=1,A=a)P(S=1,A=aX)(Yma(X))+ma(X)} E{1(S=1,A=a)P(S=0X)P(S=1,A=aX)P(S=0)(Yma(X))+1(S=0)P(S=0)ma(X)}
(S2.1) Covariates are measured on all individuals in the S = 0 sample and P (D = 1 | S = 0) is known
OR E[E{ma(X)S,D=1}]=E{1(D=1)P(D=1S)ma(X)}**(3) E {ma (X) | S = 0, D = 1} **(4)
IPW E{1(S=1,A=a)P(S=1,A=aX)Y}**(5) E{1(S=1,A=a)P(S=0X)P(S=1,A=aX)P(S=0)Y}**(6)
AIPW E{1(S=1,A=a)P(S=1,A=aX)(Yma(X))+1(D=1)P(D=1S)ma(X)} E{1(S=1,A=a)P(S=0X)P(S=1,A=aX)P(S=0)(Yma(X))+1(S=0,D=1)P(S=0,D=1)ma(X)}
(S2.2) Covariates are measured on a subsample of the S = 0 sample and P (D = 1 | S = 0) is unknown
OR Not identifiable **(7) E {ma(X) | S = 0, D = 1}
IPW Not identifiable **(8) E{1(S=1,A=a)P(S=0X,D=1)P(A=aS=1,X)P(S=1X,D=1)P(S=0,D=1)Y}**(9)
AIPW Not identifiable E{1(S=1,A=a)P(S=0X,D=1)P(A=aS=1,X)P(S=1X,D=1)P(S=0,D=1)(Yma(X))+1(S=0,D=1)P(S=0,D=1)ma(X)}
(1)

P (S = 1, A = a | X) = P (A = s | S = 1, X)P (S = 1 | X) where P (A = s | S = 1, X) is designed by the investigator in an RCT and can also be estimated based on the S = 1 sample, and P (S = 1 | X) identified from the combined sample.

(2)

E{1(S=1,A=a)P(S=0X)P(S=1,A=aX)}=P(S=0), hence E{1(S=1,A=a)P(S=0X)P(S=1,A=aX)P(S=0)Y}=E{1(S=1,A=a)P(S=0X)P(S=1,A=aX)Y}/E{1(S=1,A=a)P(S=0X)P(S=1,A=aX)}.

(3)

P(D=1|S)=1(S=1)+1(s=0)P(D=1|S=0).

(4)

E {ma (X) | S = 0} = E {ma (X) | S = 0, D = 1} because DX | S.

(5)

P (S = 1 | X) identified by P(S=1X)P(S=0X)=P(S=1X,D=1)P(S=0X,D=1)P(D=1S=0). Estimation strategies are proposed in Dahabreh et al. (2019a).

(6)

Similar to footnote (5), P (S = 1) identified by P(S=1)P(S=0)=P(S=1D=1)P(S=0D=1)P(D=1S=0).

(7)

Unlike footnote (3), P (D = 1 | S) is not identifiable because P (D = 1 | S = 0) is unknown.

(8)

Unlike footnote (5), P (S = 1 | X) is not identifiable because P (D = 1 | S = 0) is unknown.

(9)

By footnote (1) and (5), E{1(S=1,A=a)P(S=0X)P(S=1,A=aX)P(S=0)Y}=E{1(S=1,A=a)P(S=0X,D=1)P(A=aS=1,X)P(S=1X,D=1)P(S=0,D=1)Y}. Although P (S = 1 | X) is not identifiable as shown in footnote (8), P (S = 1 | X, D = 1) is identifiable.