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Abstract

TYW1 is a radical S-adenosyl-L-methionine (SAM) enzyme that catalyzes the condensation of 

pyruvate and N-methylguanosine containing tRNAPhe, forming 4-demethylwyosine containing 

tRNAPhe. Homologs of TYW1 are found in both archaea and eukarya, with archaeal homologs 

consisting of a single domain while eukaryal homologs contain a flavin binding domain in 

addition to the radical SAM domain shared with archaeal homologs. In this study, TYW1 from 

S. cerevisiae (ScTYW1) was heterologously expressed in E. coli and purified to homogeneity. 

ScTYW1 purifies with 0.54 ± 0.07 and 4.2 ± 1.9 equivalents of flavin mononucleotide (FMN) and 

iron, respectively, per mol of protein, suggesting the protein is ~50% replete with Fe-S clusters 

and FMN. While both NADPH or NADH are sufficient for activity, significantly more product is 

observed when used in combination with flavin nucleotides. ScTYW1 is the first example of a 

radical SAM flavoenzyme, active with NAD(P)H alone.
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Introduction

The radical S-adenosyl-L-methionine (SAM) superfamily of enzymes is comprised of over 

100,000 members (1) catalyzing a wide variety of transformations on substrates that vary 

from small molecules to macromolecules (2). Radical SAM (RS) enzymes all share a 

4Fe-4S cluster coordinated by a cysteine-rich motif, which is typically comprised of 

CxxxCxxC (3). Three of the Fe ions in the cluster ligate the conserved cysteine residues 

in the motif, while the remaining Fe ligates to the α-amino and α-carboxy moieties of 

SAM in the catalytic complex (4-18). Cleavage of SAM by the reduced cluster in the +1 

oxidation state results in formation of methionine and a 5’-deoxyadenosyl radical (dAdo•), 

which in the majority of cases, initiates catalysis by H-atom abstraction (see Scheme 1) 

(5,19). Most characterized RS enzymes use SAM stoichiometrically, whereas in some cases 

SAM is utilized as a cofactor and reformed at the end of the catalytic cycle (2). Additional 

differences have also been noted, including: variations in the sequence of the cluster binding 

motif (8,20), alternative site of cleavage to produce 3-amino-3-carboxylpropyl radical 

(21,22), or radical addition in place of H-atom abstraction (23,24).

A key requirement for activation of all RS enzymes is the obligate reduction from the resting 

+2 state of the Fe-S cluster to the catalytically active +1 oxidation state. Most in vitro studies 

employ dithionite as a reductant (25-35), though other non-natural reducing systems such 

as Ti(III)citrate (20,36), and various mediators have also been shown to be effective (37,38) 

in some but not all cases (39). Since the demonstration that ribonucleotide reductase (40) 

can be activated by flavodoxin/flavodoxin reductase with NADPH as the electron source, 

this reducing system (from E. coli) has also been employed as a proxy for the cellular 

reducing system (25,29,41,42). This has led to the generalization that a flavodoxin-like 

protein is most likely involved in the activation of RS enzymes in vivo. It is somewhat 

remarkable that the E. coli flavodoxin homolog has been successfully used to reconstitute 

activity in a wide variety of RS enzymes, as there is no reason to expect that the surfaces 

that drive the interactions between the flavodoxin homolog and RS enzymes, are identical 

(37). Indeed, structural studies in one system highlight significant differences between the 

surfaces, and biochemical studies of the same suggest that optimal reduction may require a 

cognate flavodoxin (43).

Many organisms encode several flavodoxin-like proteins and to our knowledge, a connection 

between a particular redox partner and a RS protein has only been made in two systems. 

In the first, studies with a RS enzyme involved in the formation of the diphthamide 

post-translational modification identified a protein proposed to be its reductant (44). In 

S. cerevisiae, the Dph1/2 complex installs the diphthamide modification and Dph3, a CSL 

zinc finger-type protein, is the reductant in this process. Dph3 is an iron-containing protein, 

which when reduced, stimulates the formation of diphthamide (44). Unlike the Dph system, 

the reductant in other cases is not clear and it is possible that many cellular reductants can 
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facilitate reduction of the RS protein. For example, Thermatoga maritima does not encode 

any flavodoxin homologs, but it harbors five ferredoxins, which with the ferredoxin-NADP+ 

oxidoreductase from the same organism support activity of the RS enzyme MiaB (45).

The tricyclic modified base wybutosine and its analogs are found at position 37 in tRNAPhe 

of many eukaryal and archaeal species (46,47). TYW1 catalyzes the key step in the pathway, 

which entails the condensation of pyruvate and N-methylguanosine (m1G) containing 

tRNAPhe to install 4-demethylwyosine (imG-14) (Scheme 2) (48).

Biochemical studies show that TYW1 catalyzes a complex radical-mediated condensation 

and ring closure to convert m1G to imG-14 (48-52). The incorporation of carbons 2 and 3 

into imG-14 was shown by pyruvate isotopologues (48). The methyl moiety of the substrate 

m1G was identified as the site of H-atom abstraction by tracing the isotope from a deuterated 

analog to 5’-deoxyadenosine (dAdoH) (50). These findings led to a paradigm in which 

H-atom abstraction by dAdo• from the methyl group of m1G initiates the transformation. On 

the basis of sequence conservation and in vivo complementation experiments a Lys residue 

was proposed to play a role in activating the pyruvate substrate, possibly as a Schiff base 

(48,50,53). This proposal was subsequently confirmed by biochemical studies that identified 

the modified Lys, and a X-ray crystal structure that revealed electron density consistent with 

a pyruvate-Lys adduct in the active site (49). The structure also revealed the position of a 

second 4Fe-4S cluster, a so-called auxiliary cluster, with an open coordination site that is 

engaged with the nitrogen of the Schiff base and the oxygen of the carboxylate of pyruvate 

(49). The eventual conversion to imG-14 requires the loss of C1 of pyruvate, the fate of 

which has not been established. However, the intimate interaction between the auxiliary 

cluster and the pyruvate suggests that the cluster is central to this process (49).

Interestingly, while the archaeal homologs of TYW1 are single-domain proteins, the 

eukaryotic homologs consist of a flavodoxin_1 domain that is appended to the N-terminus 

of the RNA-modifying TYW1 domain (see Fig. 1) (54). The NCBI conserved domains tool 

(55) identifies residues 207-354 of S. cerevisiae TYW1 (ScTYW1) as Flavodoxin_1 domain, 

pfam 00258 (E-value 1.21e-23). Members of this protein family, such as anaerobic nitric 

oxide reductase, sulfite reductase, and flavodoxin, are typically flavoproteins that bind either 

flavin mononucleotide (FMN) or flavin adenine dinucleotide (FAD) (56). The eukaryal 

TYW1 homologs are, to our knowledge, the only members of the RS superfamily that 

encodes a flavodoxin_1 domain attached to the RS domain. The physiological significance 

of the flavodoxin_1 domain is not known. However, one hypothesis that may be consistent 

with this observation is that the flavodoxin_1 domain functions as an in situ reducing system 

to activate the RS enzyme, which may suggest that fused proteins represent functional 

linkages (57).

In this paper we describe the purification and characterization of the eukaryal TYW1 

from S. cerevisiae. In addition to the Fe-S clusters, the protein is shown to purify with 

FMN. Reconstitution of the catalytic activity requires the addition of only NAD(P)H, which 

supports the notion that the flavodoxin_1 domain serves to reduce the RS cluster to the 

+1 oxidation state and support turnover. Eukaryotic TYW1 is the first example of a RS 

flavoprotein.
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Results and discussion

Expression and purification of ScTYW1.

Residues 1-45 of ScTYW1 (UniProtKB Q08960) are predicted to be a signal and 

transmembrane domain. Therefore, the protein expressed and used in these studies consisted 

of residues 46-810 to enhance solubility. A codon-optimized gene encoding residues 46-810 

of ScTYW1 was expressed with an N-terminal His6-tag and TEV protease site, resulting in 

protein that is at least 90% pure following purification (Fig. 2).

Cofactor analysis.

Trichloroacetic acid (TCA) precipitation of ScTYW1 purified with no added flavin 

nucleotide(s) revealed a supernatant with an absorbance spectrum consistent with the 

presence of a flavin cofactor (Fig. 2). HPLC analysis, along with comparison to authentic 

FMN and FAD standards, identified the flavin cofactor as FMN. Subsequently, FMN was 

added to the purification to obtain more complete cofactor incorporation. Quantification of 

the FMN content of the final protein revealed 0.54 ± 0.07 mols of FMN per mol of protein 

(average of three independent purifications). The iron content of ScTYW1 is 4.2 ± 1.9 mol 

of iron per mol of protein (average of three independent purifications). The preparation used 

in this manuscript contained 0.58 mol of FMN and 2.6 mol of iron per mol protein. TYW1 

harbors two 4Fe-4S clusters, which are required for activity. The stoichiometry of Fe and 

flavin suggests that the protein is generally no more than 50% replete with each cofactor.

UV-visible spectroscopy of ScTYW1.

The UV-visible spectrum of 10 μM ScTYW1 is shown in Fig. 2 (black solid line). While 

RS enzymes generally exhibit a broad shoulder at 420 nm due to 4Fe-4S clusters, ScTYW1 

has a prominent peak at 450 nm instead. Addition of a 10-fold molar excess of dithionite 

results in the bleaching of this spectral feature (blue dashed line), and a spectrum that is 

consistent with a reduced 4Fe-4S cluster. The supernatant obtained following denaturation 

with TCA and removal of precipitated protein, however, has the characteristic features of 

oxidized flavin, with peaks at ~ 380 and 450 nm. These data unambiguously show that in 

contrast to all other RS enzymes, ScTYW1 harbors flavin.

Activity of ScTYW1 with dithionite.

The activity of TYW1 has been demonstrated with homologs from the archaeal species M. 
jannaschii and P. abyssi using dithionite/methyl viologen or dithionite alone, respectively, as 

the reductant (48,51). Consequently, initial activity assays with ScTYW1 were performed 

using dithionite as the reductant. The tRNA substrate used in this study was extracted 

from a S. cerevisiae strain ΔYPL207W harboring a deletion in the gene that codes 

for TYW1(54,58). The assays contained (1,2,3-13C3)-pyruvate to avoid overlap with a 

contaminating species that elutes with a similar retention time and m/z as imG-14. Fig. 

S.4 shows the extracted ion chromatogram at m/z 324.1 – 324.2 (expected m/z of the 

product with three 13C is 324.187) of the digested RNA extracted from the complete 

reaction mixture and control experiments with one of the reaction components removed. 

The modified base is produced when all of the components are present (blue trace). When 
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ScTYW1, dithionite, pyruvate, SAM, or tRNA are removed there is no product produced. 

These observations demonstrate that ScTYW1 can be reduced by dithionite and that it 

catalyzes the same overall reaction as the two previously characterized homologs of TYW1.

Activity of ScTYW1 with different reductants.

As eukaryotic homologs of TYW1 contain a “flavodoxin_1” domain we hypothesized that 

this enzyme may be able to use the reduced nicotinamide cofactors (NADH or NADPH) 

as reductant directly. In addition to NADH and NADPH alone: dithionite, FMN, FAD, and 

FMN/FAD in combination with NADH and NADPH, were tested as reductants. Initially, 

100 μM FMN or FAD was used in the assays. When activity was detected, a series of FMN 

concentrations (from 0 to 60 μM) were tested to determine the optimal concentration to 

include in the assays. All of the concentrations above 10 μM produced approximately the 

same amount of product after 4 h (Fig. S.5). This observation is intriguing. Recall that the 

stoichiometry of FMN to the protein is 50%. These experiments were carried out in the 

presence of 15 μM enzyme, and the flavin concentration profiles show that addition of 10 

μM FMN is sufficient to restore maximal activity. The simplest interpretation of this is that 

the FMN that is supplied during the assays can reconstitute the activity of the protein in situ.

Since control experiments indicated that maximal activity could be observed at ~10 μM 

FMN, all subsequent experiments were carried out in the presence of 20 μM FMN or 

FAD. After incubation with the protein, the RNA was extracted and digested to nucleosides 

and analyzed by LC-MS. Fig. 3 shows the extracted ion chromatogram at m/z 324.1 – 

324.2. As in the control experiments described above, imG-14 was formed in the presence 

of dithionite. However, product is also observed in the absence of dithionite, so long as 

NADPH or NADH are present (Fig. 3 inset). Substantially more product is formed when 

NADH or NADPH are present in addition to FAD or FMN. However, FAD or FMN alone 

do not support formation of product. These data unambiguously show that eukaryotic TYW1 

does not require any strong reductants (such as dithionite) for activity and utilizes pyridine 

nucleotides to support turnover.

Kinetic profiles of the reaction support the observation that pyridine nucleotides support 

turnover by TYW1. A time course with aliquots removed at 1, 2, and 4 h was performed 

on samples containing either dithionite, NADH, NADPH, or FMN/FAD in combination 

with NADH or NADPH (Fig. 4). RNA was digested to the nucleoside level and analyzed 

by LC-MS. ImG-14 forms with either NADPH or NADH alone. ImG-14 forms in a time-

dependent manner with reducing systems containing FMN/NAD(P)H or FAD/NAD(P)H. 

Activity is also observed with dithionite alone, as shown in Fig. 3. By contrast, control 

reactions show that while NAD(P)H alone does not support the activity of the archaeal 

homolog (UniProtKB Q57705), this enzyme is similarly active with FMN/NAD(P)H 

or FAD/NAD(P)H (Fig. S.6). These data demonstrate that the addition of nicotinamide 

cofactors alone is sufficient to support turnover of eukaryotic TYW1, via the appended 

flavodoxin_1 domain.

We note that the data show that at each time point, NADH or NADPH alone produce at 

least 70-fold less product than dithionite or the flavin/pyridine nucleotide reducing system. 

All of the assays were carried out in the presence of the same concentration of enzyme (15 
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μM). NAD(P)H is a two-electron reductant necessitating the initial transfer of reducing 

equivalents to the bound flavin, prior to one-electron reduction of the cluster. Direct 

comparisons of product formed do not account for the concentrations of reductants and 

the differences in their midpoint potentials. In this context, the observation that NAD(P)H 

alone can support activity of ScTYW1 is notable.

We were initially surprised by the observation that FMN or FAD could support protein 

activity in the presence of NADH or NADPH with both Mj and ScTYW1, suggesting 

that pyridine nucleotides could directly reduce the flavin nucleotide in solution. To probe 

this directly, an equal volume of 4 mM NADPH and 40 μM FMN were placed in the 

chambers of a split-cell quartz cuvette. The absorbance spectrum prior to mixing shows 

the expected features of the flavin in the 400-500 nm region (Fig. S.7A). Upon mixing 

of the two chambers, there is a time-dependent reduction of the absorbance at ~450 nm, 

which results from reduction of the FMN. Control experiments in which NADPH was 

omitted show no change in the absorbance spectrum over time (Fig. S.7B). This shows 

that flavin can be reduced by NAD(P)H nonenzymatically, providing an explanation for 

why when both are present, we observe activity with MjTYW1. There is precedent in the 

literature for NAD(P)H and flavin nucleotides reducing heme in hemoglobin/myoglobin 

(59). Flavin and nicotinamide cofactors in combination have also been used to reduce azo 

dyes non-enzymatically (60).

Overall, these results support the role of the flavodoxin_1 domain in mediating the reductive 

activation of the protein. The eukaryal TYW1 characterized here is the first example of a RS 

flavoprotein. The data show that ScTYW1 purifies with FMN, and that unlike the archaeal 

TYW1, NAD(P)H is sufficient for observing activity with the eukaryal protein.

Conclusions

The RS superfamily consists of over 100,000 members that are distributed throughout all 

kingdoms of life (1). A common feature of the RS superfamily is the need for a one electron 

reductant to reduce a 4Fe-4S cluster from its resting state of +2 to the active state of +1. 

The reduced cluster, then reductively cleaves SAM to form the highly reactive intermediate, 

dAdo• (with the exceptions of a few characterized enzymes (21-24)), which abstracts a 

hydrogen atom from the substrate leading to the formation of a multitude of diverse products 

formed by this superfamily.

Eukaryotic homologs of TYW1 are the first RS enzymes identified to contain a fused flavin 

binding domain. Initially, we hypothesized that the flavodoxin_1 domain would contain 

a flavin cofactor, that could potentially be reduced directly by NAD(P)H. The reduced 

flavin would in turn reduce the 4Fe-4S cluster, which would then go on to produce dAdo• 

and product (see Scheme 3). ScTYW1 as purified contains FMN, confirming the domain 

annotated as flavodoxin_1 binds flavin. We discovered, while preparing this manuscript, 

a structure of the flavodoxin-like domain of Schizosaccharomyces japonicus TYW1 had 

been deposited in the protein data bank (PDB 6PUP and 6PUQ). These structures show 

the flavodoxin-like domain in complex with FMN. Fig. 4 shows that ScTYW1 is active 

with both NADPH and NADH. While it is unusual for an enzyme to be active with 
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both nicotinamide cofactors as they are usually specific to one cofactor due to binding 

constraints, there are examples among nicotinamide utilizing systems (61-63).

When FMN or FAD were added to reactions containing NAD(P)H, substantially more 

product was formed. One explanation for this could lie in the stoichiometry of the cofactors. 

The previously studied homologs of TYW1 contain two 4Fe-4S clusters (49,51), one of 

which binds the cofactor and the other the pyruvate substrate. Both are required for activity 

and the cluster-binding Cys residues are conserved in the eukaryotic homolog. However, 

ScTYW1 contains approximately 4 mol of iron per mol of protein. This is consistent 

with the protein containing one 4Fe-4S cluster, on average, instead of the expected two. 

In addition, flavin analysis revealed there is approximately 0.5 mol of FMN per mol of 

protein, so both cofactors are only present in 50% of the protein. On the basis of cofactor 

content, we would estimate that ~13% of the protein is fully replete (two 4Fe-S cluster and 

1 FMN). The increased activity in the presence of added flavin could simply result from 

exogenous cofactor binding and reconstituting the protein. Another potential explanation for 

the increased activity is that pyridine nucleotides reduce the flavin in solution, which in turn 

reduce the Fe-S cluster in ScTYW1 directly or via the bound FMN.

We cannot exclude the possibility that in vivo, additional proteins are engaged in the 

activation of ScTYW1. This would be reminiscent of the flavodoxin/flavodoxin reductase 

system found in bacterial species such as E. coli. In these systems NADPH reduces a flavin 

cofactor in flavodoxin reductase, which in turn reduces the flavin cofactor in flavodoxin. 

Assuming that the ScTYW1 bound FMN represents flavodoxin, if the flavin reductase is 

missing, the flavin cofactor in solution could be substituting.

In most RS enzymes, in addition to the cluster that activates the SAM, there are also 

additional iron-sulfur containing auxiliary clusters that are essential for activity (64). In 

TYW1, the auxiliary cluster binds pyruvate and is required for the catalytic cycle (49,51,52). 

A small subset of RS enzymes also contains additional cofactors. For example, the class 

B RS methylases employ cobalamin (20,36,65). Lysine 2,3-aminomutase is a rare example 

of a pyridoxal phosphate (PLP)-dependent RS enzyme, where the PLP serves to stabilize 

and catalyze the interchange of groups (66). The FMN domain in ScTYW1 does not serve 

a catalytic role, but is used for the reductive activation of the enzyme. Nevertheless, this 

discovery expands the cofactor repertoire of RS enzymes to include flavin.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

SAM S-adenosyl-l-methionine

ScTYW1 Saccharomyces cerevisiae TYW1

FMN flavin mononucleotide

NADPH nicotinamide adenine dinucleotide phosphate

NADH nicotinamide adenine dinucleotide

RS radical S-adenosyl-L-methionine

dAdo• 5’-deoxyadenosyl radical

dAdoH 5’-deoxyadenosine

m1G N-methylguanosine

imG-14 4-demethylwyosine

FAD flavin adenine dinucleotide

TCA trichloroacetic acid
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Figure 1. 
A comparison of TYW1 homologs from archaea and eukarya. The mammalian homologs 

are unique in that they harbor a flavodoxin_1 domain (yellow) appended to the RNA-

modification domain (blue).
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Figure 2. 
UV-visible spectra and a 12% SDS PAGE gel of purified ScTYW1. The black trace, of the 

spectrum, is as isolated ScTYW1, the blue dashed trace, of the spectrum, is after addition 

of dithionite, and the purple dotted trace, of the spectrum, is supernatant following TCA 

treatment. Lanes 1 and 2 of the SDS PAGE gel contain 5 and 10 μg of protein, respectively.
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Figure 3. 
The extracted ion chromatogram at m/z 324.1 – 324.2 of the digested RNA when ScTYW1 

is incubated with the reductants shown for 4 hours. The inset shows the traces for NADPH, 

NADH, and no reductant on a smaller scale.
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Figure 4. 
Time and reductant dependence of ScTYW1 activity. The reaction mixtures contained the 

indicated reducing systems. Samples were analyzed at 1, 2 or 4 h after initiating the reaction. 

The symbol X represents the individual data points, and the error bars represent one standard 

deviation from the mean. Note that the y-axis is a log scale.
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Scheme 1. 
Reductive cleavage of SAM by 4Fe-4S cluster
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Scheme 2. 
Reaction catalyzed by TYW1
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Scheme 3. 
Proposed pathway for delivery of equivalents from NAD(P)H to support turnover by TYW1
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