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Abstract

Balanced production of immune cells is critical for the maintenance of steady-state immune 

surveillance, and increased production of myeloid cells is sometimes necessary to eliminate 

pathogens. Hematopoietic stem and progenitor cell (HSPC) sensing of commensal microbes and 

invading pathogens has a notable impact on hematopoiesis. In this review we examine how 

commensal microbes regulate bone marrow HSPC activity to maintain balanced hematopoiesis 

in the steady-state, and how HSPCs proliferate and differentiate during emergency myelopoiesis 

in response to infection. HSPCs express a variety of pattern recognition receptors and cytokine 

receptors that they use to sense the presence of microbes, either directly via detection of microbial 

components and metabolites, or indirectly by responding to cytokines produced by other host 

cells. We describe direct and indirect mechanisms of microbial sensing by HSPCs, and highlight 

evidence demonstrating long-term effects of acute and chronic microbial stimuli on HSPCs. We 

also discuss a possible connection between myeloid-biased hematopoiesis and elevated levels of 

circulating microbiome-derived components in the context of aging and metabolic stress. Finally, 

we highlight the prospect of trained immunity-based vaccines based on the concept of microbial 

stimulation of HSPCs.
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Introduction

In adults, blood cells of all lineages are produced in the bone marrow via differentiation 

of hematopoietic stem and progenitor cells (HSPCs). The most quiescent, self-renewing 

and multipotent long-term hematopoietic stem cells (LT-HSCs) give rise to less quiescent 

short-term HSCs (ST-HSCs), which in turn produce multipotent progenitors (MPPs) [1–3]. 

Two fractions of MPP cells, MPP2 and MPP3, are myeloid-biased and thought to give 

rise to common myeloid progenitors (CMPs), which produce myeloid lineage cells via 

granulocyte-monocyte progenitors (GMPs) and monocyte-dendritic cell (DC) progenitors 

(MDPs), and also produce megakaryocyte-erythrocyte progenitors (MEPs). MPP4 cells, 

on the other hand, are lymphoid-primed and yield lymphoid lineage cells via common 

lymphoid progenitors (CLPs).

Steady-state hematopoiesis is strictly regulated by cytokines, colony stimulating factors and 

other mediators that induce HSPC differentiation along specific lineages [4,5]. Transcription 

factors and epigenetic changes drive lineage restriction and ultimately lineage commitment 

and differentiation by promoting expression of lineage-specifying genes and suppressing 

genes that define other lineages [6–8].

In this review, we will discuss how microbial sensing by HSPCs regulates hematopoiesis 

during homeostasis and in response to infection. We will review evidence that commensal 

microbes support hematopoiesis and discuss how HSPC proliferation and myeloid-biased 
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differentiation meet the increased demand for myeloid cells to eliminate pathogens. We 

will consider direct versus indirect mechanisms of microbial detection, and their impact 

on HSPC maintenance and differentiation, as well as the functional programming of their 

progeny. Finally, we will discuss the possibility that commensal microbial components that 

leak into the circulation in the context of microbial dysbiosis and intestinal permeability 

induce myeloid-biased hematopoiesis during aging and under conditions of metabolic stress 

such as obesity and type 2 diabetes.

Regulation of Hematopoiesis by Commensal Gut Microbes

Induction of severe neutropenia in humans following prolonged antibiotic treatment 

suggested an association between commensal microbes and hematopoiesis [9]. The 

observation that antibiotic treatment also impairs the function of mouse neutrophils not 

only in the peritoneal cavity but also in the bone marrow, along with the demonstration that 

commensal bacteria-derived peptidoglycan is detectable in the circulation and bone marrow 

[10], raised the possibility of microbiome support of neutrophil differentiation. Subsequent 

studies showing hematopoietic abnormalities in germ free (GF) and antibiotic-treated mice 

further revealed that the gut microbiota plays an important role in steady-state hematopoiesis 

by communicating with the bone marrow (Figure 1) [11–17]. For example, GF mice 

have defective myelopoiesis, as evidenced by decreased numbers of myeloid progenitors, 

monocytes and neutrophils in the bone marrow, and this impairs their resistance to Listeria 
monocytogenes infection [15]. Similarly, decreased HSPC numbers, suppressed MPP cell 

cycle activity, and defective hematopoietic reconstitution after bone marrow transplantation 

have been reported in antibiotic-treated mice [11,13,14,18,19].

Recolonization of the gut with a complex microbiota, oral administration of heat-killed 

bacteria, and serum transfer from microbiome-intact specific pathogen free (SPF) mice have 

been shown to rescue hematopoiesis defects in GF and antibiotic-treated mice [11,14,15], 

and a range of mechanisms including nutritional support, microbial metabolites, and 

microbial cell wall components have been implicated in microbiome-mediated maintenance 

of hematopoiesis in the steady-state and recovery after HSPC depletion. For instance, 

supplementation of the drinking water with sucrose rescues antibiotic-induced defects in 

lymphocyte recovery after bone marrow transplantation, indicating that impaired nutrient 

absorption may underlie some of the hematopoiesis defects in antibiotic-treated mice [18]. 

Moreover, systemic administration of sodium propionate to mimic short chain fatty acid 

metabolism on a high fiber diet increases DC progenitor numbers in the bone marrow of 

microbiome-intact mice [20]. In addition, a role for detection of microbial components 

by Toll-like receptors (TLRs) in microbiome support of myelopoiesis is evidenced by the 

demonstration that recolonization and serum transfer from SPF mice are ineffective in GF 

mice deficient in the TLR signaling adaptors MyD88 and TRIF [11].

Infection-Induced Emergency Myelopoiesis

Depletion of myeloid cells from the bone marrow immediately after infection is believed 

to ‘pull’ HSPCs to differentiate, whereas microbial components and pro-inflammatory 

cytokines can instruct or ‘push’ HSPCs to undergo emergency myelopoiesis [21]. Whole 
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microbes and microbial components induce HSPCs to proliferate and differentiate along 

the myeloid lineage, resulting in an increased pool of myeloid-committed progenitors 

and mature myeloid cells (Figure 1) [22–27]. For example, polymicrobial sepsis induced 

by cecal ligation and puncture in mice leads to increased myelopoiesis as evidenced by 

elevated numbers of neutrophils and inflammatory (Ly6Chi) monocytes in the circulation, 

and myeloid progenitors (CMPs and GMPs) in the bone marrow [26,27]. Similarly, infection 

of mice with Ehrlichia muris increases the number of splenic granulocytes and myeloid 

progenitors in the bone marrow [23]. Candida albicans infection also elevates production of 

splenic and bone marrow macrophages by HSPCs [24]. Moreover, microbial components 

such as lipopolysaccharide (LPS) from gram negative bacteria, Pam3CSK4 (a synthetic 

version of bacterial lipopeptide), CpG DNA (mimics bacterial DNA), and β-glucan derived 

from C. albicans cell walls, as well as the live attenuated mycobacterial Bacillus Calmette-

Guerin (BCG) vaccine, have been shown to promote myelopoiesis by inducing HSPC 

differentiation along the myeloid lineage [19,22,25,28–32]. Distinct microbial components 

have different effects. For instance, LPS selectively induces monocyte and neutrophil 

differentiation, while CpG DNA promotes the production of monocytes and DCs [32].

Microbial exposure may alternatively suppress myelopoiesis or decrease HSC fitness. For 

instance, in contrast to BCG, Mycobacterium tuberculosis (Mtb) infection has been reported 

to expand HSCs but suppress myelopoiesis in mice by inducing necroptosis of myeloid 

progenitors via depolarization of mitochondrial membrane potential [33]. The effects of 

acute and chronic microbial exposure may also be different. Chronic LPS treatment induces 

myeloid-biased hematopoiesis in mice but also compromises the reconstituting ability of 

bone marrow HSPCs upon serial transplantation [34,35]. Chronic inflammatory stress 

induced by LPS also elevates the cycling rate of LT-HSCs, which compromises their 

stemness. Similarly, polymicrobial sepsis induces HSPC cell cycle entry, but suppresses 

myelopoiesis during advanced stages of the disease [36–38].

In addition to impacting hematopoietic output, microbial sensing by HSPCs can also alter 

the function of the progeny. For example, macrophages produced by HSPCs exposed to β-

glucan have elevated inflammatory cytokine responses to stimulation with Pam3CSK4 [29], 

whereas HSPC exposure to Pam3CSK4 has the opposite effect, impairing the inflammatory 

responses of its macrophage progeny to Pam3CSK4 and LPS stimulation [39]. In contrast, 

antigen presenting cells derived from HSPCs exposed to either β-glucan or Pam3CSK4 are 

more efficient at priming Th1 and Th17 cell activation in vitro [40]. Mtb and BCG also have 

opposite effects on macrophage functional programming in mice. BCG induces epigenetic 

changes in HSPCs consistent with functional priming and increased microbicidal activity 

(trained immunity), whereas Mtb-exposed HSPCs produce macrophages that are impaired in 

their ability to control mycobacteria [33].

Direct and Indirect Microbial Sensing by HSPCs

Regulation of hematopoiesis by commensal and pathogenic microbes may be mediated 

via direct sensing of microbial components or metabolites by HSPCs, or via the indirect 

effects of cytokines and other factors (e.g. damage-associated molecular patterns, DAMPs) 

produced following microbial detection by other hematopoietic or non-hematopoietic cells 

Barman and Goodridge Page 4

Stem Cells. Author manuscript; available in PMC 2023 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in the intestine, vasculature, bone marrow niche or other tissues (Figure 2A). For instance, 

LPS and CpG DNA injection promotes GMP and MDP differentiation, respectively, but it is 

unclear whether they do so directly or indirectly [32].

Both human and murine HSPCs express a variety of pattern recognition receptors (PRRs) 

including TLRs, nucleotide oligomerization domain (Nod)-like receptors (NLRs), and 

Dectin-1, and in vitro studies have shown that HSPCs can directly respond to microbes 

and microbial components via these receptors [41–43]. For instance, mouse HSCs, MPPs, 

CMPs, GMPs and CLPs express TLRs including TLR2, TLR4 (as well as its accessory 

receptors MD2 and CD14) and TLR9, and purified HSCs, MPPs and myeloid progenitors 

differentiate into macrophages in response to Pam3CSK4 (TLR2/TLR1 agonist), LPS (TLR4 

agonist) and CpG DNA (TLR9 agonist) [31,41,44]. Heat-inactivated C. albicans yeast 

and hyphae also induce the differentiation of HSCs and myeloid progenitors into mature 

myeloid cells in vitro via TLR2-mediated recognition [44,45]. Mechanistically, MyD88 

mediated signaling is essential for myeloid cell production by HSPCs in response to 

LPS, Pam3CSK4, and C. albicans [44]. Similarly, R848 (TLR7 agonist) induces CMPs 

to produce macrophages by upregulating expression of myeloid transcription factors such 

as Sfpi1 and Cebpβ via activation of NF-κB, PI3K and mammalian target of rapamycin 

(mTOR) signaling pathways [46] (Figure 2B). Exposure of mouse HSPCs to Pam3CSK4 

also augments M-CSF-induced macrophage production in vitro [39]. Furthermore, microbial 

exposure reprograms lymphoid-committed progenitors to produce myeloid cells [41,47]. For 

example, mouse CLPs produce DCs instead of B cells upon in vitro challenge with LPS, and 

Pam3CSK4 also induces DC production by CLPs [41]. Similarly, CLPs from HSV-1-infected 

or CpG DNA-treated mice are biased to DC production in lymphoid enrichment cultures 

[47].

Human HSPCs also constitutively possess a variety of TLRs [48]. For example, cord blood 

HSPCs express TLR9 and are activated by CpG DNA to produce IL-8 via activation of 

MAPK/AP-1 signaling [48]. In contrast, human bone marrow HSPCs do not express TLR9, 

but do have high levels of TLR4 and TLR7/8, as well as low levels of TLR1 and TLR10 

[49]. Moreover, they produce inflammatory cytokines and differentiate into monocytes and 

DCs upon R848 (TLR7/8 agonist) exposure. Most TLR agonists induce differentiation of 

human HSPCs along the myeloid lineage while compromising B cell production [50]. The 

type of myeloid cells produced by TLR-stimulated HSPCs may depend on the microbial 

stimulus [43]. For example, R848 and loxoribine (TLR7 agonists) preferentially induce DC 

production by human HSPCs, whereas Pam3CSK4 induces monocyte differentiation [51].

HSPCs also express other PRRs. For example, Dectin-1, a phagocytic receptor that detects 

fungal β-glucans, is expressed by mouse myeloid progenitors, and inactivated C. albicans 
yeast can induce macrophage and monocyte-derived DC (moDC) production by mouse 

HSPCs via direct interaction with Dectin-1/TLR2 [52]. Human HSPCs also express the NLR 

family member NOD2, and the NOD2 ligand muramyl dipeptide induces DC production by 

these cells [53].

As noted above, PRR stimuli including LPS, CpG DNA, Pam3CSK4, β-glucan, R848, 

inactivated C. albicans, and microbiome-derived components have also been shown to 
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induce myeloid differentiation in vivo [11,19,22,25,28,29,31,32,46]. In contrast to exposure 

in vitro, it is difficult to determine whether these in vivo effects are mediated by direct HSPC 

recognition of microbes or indirect microbial effects on other cells. Myelopoiesis induced 

by microbiome-derived components, for instance, is dependent on MyD88 signaling [11], 

but this may reflect TLR signaling by mucosal epithelial or immune cells, or even TLR-

independent responses mediated by IL-1R or IL-18R signaling, rather than direct detection 

of microbial components by HSPCs in the bone marrow, especially in the context of an 

intact intestinal barrier. Adoptive transfer experiments using TLR-deficient mice can be 

informative to define the role of direct stimulation of HSPC TLRs. For example, WT HSPCs 

transferred into TLR2 and TLR4 KO recipient mice produce macrophages in response to 

injection of Pam3CSK4 and LPS, respectively, revealing direct recognition of TLR agonists 

by HSPCs in vivo [31]. Similarly, adoptively transferred HSPCs from WT but not TLR2 KO 

(CD45.2) mice differentiate into macrophages in the spleen and bone marrow of congenic 

WT (CD45.1) recipient mice following C. albicans challenge, revealing direct recognition of 

C. albicans by HSPCs via TLR2 [24]. Moreover, adoptively transferred WT HSPCs produce 

macrophages in Dectin-1 KO recipient mice in response to β-glucan and C. albicans yeast, 

further demonstrating direct HSPC recognition of β-glucan via Dectin-1 [29]. These data 

demonstrate the relevance of direct recognition of microbes and microbial components by 

HSPCs via PRRs in the induction of emergency myelopoiesis.

However, microbes also instruct HSPC differentiation indirectly via inflammatory cytokines 

released by mature immune cells and non-hematopoietic cells during homeostasis and 

infection, including by altering the hematopoietic niche, which regulates HSPC homing, 

differentiation, and proliferation [54,55]. Bone marrow mesenchymal stromal cells (MSCs), 

for example, express a variety of PRRs and produce inflammatory cytokines upon 

exposure to TLR agonists [56,57]. Cytokines such as IL-6, IL-7, Flt3L, TPO and SCF 

secreted by MSCs in response to microbiota-derived Nod1 ligands have been shown to 

maintain steady-state hematopoiesis [13] (Figure 2C). Similarly, the expression of TLR4 

by non-hematopoietic cells is indispensable for LPS-induced granulopoiesis in mice [28]. 

Furthermore, MSCs from GF mice show dysregulated cytokine production and increased 

proliferation in cultures, an effect that is normalized upon colonization of the mice with 

the microbiota of SPF mice [55]. Single cell RNA-sequencing also revealed that altered 

expression of metabolic pathway, HIF-1/inflammatory signaling, and neurodegenerative 

pathway genes is associated with the abnormal function MSCs in GF mice. Microbiota-

derived bacterial DNA can also induce TLR-mediated production of inflammatory cytokines 

such as TNF-α, IL-1β and IL-6 by bone marrow CX3CR1+ mononuclear cells, which in turn 

promotes progenitor differentiation and myelopoiesis [58] (Figure 2C).

A variety of cytokines and growth factors regulate hematopoiesis in the steady-state and 

during emergency myelopoiesis, including interleukins (e.g. IL-1β, IL-3, IL-6), type I 

and II interferons, granulocyte and/or monocyte colony stimulating factors (G-CSF, M-

CSF, GM-CSF), stem cell factor (SCF), and Fms like tyrosine kinase 3 ligand (FLT3L). 

Some act broadly to promote HSPC survival and lineage restriction, whereas others 

specifically induce lineage commitment [4,5]. For instance, IL-3 is essential for emergency 

myelopoiesis during polymicrobial sepsis in mice [27], and IL-1β induces proliferation and 

differentiation of mouse LT-HSCs into myeloid cells by programing their gene expression 
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network towards myeloid differentiation [59,60]. JAK/STAT signaling, which is critical for 

myelopoiesis induced by inflammatory cytokines, is also important for CpG DNA-induced 

myelopoiesis in vivo, which suggests that CpG acts indirectly via cytokines to promote 

myelopoiesis [19,61]. However, the inflammatory cytokines responsible for CpG DNA-

induced myelopoiesis are not known. TNF-α has been shown to increase the expression 

of PU.1, the master regulator of myeloid differentiation, in mouse HSCs following LPS 

stimulation, demonstrating its role in LPS-induced myelopoiesis [62]. Granulopoiesis 

induced by infection of mice with Ehrlichia muris is mediated via IFN-γ stimulation of 

HSPCs [23], and IFN-α induces quiescent HSCs to enter the cell cycle following Poly 

I:C treatment [63]. Autocrine and/or paracrine effects of cytokines produced by HSPCs 

themselves may also play a role. Indeed, single cell proteomics revealed that ST-HSCs 

and MPPs produce a variety of cytokines via NF-κB signaling in response to LPS and 

Pam3CSK4 [64].

HSPCs likely sense multiple stimuli simultaneously or sequentially, and type I and type 

II IFN signaling pathways have been shown to collaborate with TLRs in activating 

HSPCs during emergency myelopoiesis [22,33,46,63,65]. For instance, R848 and IFN-β 
synergistically induce macrophage production by mouse CMPs, and CMP differentiation to 

macrophages induced by R848, LPS and CpG DNA is inhibited in the absence of IFNAR 

(the IFNα/β receptor) [46] (Figure 2B). HSPC PRRs may also detect DAMPs released by 

other cells in response to cell death or tissue damage induced by pathogens.

Long-Term Effects of Microbial Sensing by HSPCs

In addition to transiently inducing emergency myelopoiesis, acute exposure to microbes can 

have longer-lasting consequences, such as metabolic changes and epigenetic modifications 

in HSPCs that contribute to trained immunity or other forms of innate immune memory 

[22,25,66,67]. Previously activated HSPCs may respond differently to secondary microbial 

challenge with the same or different microbes or microbial products (homologous or 

heterologous stimuli), including in terms of gene expression, differentiation, and the 

functional programming of their progeny. For example, HSPCs from β-glucan-treated mice 

remain myeloid-biased for at least 28 days, and LT-HSCs from β-glucan-treated donor 

mice transplanted into naïve recipient mice 28 days after β-glucan treatment produce 

proportionately more myeloid cells and fewer B cells than LT-HSCs from control donors 

[25]. Remarkably, mice that received serially transplanted LT-HSCs from LPS-treated 

donors are better protected against Pseudomonas aeruginosa infection than those receiving 

transplants from control PBS-treated donors due to c/EBPβ-driven epigenetic changes that 

maintain increased myeloid output [67]. Functional effects on the progeny of exposed 

HSPCs may also persist. For example, 3 months after BCG vaccination in humans, bone 

marrow HSPCs possess transcriptomic alterations consistent with primed innate immune cell 

function (trained immunity) [68].

Concluding Remarks and Future Directions

Regulation of hematopoiesis is critical for balanced production of blood cells in the steady-

state. An appropriate response of the hematopoietic system to infection is equally important 
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for increased production of myeloid cells to combat pathogens. Therefore, a thorough 

understanding of how HSPCs respond to microbial stimuli is important. As we have 

discussed, HSPCs can respond to microbes both directly via PRR-mediated recognition and 

indirectly via cytokines and other factors secreted by hematopoietic and non-hematopoietic 

cells in the steady-state and during infection. The current literature suggests that signaling 

from commensal microbes to HSPCs is essential for steady-state hematopoiesis, and that 

myeloid-biased hematopoiesis is promoted during infection, although it is unclear to what 

degree the underlying mechanisms of microbial-promoted myeloid differentiation overlap 

in these contexts. For instance, the indirect effects of microbial components such as TLR 

agonists in a healthy gut with an intact intestinal barrier may differ considerably from the 

effects of the same microbial components in the circulation during infection.

The consequences of such exposure may also be distinct. For instance, exposure to 

commensal microbial components in the context of an intact intestinal barrier, accompanied 

by production of protective microbial metabolites may be beneficial to promote a 

healthy balance of HSC maintenance and immune cell differentiation, whereas commensal 

microbial components in the circulation as a consequence of microbial dysbiosis and 

intestinal permeability may disrupt HSC quiescence and induce imbalanced hematopoiesis. 

Peptidoglycan and DNA derived from commensal bacteria are present in the circulation of 

healthy young mice [10,58], but microbial dysbiosis and increased intestinal permeability 

together elevate levels of circulating microbial components, leading to low-grade chronic 

inflammation during aging, obesity and type 2 diabetes [54,69–73]. Myeloid-biased 

hematopoiesis, as suggested by increased numbers of myeloid progenitors in the bone 

marrow and mature myeloid cells in the circulation, has been demonstrated during 

aging, obesity and type 2 diabetes, [59,74–80], and there may therefore be a direct 

connection between elevated commensal microbe-derived components and myeloid-biased 

hematopoiesis under such stress conditions (Figure 1). Indeed, chow diet-fed mice have 

increased MPP and myeloid progenitor numbers after fecal transplantation from high fat 

diet-fed obese mice, which implicates the altered gut microbiome in obesity-associated 

increased myelopoiesis [54]. However, it is not yet clear how bone marrow HSPCs respond 

to the altered gut microbiome during such stress. Moreover, TNF-α has been implicated 

in loss of intestinal barrier integrity [73] and in increased myelopoiesis in old mice [79], 

supporting a role for microbial dysbiosis in myeloid-biased hematopoiesis during aging. 

Targeting PRR-mediated signaling in HSPCs and niche-associated cells may therefore have 

therapeutic potential.

Moreover, the concept of microbe-induced training of innate immune cells has recently 

given rise to the prospect of trained immunity-based vaccines, which might induce long-term 

immunity against a broad spectrum of pathogens via effects on myeloid cells and their 

progenitors [81]. For example, the elevated responses of monocytes from BCG-vaccinated 

mice and humans to heterologous microbial challenges ex vivo supports the potential 

success of trained immunity-based vaccines. Additional studies probing how microbial 

components impact HSPCs and their progeny are therefore important to inform this area of 

research.
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Significance Statement:

Commensal and pathogenic microbes play key roles in the maintenance and 

differentiation of hematopoietic stem cells in the bone marrow. A healthy microbiome 

supports balanced hematopoiesis, and production of innate immune cells can be 

enhanced during infection to facilitate pathogen clearance and restoration of homeostasis. 

Dysregulated hematopoiesis, however, can underlie defective immune function, 

hematopoietic exhaustion, and inflammatory pathology. Defining mechanisms of direct 

and indirect microbial sensing by hematopoietic stem and progenitor cells could lead 

to development of therapeutic strategies to maintain and restore hematopoietic balance, 

immune health and organ function.
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Figure 1. Regulation of hematopoiesis by microbes.
(A) Left panel: Microbial components and metabolites derived from commensal microbes in 

the healthy gut maintain balanced hematopoiesis in the steady-state. Middle panel: During 

infection, invading pathogens and their components induce myeloid-biased hematopoiesis 

(emergency myelopoiesis). Right panel: Myeloid-biased hematopoiesis during aging and 

under stress conditions such as obesity and type II diabetes may be a consequence of 

commensal microbial dysbiosis and intestinal permeability, which results in elevated levels 

of microbes and microbiome-derived components in the circulation.
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Figure 2. Mechanisms of direct and indirect microbial sensing by HSPCs.
(A) Direct and indirect mechanisms of microbial sensing regulate HSPC maintenance and 

differentiation. Microbial components and metabolites derived from the microbiome are 

present in the circulation, so it is possible that they, as well as invading pathogens and their 

components, can be sensed directly by bone marrow HSPCs via their PRRs, including TLRs. 

HSC niche cells, such as mesenchymal stromal cells (MSCs) and CX3CR1+ mononuclear 

cells, can also detect microbes using PRRs and release pro-inflammatory cytokines to 

regulate HSPCs. Circulating cytokines released by mucosal macrophages sensing gut 

microbiome-derived components and metabolites may also be detected by HSPCs in the 

bone marrow. DAMPs produced by dying cells or damaged tissues may also be detected by 

HSPC PRRs. (B) During emergency myelopoiesis induced by the TLR7 agonist R848, direct 

detection by common myeloid progenitors (CMPs) stimulates NFκB-mediated induction 

of myeloid lineage genes such as Sfpi1 (PU.1), Csf1r and Cebpβ. NFκB also induces 

IFN-β production, and autocrine detection of IFN-β by IFNAR induces TLR7 upregulation 

and synergistic activation of PI3K-mTOR signaling to promote CMP differentiation into 

macrophages [46]. (C) One mechanism proposed for microbiome-mediated HSPC regulation 

in the steady-state is detection of commensal bacterial DNA (bDNA) by bone marrow 

CX3CR1+ mononuclear cells (presumably via endocytic TLR9) following delivery of the 

bDNA from the gut in extracellular vesicles (EVs) [58]. Microbiome-derived Nod1 ligands 
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(Nod1L) are also sensed by MSCs [13]. Cytokines produced by these cells promote HSPC 

proliferation and differentiation to maintain steady-state hematopoiesis.
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