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Abstract

Estimates of the sizes of key populations (KPs) affected by HIV, including men who have 

sex with men, female sex workers and people who inject drugs, are required for targeting 

epidemic control efforts where they are most needed. Unfortunately, different estimators often 

produce discrepant results, and an objective basis for choice is lacking. This simulation study 

provides the first comparison of information-theoretic selection of loglinear models (LLM-AIC), 

Bayesian model averaging of loglinear models (LLM-BMA) and Bayesian nonparametric latent-

class modeling (BLCM) for estimation of population size from multiple lists. Four hundred 

random samples from populations of size 1,000, 10,000 and 20,000, each including five encounter 

opportunities, were independently simulated using each of 30 data-generating models obtained 

from combinations of six patterns of variation in encounter probabilities and five expected per-

list encounter probabilities, producing a total of 36,000 samples. Population size was estimated 

for each combination of sample and sequentially cumulative sets of 2–5 lists using LLM-AIC, 

LLM-BMA and BLCM. LLM-BMA and BLCM were quite robust and performed comparably in 

terms of root mean-squared error and bias, and outperformed LLM-AIC. All estimation methods 

produced uncertainty intervals which failed to achieve the nominal coverage, but LLM-BMA, as 

implemented in the dga R package produced the best balance of accuracy and interval coverage. 

The results also indicate that two-list estimation is unnecessarily vulnerable, and it is better to 

estimate the sizes of KPs based on at least three lists.
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Introduction

Among the 1.7 million new HIV infections globally in 2018, 54% occurred among key 

populations (KPs), particularly female sex workers (FSW), people who inject drugs (PWID), 

men who have sex with men (MSM), transgender women, clients of sex workers, and 

sex partners of other KP members [1]. Even in the generalized HIV epidemics in eastern 

and southern Africa where 75% of new infections occurred among the general population, 

targeted scale-up of antiretroviral therapy and other interventions among KPs may be the 

most efficient way to avert new infections [2, 3]. For those reasons, provision of HIV 

services to KPs has long been an important component of the (United States) President’s 

Emergency Plan for AIDS Relief [4] and The Global Fund to Fight AIDS, Tuberculosis and 

Malaria [5]. Scaling and targeting of life-saving HIV services to KPs, and evaluating the 

efficacy of those services requires knowledge about the sizes of KPs [6].

KP members are often adversely affected by discrimination and stigma [7]. Stigma and 

criminalization [8] create incentives for key population members to remain hidden, which 

challenges both population size estimation (PSE) and provision of HIV services. Therefore 

multiple methods of PSE have been recommended [9]. PSE based on the method known 

by the monikers “capture-recapture” and the “multiplier method” is a statistically principled 

approach which has been widely used to estimate the sizes of KPs [10–20]. Such multiple-

list PSE is commonly based on only two lists, but three-or-more-list estimation [21–24] is 

becoming increasingly common.

Ratio estimation of population sizes from partial observations from two lists (sources or 

sampling events) dates to 1786 [25], and later became known as “capture-recapture” or 

“mark-recapture” estimation among animal ecologists [26, 27]. Although early applications 

and developments focused heavily on non-human animal populations, the methods have 

been applied more broadly including human birth registration [28], census undercount 

[29], and epidemiological applications [30–32] which trace back to at least 1968 [33]. 

“Multiplier” or “service-multiplier” estimation in the public-health literature [34–37] is 

a rediscovery of ratio estimation of population sizes. The essential data are counts of 

population members that are recorded on two lists (sources), wherein individuals on the 

first list can be defined as “marked” and those on the second list are tabulated as either 

previously encountered (“recaptured”) or newly encountered. Estimation from two lists 

requires the strong assumptions that 1) the population is static over the observation interval, 

2) previously encountered individuals are identified without error, 3) individuals are sampled 

independently, and 4) all population members share a common and constant probability of 

encounter. The first assumption is well-approximated by sampling over short time intervals. 

The second and third assumptions remain uncertain in KPs because humans can choose 

whether or not interview or to disclose a previous encounter. The fourth assumption is 

untenable for KPs; it is inconceivable that all KP members share a common and constant 

probability of encounter. Rather, we should expect that individual KP members are highly 

inhomogeneous in their encounter probabilities.

Subsequent statistical developments included accommodation of more than two encounter 

sources (survey rounds or service rosters) [38], which enables relaxation of the fourth 
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assumption via the development of model-based estimation using distribution mixtures 

[39, 40] and loglinear models (LLMs) of observation frequencies [41] or encounter 

probabilities [42]. Multiple variations of LLMs which satisfy different assumptions about 

inhomogeneities in encounter probabilities are commonly fitted to the data, and then 

the “best” model by some criterion (usually Akaike’s Information Criterion, AIC) is 

selected for estimation of N. That conventional approach is henceforth denoted LLM-AIC. 

Unfortunately, two or more LLM variations can fit data equally well and yet produce very 

different estimates and uncertainty intervals [43].

Discrepant estimates occur because the population-size parameter N is generally not 

identified [40, 44, 45]. Roughly, a parameter is said to be unidentified whenever its true 

value remains unknown given an infinite number of observations. Recognition of the 

unidentifiability of PSE parameters seems absent from the epidemiological and public-health 

literature, yet it has enormous implications for estimation. The lower bound of population 

size [46] is identified [47], but is rarely the desired target for KPs.

More recent Bayesian developments eliminate the need for model selection and may 

improve robustness. Bayesian model averaging of loglinear models (LLM-BMA) reduces 

the volatility resulting from choice of a single model by properly accounting for 

model uncertainty [48]. The feasible set of LLMs are fitted and N is estimated as 

the model-probability-weighted average from those LLMs. Bayesian nonparametric latent-

class modeling (BLCM) [49] abandons the LLM framework in favor of estimation from 

distribution mixtures. Consider that—with sufficient information—a population that is 

inhomogeneous with respect to encounter probability could be correctly stratified into some 

potentially large number of homogeneous classes. It that case, a well-informed distribution 

mixture could be employed to estimate N. However the number of homogeneous classes is 

unknown in practice. Instead, BLCM “learns” the most probable latent classes from the data 

in a Bayesian way, and prevents over-parameterization by imposing a parsimonious prior 

distribution.

Public-health scientists who estimate the sizes of KPs need to know the performances 

of alternative estimation methods in order to make informed choices. To obtain a more 

objective basis for choice, LLM-AIC, LLM-BMA and BLCM were compared using 

simulated populations of known size and different patterns of variation in encounter 

probability. Secondarily, the frequencies with which LLM-AIC correctly matches the 

underlying data-generating models were quantified, and the performance of selected 

heterogeneity corrections in LLM-AIC estimation were compared.

Materials and methods

Study design

The numbers of population members in simulated samples from known populations were 

estimated using LLM-AIC, LLM-BMA and BLCM. The population sizes, inhomogeneities 

in encounter probabilities and the number of observation events/lists were varied in the 

simulated samples to assess the effects of those factors on PSE. The simulated data enabled 

comparison among methods based on their abilities to estimate the true population size.
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Sample simulation

Four hundred random samples from populations of size N = 1,000, 10,000 and 20,000, 

each including five encounter opportunities, were independently simulated from each 

combination of six models of variation in encounter probabilities p, and five expected 

per-list encounter probabilities E(p), producing a total of 36,000 samples from which to 

estimate N based on 2–5 lists. The population sizes were chosen to align with KP size 

estimates, which commonly fall in the range of 103–104, and 20,000 was a compromise for 

computational feasibility in simulations.

The patterns in encounter probability are standards from the literature [50–52]. The choice 

of inhomogeneity patterns was a simplification for comparative purposes; the patterns 

in KPs may be nearly infinite. The “heterogeneity” model ℳℎ accommodates encounter 

probabilities which vary among individuals. Humans are capable of complex behaviors 

and preferences, including variations in propensities to seek social and sexual contacts, 

attend particular venues, or seek services from organizations through which encounters 

may be listed. Therefore we should not expect KP members to share a common encounter 

probability. The “temporal” model ℳt allows encounter probabilities to vary over lists/

times. Encounter probabilities might vary with many temporal factors including, weather, 

economic conditions, day-of-the week, and variations in law-enforcement efforts. The 

assumption that KP members have temporally constant encounter probability is extreme 

and risks biased estimation. The “behavioral” model ℳb imposes a common expected 

probability of first encounter on each individual and—after the first encounter—that 

individual’s encounter probability is henceforth increased or decreased. For this study, the 

expected encounter probabilities were reduced by 50% after the first. Behavioral effects 

can arise when, for example, the first contact tends to be either pleasing or displeasing 

to KP members. For example, FSW might seek out subsequent contacts with surveyors if 

the “mark” (typically a uniquely identifiable gift) received during their first contact was 

perceived to be desirable. Conversely, MSM and PWID might avoid subsequent contacts 

with recognizable surveyors in order to minimize their risk of recrimination or prosecution. 

Given the complexity of human behavior, we should anticipate combinations of all three 

basic patterns of inhomogeneity. Models ℳtℎ, ℳbℎ and ℳtbℎ are combinations of ℳℎ, ℳt
and ℳb.

Individual encounter histories were simulated from beta-Bernoulli distributions given by 

yijk ~ Bernoulli(pijk) and pijk ~ Beta(θijk), where pijk denotes the encounter probability for 

sample i, i = 1, . . ., 400, individual j, j = 1, . . ., N and list k, k = 1, . . ., 5. The θijk are 2 

× 1 vectors of shape parameters (β1, β2) (Table 1), which were chosen to produce expected 

encounter probabilities E(p) = 0.025, 0.050, 0.100, 0.150 and 0.200 given a coefficient 

of variation of 0.85. The inhomogeneities in encounter probabilities, as measured by the 

standard deviation of the Beta distribution, ranged by more than a factor of eight from 0.021 

to 0.170 (Fig 1). The complete encounter history for individual j in sample i and lists 1, . . ., 

k is the k-element vector yijk of zeros and ones, wherein a one in position k indicates that 

the individual appears on list k and a zero indicates absence. Given a total of K lists, there 

are 2K − 1 observable encounter histories and one unobservable history consisting entirely of 

Gutreuter Page 4

PLOS Glob Public Health. Author manuscript; available in PMC 2023 March 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



zeros. The unobservable encounter histories were removed from the simulated data prior to 

estimation.

Given encounter probability p and k lists of encounters, the proportion of population 

members observed for the first time from list k is given by p1(k) = p(1 − p)k−1, which 

has expectation with respect to the Beta distribution

E p1(k) =
Γ β1 + β2 Γ β1 + 1 Γ β2 + k + 1

Γ β1 Γ β2 Γ β1 + β2 + k ,

where Γ(･) denotes the Gamma function, and β1 and β2 are the shape parameters of 

the Beta distribution (S1 Text). Therefore the expected percentages of the populations 

observed at least once ranged from 4.9% for two lists with E(p) = 0.025, to 54.7% from 

five lists with E(p) = 0.200 (Table 1). That may encompass the most likely range of 

sampling percentages from encounters within KPs affected by HIV. For example, sampling 

encountered approximately 10%, 22% and 30% of the estimated sizes of the MSM, PWID 

and FSW populations, respectively, in Kampala, Uganda [22].

Estimation

The population-size parameter N was estimated from each combination of estimation 

method, sample replicate, data-generating model and sequentially cumulative sets of K 
= 2, . . ., 5 lists. The first estimation method was traditional LLM-AIC estimation as 

implemented in the Rcapture package [53] for R [54]. This traditional application of model 

selection to multiple-list population-size estimation ignores model uncertainty. The Rcapture 

package is comprehensive, and was used only to implement estimation of models ℳb, ℳt, 

ℳℎ, ℳbℎ and ℳtℎ. Models ℳbt and ℳbtℎ are not loglinear; the latter cannot be fitted using 

Rcapture, and estimation of the former is unstable and was ignored in this study. Fitted 

models were compared using AIC, and the model having the smallest AIC was selected for 

estimation of N.

The Rcapture package enables use of alternative heterogeneity corrections in models 

ℳℎ, ℳbℎ and ℳtℎ. Use of more than one heterogeneity correction is problematic 

because estimates can vary substantially among the correction methods and yet share a 

common AIC, leaving the analyst without any objective basis for choice. Estimates from 

the “Poisson2” heterogeneity correction for models ℳℎ, ℳbℎ and ℳtℎ were used for 

comparison in this simulation study, per the demonstration of superiority in S1 Table.

The second method was LLM-BMA [48], as implemented in the dga R package [55], which 

accounts for model uncertainty. The dga package is currently limited to 3–5-list sampling. 

The set of feasible estimation models is a large superset of our data-generating models, and 

increases geometrically in size with the number of lists included in the estimation. Each 

feasible model and model probabilities are computed for each. The final PSE estimate is 

the probability-weighted average of model-specific estimates. The prior maximum number 

of unobserved population members was set to 10N, based on the premise that the true size 

of KPs might be known within an order of magnitude. The hyperparameter for the hyper-
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Dirichlet prior on list intersection probabilities was set to 2−K, where K = 3, . . ., 5 denotes 

the number of lists included in the estimation, as recommended by the package authors. 

A brief sensitivity analysis of the prior specification is presented in S1 Text. Estimation 

of N is based on Laplace approximation, which nonetheless becomes computationally time-

consuming with increasing K because of the large number of feasible models.

Last, population size was estimated using Bayesian nonparametric latent-class modeling 

[49], (BLCM) as implemented in the LCMCR R package. The value for the maximum 

number of latent classes was set to 10. The prior distribution for the vector of latent-class 

probabilities is a stick-breaking formulation of a Dirichlet process prior having parameter 

α. That prior concentrates the probability mass on the first few latent classes to avoid 

overfitting. The hyperprior for α is a Gamma distribution having parameters a and b, which 

were both set to 0.25 to provide a reasonably vague specification for the simulations [49]. 

A brief sensitivity analysis of the prior specification is presented in S1 Text. Estimation is 

based on Markov Chain Monte Carlo (MCMC) simulation. Based on a preliminary analysis, 

pre-convergence “burn-in” samples of 500,000 iterations were discarded and the posterior 

sample consisted of an additional 50,000 iterations out of 5,000,000 after thinning by 100 

to reduce autocorrelation. In practice, far fewer burn-in iterations are typically required. The 

numbers chosen here assured convergence and stable estimation of posterior quantiles with 

small Monte Carlo error.

The resulting LLM-AIC, LLM-BMA and BLCM estimates Ni were compared using 

estimated root mean-squared error (RMSE = 1
m ∑i = 1

m N − Ni
2, bias = E Ni − N  and the 

estimated coverage probabilities of uncertainty intervals (95% profile-likelihood confidence 

intervals for LLM-AIC, and Pr = 0.95 credible intervals for LLM-BMA and BLCM). Mean-

squared error is the sum of sampling variance and squared bias, and is an omnibus measure 

of accuracy and precision of estimation. LLM-AIC, LLM-BMA and BLCM estimates were 

compared over the aggregated set of data-generating models in order to assess estimation of 

real populations, for which the underlying data-generating processes are never known.

Finally, the unreliability of LLM-AIC to correctly match underlying data-generating models 

ℳℎ, ℳt, ℳb, ℳbℎ and ℳtℎ was evaluated to illustrate a consequence of unidentified 

parameters. All computations were performed using R 4.0.3 [54]. R code and population-

size estimates are provided in S1 File.

Results

Comparative performance of LLM-AIC, LLM-BMA and BLCM estimation

Population-size estimates from all methods exhibited at least some evidence of multiple 

modes across expected encounter probabilities and numbers of encounter events over the 

mix of data-generating models (Fig 2). The LLM-AIC estimates exhibited the largest ranges, 

usually spanning more than seven orders of magnitude. The distributions of LLM-AIC 

estimates were reasonably compact for estimating populations of 1,000 only where the per 

event expected encounter probability was 0.2 over five sampling events. LLM-BMA and 

BLCM modeling performed nearly equally, but BLCM estimation produced distributions 
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having longer lower tails. LLM-BMA and BLCM estimation outperformed LLM-AIC 

estimation in terms of both root mean-squared error (RMSE) and bias (Table 2). The 

estimated RMSEs and bias of the LLM-AIC estimates were effectively infinite for all 

combinations of population size and expected encounter probability when estimating from 

two lists, and estimates sometimes exceeded 1019, which is a manifestation of unidentified 

parameters. LLM-AIC estimation became moderately reliable in terms of RMSE and bias 

from three-event sampling only where the expected per-event encounter probabilities were 

at least 0.150. In contrast, RMSEs and bias from both BLCM and LLM-BMA estimation 

indicated that those methods produced estimates within the correct order of magnitude 

across all expected encounter probabilities and three or more sampling events, and BLCM 

estimation produced similarly reasonable estimates from two sampling events.

Uncertainty intervals from LLM-AIC and BLCM estimation almost always failed to achieve 

nominal coverage, and produced intervals which were too narrow (Table 3). In contrast, 

the credible intervals from LLM-BMA estimation tended to be too wide, with coverage 

probabilities frequently larger than 0.98.

Relative RMSE was largely constant across true population sizes (Fig 3), indicating that the 

results of of this study apply at least over the range of simulated population sizes. Relative 

RMSE was also independent of the expected encounter probabilities.

Ability of LLM-AIC to match the data-generating models

Loglinear model selection offers the hope of inferring the type of variation in encounter 

probabilities. For example, if the AIC-best fitting model happens to be ℳℎ, then one 

might hope that encounter probabilities differed among individuals, but not over time, and 

similarly there would be no behavioral effect. That would be more than one should hope 

for because the parameter N is almost always unidentified. The simulation results provide 

a concrete illustration of the consequences of unidentifiability. No more than 8.1% of the 

replicate data sets generated by ℳtℎ and no more than 24.8% of the replicates generated 

by ℳbℎ were correctly identified by the AIC-best model in populations of size 1,000 

and 20,000 (Table 4). Correct matching of ℳb and ℳℎ data and models increased with 

increasing expected detection probability and, less distinctly, with the number of sampling 

lists. Matchings by data-generating model are shown in S2 Table.

Discussion

PSE is inherently challenging, and especially for KPs affected by discrimination, 

prosecution and stigma. Unlike inanimate or non-human population members, people can 

refuse contact and acceptance/disclosure of marks. For key populations those marks are 

typically inexpensive small gifts or membership on some service list. It is unreasonable to 

expect that all people will share a common and constant propensity seek services from a 

particular entity, or to accept interpersonal contact and marks, and to disclose prior receipt 

of a mark. Therefore ℳℎ may be the simplest plausible form of inhomogeneity among 

KPs, and more complex forms than those used in these simulations may be in play. For 

example, some KP members might increase their encounter probability after the first contact 
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if they find the gift marks attractive while others might decrease their subsequent encounter 

probabilities, leading to distribution mixtures of different behavioral effects.

A priori, the analyst confronting PSE has no knowledge of patterns of variation in encounter 

probabilities. Worse, the lack of identifiability of model parameters [44, 45] precludes the 

possibility of reliable inference about the form of inhomogeneity, as is clearly illustrated 

by the results of this study. Therefore the analyst can never be confident that any model 

matches the underlying data-generating process. Model uncertainty is especially problematic 

where the estimates differ substantially, which is often the case. The only practical recourse 

is to use estimation methods which are robust to model uncertainty and inhomogeneities in 

encounter probabilities.

LLM-BMA and BLCM estimation demonstrated considerable robustness. Both generally 

outperformed LLM-AIC in terms of sample RMSE and bias, except where per-list 

encounter probabilities were at least 0.1. Two-list LLM-AIC estimation—which has been 

commonplace for PSE—was unreliable across all three population sizes and all expected 

encounter probabilities. LLM-BMA and BLCM estimates were generally comparable and 

never produced effectively infinite RMSEs. RMSEs decreased with increasing numbers of 

lists across all three methods, which should be unsurprising given that the observed fraction 

of a population increases with the number of lists.

All three PSE methods failed to achieve the nominal 95% coverage for uncertainty intervals 

in these simulations. LLM-AIC and BLCM estimation produced intervals with substantially 

less than the nominal coverage, while LLM-BMA estimation, as implemented in the dga 

package for R, produced highly conservative intervals. Overall, LLM-BMA estimation 

tended to produce the best balance of accuracy and interval coverage in this study.

The dga package for R is convenient for loglinear model averaging, but other options are 

available with greater effort. For example, frequentist model averaging has been proposed 

[56], but was not considered here because it requires custom coding by the analyst. Likely 

more important, frequentist model averaging lacks the theoretical grounding of BMA and 

does not exploit prior information on N, so that practically infinite estimates are not 

precluded. In practice, some upper bound of convenience on N is always known. For 

example, the number of FSW and cannot be larger than the female population, and the 

number of MSM is highly unlikely to be more than 10% of the male population in most 

settings [57, 58]. Therefore the ability to constrain the upper bound on N in the prior for 

Bayesian model averaging as implemented in the dga package is an advantage.

The limitations of this study arise from reliance on Monte Carlo simulation, which 

provides weaker conclusions than formal mathematical proof. However, simulation is 

the only practical way to compare estimates with known population sizes. Monte Carlo 

simulation relies on machine-generated pseudo-random numbers, and therefore results will 

vary slightly across different streams of random numbers. All results from this simulation 

study are conditional on the choice of data-generating models, and also on control and 

prior parameters for the estimation models. The choice of data-generating models was broad 

and representative of commonly expected patterns of variation in encounter probability, but 
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was not exhaustive. Results may differ from other data-generating models, other control 

and prior parameters for estimation, and other true population sizes and numbers of lists. 

Still, this simulation study provides the first cross-cutting comparison of the performance 

distinctly different PSE methods, and provides an objective basis for choice among those 

methods.

Conclusion

The results of this simulation study strongly suggest that some form of comprehensive 

model averaging or latent-class modeling should be the default choice for PSE, and that 

estimation should be based on data from at least three encounter events or lists. The 

two Bayesian approaches, LLM-BMA and BLCM, were more robust than LLM-AIC. 

LLM-BMA, as implemented in the freely available dga R package is particularly appealing 

because the analyst will almost always have some prior information on population size. 

Although none of the methods produced uncertainty intervals that achieved nominal 

coverage, the conservative intervals produced by LLM-BMA, as implemented in the dga 

R package, came closest in these simulations.

All of the estimation methods compared in this study are implemented using the freely 

available R packages. However, they are also easily accessible to those unfamiliar with R via 

web-based Multiple Source Recapture web application at https://www.epiapps.com/.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The author is grateful to Anne McIntyre and Wolfgang Hladik (CDC-Atlanta) and reviewers for helpful comments 
and suggestions, and to the many participants in a multi-organization workshop on key-population size estimation 
held at the Aurum Institute, Pretoria, South Africa in 2018, for helpful discussions about the operational and 
societal challenges presented by discrepant estimates.

Funding:

This study has been supported by the United States President’s Emergency Plan for AIDS Relief (PEPFAR) 
through the U.S. Centers for Disease Control and Prevention (CDC). The funders had no role in study design, data 
collection and analysis, decision to publish, or preparation of the manuscript. The findings and conclusions in this 
publication are those of the author and do not necessarily represent the official position of the funding agencies.

Data Availability Statement:

All data needed to replicate all of the figures, graphs, tables, statistics, and other values are 

provided within Supporting Information S1 File.

References

1. UNAIDS. UNAIDS Data 2019. Joint United Nations Programme on HIV/AIDS (UNAIDS); 2019. 
JC2959E. Available from: https://www.unaids.org/sites/default/files/media_asset/2019-UNAIDS-
data_en.pdf.

Gutreuter Page 9

PLOS Glob Public Health. Author manuscript; available in PMC 2023 March 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.epiapps.com/
https://www.unaids.org/sites/default/files/media_asset/2019-UNAIDS-data_en.pdf
https://www.unaids.org/sites/default/files/media_asset/2019-UNAIDS-data_en.pdf


2. Anderson SJ, Cherutich P, Kilonzo N, Cremin I, Fecht D, Kimanga D, et al. . Maximising the effect 
of combination HIV prevention through prioritisation of the people and places in greatest need: A 
modelling study. The Lancet. 2014; 384(9939):249–256. 10.1016/S0140-6736(14)61053-9

3. Stone J, Mukandavire C, Boily MC, Fraser H, Mishra S, Schwartz S, et al. Estimating the 
contribution of key populations towards HIV transmission in South Africa. Journal of the 
International AIDS Society. 2021; 23(1):e25650. 10.1002/jia2.25650

4. President’s Emergency Plan for AIDS Relief (PEPFAR. PEPFAR 3.0. Washington, DC: Office of 
the Global AIDS Coordinator, U.S. Department of State; 2014.

5. The Global Fund. The Global Fund Strategy 2017–2022: Investing to End Epidemics. Geneva: 
The Global Fund to Fight AIDS, Tuberculosis and Malaria; 2016. Available from: https://
www.theglobalfund.org/media/2531/core_globalfundstrategy2017-2022_strategy_en.pdf.

6. Holland CE, Kouanda S, Lougue M, Pitche VP, Schwartz S, Anato S, et al. . Using population-
size estimation and cross-sectional survey methods to evaluate HIV service coverage among 
key populations in Burkina Faso and Togo. Public Health Reports. 2016; 13(6):773–782. 
10.1177/0033354916677237

7. Grossman CI, Stangl AL. Global action to reduce HIV stigma and discrimination. Journal of 
the International AIDS Society. 2013; 16(Suppl 2):18881. 10.7448/IAS.16.3.18881 [PubMed: 
24242269] 

8. Davis SL, Goedel WC, Emerson J, Guven BS. Punitive laws, key population size estimates, and 
Global AIDS Response Progress Reports: an ecological study of 154 countries. Journal of the 
International AIDS Society. 2017; 20(1):21386. 10.7448/IAS.20.1.21386 [PubMed: 28364567] 

9. Working Group on Global HIV/AIDS UW. Guidelines on Estimating the Size of Populations 
Most at Risk to HIV. World Health Organization, Geneva.; 2011. Available from: http://
data.unaids.org/pub/manual/2010/guidelines_popnestimationsize_en.pdf.

10. Vuylsteke B, Vandenhoudt H, Langat L, Semde G, Menten J, Odongo F, et al. . Capture-recapture 
for estimating the size of the female sex worker population in three cities in Coˆte d’Ivoire and 
in Kisumu, western Kenya. Tropical Medicine and International Health. 2010; 15(12):1537–1543. 
10.1111/j.1365-3156.2010.02654.x [PubMed: 21054693] 

11. Paz-Bailey G, Jacobson JO, Guardado ME, Hernandez FM, Nieto AI, Estrada M, et al. How many 
men who have sex with men and female sex workers live in El Salvador? Using respondent-driven 
sampling and capture-recapture to estimate population sizes. Sexually Transmitted Infections. 
2011; 87(4):279–282. 10.1136/sti.2010.045633 [PubMed: 21385892] 

12. Bollaerts K, Aerts M, Sasse A. Improved benchmark-multiplier method to estimate the prevalence 
of ever-injecting drug use in Belgium, 2000–10. Archives of Public Health. 2013; 71:10. 
10.1186/0778-7367-71-10 [PubMed: 23642251] 

13. Karami M, Khazaei S, Poorolajal J, Soltanian A, Sajadipoor M. Estimating the population size 
of female sex worker population in Tehran, Iran: Application of direct capture-recapture method. 
AIDS and Behavior. 2017; 21:2394–2400. 10.1007/s10461-017-1803-9 [PubMed: 28623569] 

14. Safarnejad A, Nga NT, Son VH. Population size estimation of men who have sex with men in Ho 
Chi Minh City and Nghe An using social app multiplier method. Journal of Urban Health. 2017; 
94(3):339–349. 10.1007/s11524-016-0123-0 [PubMed: 28138799] 

15. Des Jarlais D, Khue PM, Feelemyer J, Arasteh K, Huong DT, Oanh KTH, et al. . Using dual 
capture/recapture studies to estimate the population size of persons who inject drugs (PWID) 
in the city of Hai Phong, Vietnam. Drug and Alcohol Dependence. 2018; 118:106–111. 10.1016/
j.drugalcdep.2017.11.033

16. Rich AJ, Lachowsky NJ, Sereda P, Cui Z, Wong J, Wong S, et al. Estimating the size of the MSM 
population in metro Vancouver, Canada, using multiple methods and diverse data sources. Journal 
of Urban Health. 2018; 95(2):188–195. 10.1007/s11524-017-0176-8 [PubMed: 28631060] 

17. Le G, Khuu N, Tieu VTT, Nguyen PD, Luong HTY, Pham QD, et al. Population size estimation of 
venue-based female sex workers in Ho Chi Minh City, Vietnam: Capture-recapture exercise. JMIR 
Public Health Surveillance. 2019; 5(1):e10906. 10.2196/10906 [PubMed: 30694204] 

18. Bozicevic I, Manathunge A, Dominkovic Z, Beneragama S, Kriitmaa K. Estimating the 
population size of female sex workers and transgender women in Sri Lanka. PLoS One. 2020; 
15(1):e0227689. 10.1371/journal.pone.0227689 [PubMed: 31940404] 

Gutreuter Page 10

PLOS Glob Public Health. Author manuscript; available in PMC 2023 March 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.theglobalfund.org/media/2531/core_globalfundstrategy2017-2022_strategy_en.pdf
https://www.theglobalfund.org/media/2531/core_globalfundstrategy2017-2022_strategy_en.pdf
http://data.unaids.org/pub/manual/2010/guidelines_popnestimationsize_en.pd
http://data.unaids.org/pub/manual/2010/guidelines_popnestimationsize_en.pd


19. Fearon E, Chabata ST, Magutshwa S, Ndori-Mharadze T, Musemburi S, Chidawanyika H, 
et al. . Estimating the population size of female sex workers in Zimbabwe: Comparison of 
estimates obtained using different methods in twenty sites and development of a national-level 
estimate. Journal of the Acquired Immune Deficiency Syndrome. 2020; 85(1):30–38. 10.1097/
QAI.0000000000002393

20. Sathane I, Boothe MAS, Horth R, Baltazar CS, Chicuecue N, Seleme J, et al. . Population size 
estimate of men who have sex with men, female sex workers, and people who inject drugs in 
Mozambique: A multiple methods approach. Sexually Transmitted Diseases. 2020; 47(9):602–608. 
10.1097/OLQ.0000000000001214 [PubMed: 32815901] 

21. Hay G, Richardson C. Estimating the prevalence of drug use using mark-recapture methods. 
Statistical Science. 2016; 31(2):191–204. 10.1214/16-STS553

22. Doshi RH, Apodaca K, Ogwal M, Bain R, Amene E, Kiyingi H, et al. Estimating the size 
of key populations in Kampala, Uganda: 3-source capture-recapture study. JMIR Public Health 
Surveillance. 2019; 5 (3):e12228. 10.2196/12118

23. Okiria AG, Bolo A, Achut V, Arkangelo GC, Michael ATI, Katoro JS, et al. l. Novel approaches 
for estimating female sex worker population size in conflict-affected South Sudan. JMIR Public 
Health and Surveillance. 2019; 5(1):e11576. 10.2196/11576 [PubMed: 30882356] 

24. Musengimana G, Tuyishime E, Remera E, Dong M, Sebuhoro D, Mulindabigwi A, et al. . Female 
sex workers population size estimation in Rwanda using a three-source capture-recapture method. 
Epidemiology and Infection. 2021; 149(e84):1–7. 10.1017/S0950268821000595

25. Laplace PS. Sur les Naissances, les Mariages et le Morts. In: Histoire de L’Académie Royale 
des Sciences. vol. 1893. Paris: L’Imprimerie Royale; 1786. p. 693–702. Available from: https://
biodiversitylibrary.org/page/28017501.

26. Dahl K Studies of trout and trout-waters in Norway. Salmon and Trout Magazine. 1919; 18:16–33.

27. Lincoln FC. Calculating Waterfowl Abundance on the Basis of Banding returns. U.S. Department 
of Agriculture; 1930. Available from: https://archive.org/details/calculatingwater118linc/page/n1.

28. Sekar CC, Deming WE. On a method of estimating birth and death rates and the extent 
of registration. Journal of the American Statistical Association. 1949; 44(245):101–115. 
10.1080/01621459.1949.10483294

29. Chao A, Tsay PK. A sample coverage approach to multiple-system estimation with application 
to census undercount. Journal of the American Statistical Association. 1998; 93(441):283–293. 
10.1080/01621459.1998.10474109

30. Rubin G, Umbach D, Shyu SF, Castillo-Chavez C. Using mark-recapture methodology to estimate 
the size of a population at risk for sexually transmitted diseases. Statistics in Medicine. 1992; 
11(12):1533–1549. 10.1002/sim.4780111202 [PubMed: 1439360] 

31. Hook EB, Regal RR. Capture-recapture methods in epidemiology: Methods and limitations. 
Epidemiological Reviews. 1995; 17(2):243–263. 10.1093/oxfordjournals.epirev.a036192

32. Héraud-Bousquet V, Lot F, Esvan M, Cazein F, Laurent C, Warszawski J, et al. A three-source 
capture-recapture estimate of the number of new HIV diagnoses in children in France from 
2003–2006 with multiple imputation of a variable of heterogeneous catchability. BMC Infectious 
Diseases. 2012; 12:251. 10.1186/1471-2334-12-251 [PubMed: 23050554] 

33. Wittes J, Sidel VW. A generalization of the simple capture-recapture model with 
applications in epidemiological research. Journal of Chronic Diseases. 1968; 21(5):287–301. 
10.1016/0021-9681(68)90038-6 [PubMed: 5675416] 

34. Hickman M, Hope V, Platt L, Higgins V, Bellis M, Rhodes T, et al. . Estimating prevalence of 
injecting drug use: a comparison of multiplier and capture-recapture methods in cities in England 
and Russia. Drug and Alcohol Review. 2006; 25(2):131–140. 10.1080/09595230500537274 
[PubMed: 16627302] 

35. Johnston LG, Prybylski D, Raymond HF, Mirzazadeh A, Manopaiboon C, McFarland W. 
Incorporating the service multiplier method in respondent-driven sampling surveys to estimate 
the size of hidden and hard-to-reach populations: Case studies from around the world. 
Sexually Transmitted Diseases. 2013; 40(4):304–310. 10.1097/OLQ.0b013e31827fd650 [PubMed: 
23486495] 

Gutreuter Page 11

PLOS Glob Public Health. Author manuscript; available in PMC 2023 March 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://biodiversitylibrary.org/page/28017501
https://biodiversitylibrary.org/page/28017501
https://archive.org/details/calculatingwater118linc/page/n1


36. Grasso MA, Manyuchi AE, Sibanyoni M, Marr A, Osmand T, Isdahl Z, et al. Estimating the 
population size of female sex workers in three South African cities: Results and recommendations 
from the 2013–2014 South Africa Health Monitoring Survey and stakeholder consensus. JMIR 
Public Health and Surveillance. 2018; 4(3):e10188. 10.2196/10188 [PubMed: 30087089] 

37. Chabata ST, Fearon E, Webb EL, Weiss HA, Hargreaves JR, Cowan FM. Assessing bias in 
population size estimates among hidden populations when using the service multiplier method 
combined with respondent-driven sampling surveys: Survey study. JMIR Public Health and 
Surveillance. 2020; 6(2): e15044. 10.2196/15044 [PubMed: 32459645] 

38. Schnabel ZE. The estimation of total fish population of a lake. American Mathematical Monthly. 
1938; 45(6):348–352. 10.2307/2304025

39. Dorazio RM, Royle JA. Mixture models for estimating the size of a closed 
population when capture rates vary among individuals. Biometrics. 2003; 59(2):351–364. 
10.1111/1541-0420.00042 [PubMed: 12926720] 

40. Holzmann H, Munk A, Zucchini W. On identifiability in capture–recapture models. Biometrics. 
2006; 62 (3):934–939. 10.1111/j.1541-0420.2006.00637_1.x [PubMed: 16984340] 

41. Fienberg SE. The multiple recapture census for closed populations and incomplete 2k contingency 
tables. Biometrika. 1972; 59(3):591–603. 10.2307/2334810

42. Cormack RM. Log-linear models for capture-recapture. Biometrics. 1989; 45(2):395–413. 
10.2307/2531485

43. Regal RR, Hook EB. The effects of model selection on confidence intervals for the size of a closed 
population. Statistics in Medicine. 1991; 10(5):717–721. 10.1002/sim.4780100506 [PubMed: 
2068424] 

44. Huggin R. A note on the difficulties associated with the analysis of capture-recapture experiments 
with heterogeneous capture probabilities. Statistics and Probability Letters. 2001; 54(2):147–152. 
10.1016/S0167-7152(00)00233-9

45. Link WA. Nonidentifiability of population size from capture-recapture data with heterogeneous 
detection probabilities. Biometrics. 2003; 59(4):1123–1130. 10.1111/j.0006-341X.2003.00129.x 
[PubMed: 14969493] 

46. Chao A Estimating population size for sparse data in capture-recapture experiments. Biometrics. 
1989; 45(2):427–438. 10.1111/j.0006-341X.2000.00427.x

47. Mao CX. Lower bounds to the population size when capture probabilities vary over 
individuals. Australian & New Zealand Journal of Statistics. 2008; 50(2):125–134. 10.1111/
j.1467-842X.2008.00503.x

48. Madigan D, York JC. Bayesian methods for estimation of the size of a closed population. 
Biometrika. 1997; 84(1):19–31. 10.1093/biomet/84.1.19

49. Manrique-Vallier D Bayesian population size estimation using Dirichlet process mixtures. 
Biometrics. 2016; 72(4):1246–1254. 10.1111/biom.12502 [PubMed: 26954906] 

50. Otis DL, Burnham KP, White GC, Anderson DR. Statistical inference from capture data on closed 
populations. In: Wildlife Monographs, No. 3. 62. The Wildlife Society, Bethesda, Maryland; 1978. 
p. 1–135.

51. Pollock KH. Modeling capture, recapture, and removal statistics for estimation of demographic 
parameters for fish and wildlife populations: Past, present, and future. Journal of the American 
Statistical Association. 1991; 86(413):225–238. 10.1080/01621459.1991.10475022

52. Chao A. An overview of closed capture-recapture models. Journal of Agricultural, Biological, and 
Environmental Statistics. 2001; 6(2):158–175. 10.1198/108571101750524670

53. Baillargeon S, Rivest L. Rcapture: Loglinear models for capture-recapture in R. Journal of 
Statistical Software. 2007; 19(5):1–31. 10.18637/jss.v019.i05 [PubMed: 21494410] 

54. R Core Team. R: A Language and Environment for Statistical Computing; 2021. Available from: 
http://www.R-project.org/.

55. Johndrow JE, Lum K, Manrique-Vallier D. Low-risk population size estimates in the presence of 
capture heterogeneity. Biometrika. 2019; 106(1):197–210. 10.1093/biomet/asy065

56. Burnham KP, Anderson DR. Model Selection and Multimodel Inference: A Practical Information-
Theoretic Approach. 2nd ed. New York: Springer; 2002.

Gutreuter Page 12

PLOS Glob Public Health. Author manuscript; available in PMC 2023 March 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.R-project.org/


57. Diamond M Homosexuality and bisexuality in different populations. Archives of Sexual Behavior. 
1993; 22(4):291–310. 10.1007/BF01542119 [PubMed: 8368913] 

58. Mauck DE, Gebrezgi MT, Sheehan DM, Fennie KP, EIbañez G, Fenkl EA, et al. Population-based 
methods for estimating the number of men who have sex with men: a systematic review. Sexual 
Health. 2019; 16(6):527–538. 10.1071/SH18172 [PubMed: 31658435] 

Gutreuter Page 13

PLOS Glob Public Health. Author manuscript; available in PMC 2023 March 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 1. Beta densities for encounter probabilities.
Beta densities for list-wise encounter probabilities from data-generating models ℳℎ, ℳb, 

ℳtℳtℎ, ℳbℎ and ℳbℎt.
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Fig 2. Distributions of estimates the sizes of populations consisting of 1,000 (left) and 20,000 
(right) members.
Estimation was based on 2–5 encounter event-histories generated from models ℳℎ, ℳb, ℳt, 

ℳbℎ, ℳℎt, and ℳbℎt for expected encounter probabilities of 0.025, 0.050, 0.100, 0.150 and 

0.200 (right margins). LLM-AIC denotes selection of the single best LLM based on AIC, 

LLM-BMA denotes Bayesian model-averaging of loglinear models, and BLCM denotes 

nonparametric Bayesian latent-class model estimation. Estimates larger than 107 are heaped 

at that value. Results for N = 10, 000 were similar to those for N = 20, 000.
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Fig 3. Relative root mean-squared errors (RRMSE = RMSE ÷ N) of estimators of population 
size.
LLM-AIC denotes loglinear model selection, LLM-BMA denotes Bayesian model-

averaging of loglinear models, BLCM denotes nonparametric Bayesian latent-class model 

estimation and E(p) denotes expected encounter probability.
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Table 1.

Shape parameters β1 and β2 for the data-generating Beta distributions, expected encounter probabilities E(p), 

and expected proportions population members encountered for the first time on list k = 1, . . ., 5, E[p1 (k)].

β 1 β 2 E(p) k E[p1 (k)] Cumulative E[p1 (k)]

1.3245 51.6548 0.025 1 0.025 0.025

2 0.024 0.049

3 0.023 0.072

4 0.022 0.094

5 0.021 0.115

1.2649 24.0327 0.050 1 0.050 0.050

2 0.046 0.096

3 0.042 0.138

4 0.039 0.176

5 0.036 0.212

1.1457 10.3111 0.100 1 0.100 0.100

2 0.083 0.183

3 0.070 0.252

4 0.059 0.312

5 0.051 0.363

1.0265 5.8167 0.150 1 0.150 0.150

2 0.111 0.261

3 0.086 0.347

4 0.068 0.415

5 0.055 0.470

0.9073 3.6291 0.200 1 0.200 0.200

2 0.131 0.331

3 0.093 0.424

4 0.069 0.493

5 0.054 0.547

PLOS Glob Public Health. Author manuscript; available in PMC 2023 March 10.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gutreuter Page 18

Table 2.

Root mean-squared error (RMSE) and bias of estimators of the sizes N of simulated populations.

N Performance 
measure

Expected Pr 

(encounter)
1

Number of encounters or lists

2 3 4 5

LLM-
AIC

BLCM LLM-
AIC

LLM-
BMA

BLCM LLM-
AIC

LLM-
BMA

BLCM LLM-
AIC

LLM-
BMA

BLCM

1,000 RMSE 0.025 > 109 692 > 109 543 506 > 109 557 423 > 109 618 376

0.050 > 109 404 > 109 716 390 > 109 633 424 > 109 572 417

0.100 > 109 491 > 109 630 541 > 109 531 478 2,005 466 432

0.150 > 109 566 > 109 537 502 > 109 452 433 276 396 381

0.200 > 109 508 > 109 464 447 > 109 389 373 190 335 322

Bias 0.025 > 109 −680 > 109 −31 −468 < −109 44 −356 > 109 109 −279

0.050 > 109 −307 > 109 220 −42 > 109 194 26 > 109 175 56

0.100 > 109 55 > 109 251 179 > 109 203 163 −22 173 148

0.150 > 109 135 > 109 203 182 > 109 162 158 −38 136 138

0.200 > 109 120 < −109 165 164 > 109 128 139 −49 102 115

10,000 RMSE 0.025 > 109 4,215 > 109 7,386 2,874 > 109 6,303 4,316 > 109 5,794 5,334

0.050 > 109 3,533 > 109 6,173 5,626 43,319 5,551 5,355 > 109 5,294 5,155

0.100 > 109 5,336 11,655 5,318 5,246 2,872 4,860 4,777 2,092 4,520 4,423

0.150 > 109 4,953 3,603 4,766 4,701 2,002 4,235 4,179 1,544 3,798 3,751

0.200 > 109 3,929 2,511 4,290 3,432 1,479 3,662 2,948 1,178 3,141 2,583

Bias 0.025 > 109 −3,932 > 109 2,888 28 > 109 2,496 1,644 > 109 2,333 2,457

0.050 > 109 117 > 109 2,663 2,275 −391 2,386 2,229 > 109 2,264 2,171

0.100 > 109 1,733 71 2,265 2,290 −269 2,001 2,091 −321 1,820 1,945

0.150 > 109 1,557 −19 1,901 2,084 −173 1,685 1,880 −326 1,475 1,691

0.200 > 109 182 −6 1,639 829 −294 1,407 763 −475 1,162 643

20,000 RMSE 0.025 > 109 8,679 > 109 13,859 6,127 57,543 12,382 9,052 31,361 11,618 10,649

0.050 > 109 7,622 > 109 11,758 11,443 52,505 11,007 10,828 8,080 10,548 10,418

0.100 > 109 10,366 19,729 10,395 10,300 4,825 9,640 9,480 3,736 8,971 8,791

0.150 > 109 9,731 5,732 9,413 9,326 3,285 8,345 8,294 2,650 7,490 7,489

0.200 > 109 9,188 4,558 8,473 8,479 2,646 7,191 7,274 2,270 6,112 6,254

Bias 0.025 > 109 −7,897 > 109 5,791 524 −613 5,277 3,121 1,275 4,964 4,267

0.050 > 109 1,214 > 109 5,284 5,035 −836 4,883 4,781 −194 4,621 4,598

0.100 > 109 3,447 574 4,434 4,643 −188 4,012 4,308 −388 3,670 4,065

0.150 > 109 3,117 50 3,772 4,186 −370 3,436 3,886 −729 3,037 3,557

0.200 > 109 2,671 23 3,318 3,769 −707 2,830 3,359 −972 2,340 2,859

1
For first encounters in data-generating models ℳb, ℳbℎ and ℳtbℎ.
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LLM-AIC denotes selection of the AIC-best loglinear model, LLM-BMA denotes Bayesian model-averaging of loglinear models, and BLCM 
denotes nonparametric Bayesian latent-class model estimation.
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Table 3.

Coverage of uncertainty intervals (95% confiddence intervals for loglinear model selection LLM-AIC, and Pr 

= 0.95) credible intervals for Bayesian model averaging LLM-BMA and latent-class modeling BLCM).

N Expected 

Pr(encounter)
1

Number of encounters or lists

2 3 4 5

LLM-
AIC

BLCM LLM-
AIC

LLM-
BMA

BLCM LLM-
AIC

LLM-
BMA

BLCM LLM-
AIC

LLM-
BMA

BLCM

1,000 0.025 0.975 0.201 0.693 1.000 0.658 0.699 1.000 0.687 0.687 1.000 0.688

0.050 0.831 0.832 0.627 1.000 0.828 0.559 1.000 0.756 0.508 1.000 0.682

0.100 0.688 0.853 0.444 1.000 0.588 0.501 1.000 0.493 0.509 0.999 0.475

0.150 0.496 0.836 0.498 0.997 0.503 0.562 0.992 0.479 0.604 0.982 0.459

0.200 0.422 0.821 0.541 0.982 0.497 0.620 0.963 0.475 0.663 0.937 0.449

10,000 0.025 0.771 0.514 0.498 1.000 0.761 0.456 1.000 0.478 0.402 1.000 0.412

0.050 0.492 0.803 0.400 1.000 0.463 0.464 1.000 0.465 0.490 1.000 0.455

0.100 0.403 0.818 0.525 1.000 0.472 0.599 1.000 0.469 0.615 1.000 0.469

0.150 0.383 0.827 0.588 0.996 0.484 0.629 0.990 0.478 0.703 0.983 0.474

0.200 0.362 0.792 0.626 0.982 0.582 0.729 0.964 0.579 0.761 0.940 0.572

20,000 0.025 0.651 0.537 0.423 1.000 0.505 0.405 1.000 0.445 0.422 1.000 0.446

0.050 0.407 0.795 0.460 1.000 0.446 0.480 1.000 0.442 0.554 1.000 0.437

0.100 0.376 0.807 0.573 1.000 0.457 0.580 1.000 0.454 0.596 1.000 0.449

0.150 0.374 0.823 0.590 0.998 0.475 0.629 0.993 0.461 0.682 0.984 0.441

0.200 0.346 0.826 0.641 0.985 0.487 0.730 0.965 0.465 0.737 0.950 0.450

1
For first encounters in data-generating models ℳb, ℳbℎ and ℳtbℎ.
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Table 4.
Percentages of correct matchings of the data-generating model by the AIC-best LLM 
population size estimation models based on overlap of 3–5 lists for each of four per-list 
expected probabilities of encounter.

See text for explanation of the data-generating models.

N
Expected Pr(Encounter)

1 Lists Data-generating Model

ℳb ℳbℎ ℳℎ ℳtℎ ℳt

1,000 0.025 3 55.7 19.6 14.5 0.0 52.8

4 42.1 22.2 9.9 0.0 78.7

5 51.8 24.8 13.4 0.0 90.2

0.050 3 51.1 12.3 30.0 5.5 59.9

4 36.9 21.5 40.0 1.7 82.1

5 55.9 19.8 39.4 3.3 86.9

0.100 3 64.1 10.6 53.9 3.7 69.2

4 45.3 10.5 65.9 2.7 83.0

5 56.2 9.7 79.4 4.2 87.4

0.150 3 59.9 8.2 66.8 3.8 71.8

4 69.1 10.8 82.9 3.3 78.8

5 74.2 13.4 90.5 1.5 84.7

0.200 3 64.0 7.1 75.6 8.1 73.7

4 73.9 10.8 87.5 4.5 84.9

5 77.6 10.2 91.8 6.0 83.9

20,000 0.025 3 51.1 15.8 53.5 3.7 76.7

4 52.9 14.8 47.9 5.2 83.8

5 50.5 12.9 65.9 5.3 83.5

0.050 3 67.0 7.3 63.6 6.3 81.2

4 64.6 12.0 78.0 5.0 82.5

5 71.9 12.3 89.4 2.0 84.0

0.100 3 75.5 4.0 88.5 5.0 79.7

4 73.4 4.8 89.0 2.0 85.2

5 75.8 1.5 91.0 2.6 85.0

0.150 3 70.2 3.5 88.5 6.5 81.5

4 76.5 1.2 93.2 1.9 84.2

5 80.0 0.0 95.2 3.3 84.2

0.200 3 73.8 2.5 87.0 3.0 82.5

4 82.0 0.0 88.0 5.1 82.8

5 83.5 0.0 91.8 4.8 83.0

1
For first encounters in ℳb, ℳbℎ and ℳtbℎ.
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