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Abstract

Innate immune cells participate in the detection of tumor cells via complex signaling pathways 

mediated by pattern-recognition receptors, such as Toll-like receptors (TLR) and NOD-like 

receptors (NLR). These pathways are finely tuned via multiple mechanisms, including epigenetic 

regulation. It is well established that hematopoietic progenitors generate innate immune cells that 

can regulate cancer cell behavior, and the disruption of normal hematopoiesis in pathologic states 

may lead to altered immunity and the development of cancer. In this review, we discuss the 

epigenetic and transcriptional mechanisms that underlie the initiation and amplification of innate 

immune signaling in cancer. We also discuss new targeting possibilities for cancer control that 

exploit innate immune cells and signaling molecules, potentially heralding the next generation of 

immunotherapy.

Introduction

Host immunity can be classified into innate immunity, which is rapid to develop but less 

specific, and adaptive immunity, which is slower to develop but more specific. Innate 

immunity plays an important role in host defense against infection and cancer, recognizing 

various antigens via pattern recognition receptors (PRRs). Innate immune cells comprise a 

wide range of myeloid and lymphoid cell types that share common hematopoietic origin 

(1). Two major conceptual advances have highlighted our rapidly evolving understanding of 

innate immunity. First, bone marrow hematopoietic stem and progenitor cells (HSPCs) can 

sense systemic inflammation and adapt by increasing their proliferation rate and skewing 

differentiation toward myeloid cells. Such HSPC adaptations are beneficial in eliminating 

pathogens during the acute phase of infection. However, they may contribute to chronic 

inflammation, and to HSPC malfunction and exhaustion when sustained (2). Second, innate 
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immune cells and HSPCs can exhibit adaptive characteristics, termed trained immunity; 

previous exposure to a pathogen leads to an enhanced innate immune response upon 

re-challenge (3). In this review, we focus on the epigenetic and transcriptional regulation 

of innate immune cells and signaling in different cancers. Also, we summarize how targeting 

innate immunity can spur the development of next generation cancer immunotherapies.

Regulation of the genesis of innate immune cells

Hematopoietic stem and progenitor cells (HSPC)—HSPCs generate a variety of 

cells that participate in innate immunity. Interferons (IFNs) play an important role in 

the response of HSPCs to inflammation. Activation of the type 1 IFN signaling pathway, 

mediated by IFN-α/β receptor IFNAR, drives the proliferation of dormant HSCs(4) while its 

inhibition, such as by the negative regulator, Irf2, promotes HSC quiescence(5). Additional 

mechanisms against IFN-α-induced HSC dysfunction include retinoic acid signaling(6), and 

the circular RNA cia-cGAS that antagonizes cyclic GMP-AMP (cGAMP) synthase cGAS-

mediated virus DNA sensing(7). The effects of IFN-γ on HSCs are context-dependent. 

For example, HSC proliferation is promoted by IFN-γ-STAT1 signaling in response to 

mycobacterium infection(8). However, upon lymphocytic choriomeningitis virus infection, 

IFN-γ inhibits the proliferation of HSCs by reducing STAT5 phosphorylation (9). IFN-

γ also induces myeloid differentiation dependent on Batf2 activity (10). TNF induces 

HSC proliferation and myeloid lineage differentiation by upregulating PU.1 (11). IL-3, 

produced by innate response activator B cells, induces myelopoiesis (12). The IL-6/IL-12 

cytokine family members, including IL-27, also act on HSPCs to promote emergency 

myelopoiesis(13, 14). IL-1 directly accelerates cell division and myeloid differentiation 

by activating a PU.1-dependent gene program(15). This allows for rapid myeloid recovery 

following acute marrow injury; however, chronic IL-1 exposure compromises HSC self-

renewal and restricts HSC lineage output (15).

Neutrophils—The generation of neutrophils from HSCs is regulated by a number of 

transcription factors (TFs), including C/EBPs, GATA-1, and PU.1. C/EBP-α induces early 

myeloid precursors to differentiate by negatively regulating the expression of c-Myc, via 

an E2F binding site in the c-Myc promoter(16). Then, the acetylation of C/EBP-ε at 

K121 and K198, together with the absence of GATA-1, triggers CMPs to commit to 

terminal neutrophil differentiation (17). PU.1 recruits HDAC1 to inhibit the accessibility 

of AP-1 binding motifs, thereby preventing the hyperactivation of neutrophils(18). AP-1 is a 

heterodimeric TF that is activated by inflammatory cytokines, growth factors, and infection, 

which activate kinases that modulate its transcriptional activity(19). AP-1 cooperates with 

other TFs, including NF-kB and IRF to stimulate the expression of type I IFNs and pro-

inflammatory cytokines(20).

Our understanding of the roles that neutrophils play in cancer is growing. The prognostic 

value of circulating neutrophils and tumor-associated neutrophils have been assessed in 

various cancers (21). Anti-tumor (N1) and pro-tumor (N2) sub-populations of neutrophils 

have been identified(22). N1 are characterized by an immunostimulatory profile (TNFαhigh, 

CCL3high, ICAM-1high, Arginaselow) and cytotoxic activity towards tumor cells, whereas N2 

exhibit upregulation of chemokine production (CCL2, 3, 4, 8, 12, and 17, and CXCL1, 2, 
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8 and 16)(23). The fate switch between N1 and N2 is controlled by transforming growth 

factor β (TGFβ) which promotes the N2 phenotype(24), and IFNβ which promotes the N1 

phenotype(25). TGF-β signaling is transduced via SMAD proteins that regulate chromatin 

remodeling and transcription, either by direct DNA binding or indirectly through other TFs 

(26). IFNβ signaling is mediated by the activator of transcription (STAT) family of TFs (27). 

However, the epigenetic mechanisms that regulate cytokine and chemokine gene expression 

in neutrophils, in response to TGFβ or IFNβ, remains to be determined.

Macrophages—Macrophages phagocytize microorganisms and apoptotic cells, and 

produce inflammatory cytokines (28). Tissue-resident macrophages are established during 

embryonic and fetal hematopoiesis, but they can also arise from circulating monocytes 

after local macrophage depletion, inflammation, and normal aging (29). Regardless of their 

cell of origin, the major regulator of the macrophage lineage is the colony stimulating 

factor (CSF) 1 receptor (30). Expression of MafB and c-Maf also play a role in driving 

terminal macrophage differentiation(31). Moreover, the NAD-dependent lysine deacetylases, 

Sirtuins 1 and 2, play a critical role in macrophage differentiation via a direct interaction 

with DNMT3B (32). Notably, tumor-associated macrophages (TAMs) are mostly pro-

tumorigenic in solid tumors, functioning to promote carcinogenesis, neoangiogenesis, 

immune-suppressive TME, chemoresistance, and metastasis. Reprogramming of immune-

suppressive TAMs by pharmacological approaches has gathered much interest in recent 

years to improve cancer therapies (33).

Macrophages can be classified into M1 (classically activated macrophages, or kill-type 

macrophages) that are primed by Th1 cytokines such as IFN-γ and bacterial products, 

and M2 (alternatively activated macrophages, or repair-type macrophages) that are primed 

by Th2 cytokines such as IL-4 and IL-13 (34). IFN-γ plays a pivotal role in promoting 

immunity against cancer (35). IFN-γ triggers the receptor association of the JAK1 and 

JAK2 tyrosine kinases, which then induce the phosphorylation of STAT1 and STAT2. This 

promotes the binding of STAT1 homodimers to consensus DNA sequences termed GAS 

elements, triggering the expression of IFN-stimulated genes(36). In contrast, IFN-α leads to 

phosphorylation of STAT1 and STAT2, which heterodimerize and bind to an IFN-stimulated 

response element (ISRE) in conjunction with IRF9 (37). M1 macrophages elicit rapid 

pro-inflammatory responses to infection and tissue damage by sensing lipopolysaccharide 

and damage-associated molecular patterns, respectively, while M2 macrophages possess 

anti-inflammatory activities that enable these cells to resolve inflammation and promote 

tissue repair (38).

Epigenetic mechanisms that control macrophage polarization are being uncovered. M1 

polarization, which can be driven by LPS and IFN- γ, requires dynamic metabolic 

reprogramming and a two-stage remodeling of the TCA cycle, including the transient 

accumulation and subsequent decrease in metabolites such as succinate and itaconate(39). 

The tumor environment provides signals such as PGE2 or TGF-β that inhibit M1 activation, 

thus M2 macrophages predominate in most human cancers, where they produce growth-

promoting molecules for tumors(40). Jmjd3 (Jumonji domain-containing protein D3), a 

key H3K27 demethylase, whose activity is dependent on glutamine metabolism, controls 

M2 macrophage activation(41, 42); the production of α-ketoglutarate via glutaminolysis 
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promotes M2 macrophage activation via fatty acid oxidation and the Jmjd3-dependent 

epigenetic reprogramming of M2 genes(43). IL-4-induced M2 polarization of liver 

macrophages is dependent on the activation of STAT6-JMJD3 signaling and suppression 

of TLR4-NF-κB signaling(44). Macrophage heterogeneity is not fully represented by a 

dichotomy between M1 and M2. Macrophages also exhibit intermediate phenotypes and 

are in fact a continuum of polarization states from the two ends marked by M1 and 

M2. Heterogeneous subpopulations of macrophages take on a variety of roles depending 

on tissue type and the specific pathology (45). Macrophages even show plasticity after 

polarization (46). Thus, altering macrophage polarization dynamics, such as triggering an 

M2 to M1 macrophage transition, could slow or stop cancer growth, a strategy that form the 

basis for novel cancer immunotherapy (40).

Myeloid-derived suppressor cells (MDSCs)—MDSCs are cells of myeloid origin 

with potent immune-suppressive functions(47). MDSC generation occurs in two phases in 

cancer, an expansion phase driven mainly by tumor-derived growth factors that promote 

the accumulation of immature myeloid cells, and an activation phase driven mainly by 

tumor stroma-derived proinflammatory cytokines, which convert immature myeloid cells 

into MDSCs(48). A complex network of extracellular signals, chromatin modulators, and 

TFs is involved in the regulation of MDSCs. For example, the increased production of IL-6 

in mouse myeloid cells results in STAT3 activation and MDSC expansion(49). Hypoxia-

inducible factor (HIF)-1α positively regulates the VISTA (V-domain Ig suppressor of T-cell 

activation) promoter, increasing VISTA expression on myeloid cells and facilitating MDSC-

mediated suppression of T-cell activity(50). DNMT3A downregulation erases MDSC-

specific hypermethylation and abolishes their immunosuppressive capacity in cancer(51). 

Moreover, NLRP3 is expressed in MDSCs (52); Nlrp3-deficient mice exhibit decreased 

MDSCs at the tumor site, implicating NLRP3 in MDSC expansion and/or recruitment (53).

The epigenetic regulation of the generation of different MDSC subsets is being defined. 

STAT3 signaling, induced by various soluble mediators, is required for Mo-MDSC 

generation (54). The IFN-γ-STAT1-IRF1 axis appears to be specifically crucial for Mo-

MDSC suppressive activity (55). In contrast, the generation of human G-MDSCs is 

less clear. These cells are morphologically heterogeneous, ranging in appearance from 

immature to mature neutrophils (56), and recent studies suggest that immunosuppressive 

G-MDSCs can be derived from mature neutrophils(57). STAT3 can also trigger PMN-

MDSC accumulation by increasing the expression of several components of the NADPH 

complex, such as S100A9, that leads to increased ROS production (58). IRF-8 limits MDSC 

generation, particularly the PMN-MDSC subset, in mouse mammary tumor models (59). 

The biology and regulatory mechanisms of MDSC subsets need further characterization.

Innate lymphoid cells (ILCs) and dendritic cells (DCs)—ILCs and DCs also 

contribute to the innate arm of the immune system. ILCs are a heterogeneous group of 

cells that derive from common lymphoid progenitors but lack rearranged antigen receptor 

genes. Five classes of ILCs (NK cells, ILC1, ILC2, ILC3, and lymphoid tissue-inducer cells) 

have been defined based on differences in TF expression and their cytokine production. We 
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refer readers to two recent reviews that comprehensively cover the roles of NK cells and 

other ILCs in cancer(60, 61).

DCs represent a heterogeneous family of immune cells that bridge innate and adaptive 

immunity, as impaired DC activation, licensing, or maturation also compromises antigen-

specific T cell immunity. The importance of DC biology in anti-tumor immunity has gained 

attention recently. DC-based anti-tumor vaccines have been FDA-approved for treating 

prostate cancer, while similar and other approaches are begin studied and assessed in clinical 

trials. Given space constraints, we refer readers to two recent reviews that cover this growing 

field (62, 63).

Innate immune signaling in cancer

PRRs mediate innate immune signaling and can be classified based on their subcellular 

localizations: membrane-bound receptors, including Toll-like receptors (TLRs) and C-type 

lectin receptors (CLRs), and intracellular receptors, including NOD-like receptors (NLRs), 

AIM2-like receptors (ALRs), and RIG-I-like receptors (RLRs) (64). Upon recognition 

of “non-self” antigens, the innate immune system responds by producing cytokines, 

chemokines and IFNs, and by activating phagocytosis, autophagy, and cell death (Figure 

1).

Toll-like receptors (TLRs)—TLRs are expressed in antigen-presenting cells (APCs) and 

other immune cell types including mast cells, NK cells, regulatory T cells, monocytes, 

neutrophils and basophils (65). TLRs are also expressed by tumor cells, where they 

play anti- or pro-tumor roles depending on cell context(66). Upon ligand binding, the 

TLRs dimerize and signal through different sets of adaptor proteins, including (a) TIRAP/

MyD88, the TIR-containing adaptor protein (TIRAP) and the protein myeloid differentiation 

primary response 88 (MyD88), (b) TRAM/TRIF, the TIR domain–containing adaptor-

inducing IFN-β (TRIF) and the TRIF-related adaptor molecule (TRAM), (c) MAVS, the 

mitochondrial antiviral signaling protein, and (d) ASCs, Apoptosis-associated speck-like 

proteins containing a CARD (caspase recruitment domain), which allow for different 

transcriptional outputs (64).

Intriguingly, TLRs are also expressed by HSPCs. TLR ligand binding blocks HSPC 

expansion(67) and induces myeloid differentiation in a MyD88-dependent manner (68). The 

activation of TLRs in ST-HSCs and MPPs also results in substantial cytokine production 

via activation of NF-κB. Loss of TLR signaling enhances HSC repopulating capacity, 

as HSCs from Tlr2−/−, Tlr4−/−, Tlr9−/−, or MyD88−/− mice show an advantage over 

normal HSCs (69, 70). Similarly, TLR activation leads to compromised self-renewal and 

HSPC exhaustion, mediated by TRIF, rather than MyD88, with the production of ROS and 

activation of the MAPK p38, leading to replication stress(71, 72). These findings highlight 

the role of TLR signaling in regulating the behavior of HSPCs, cancer cells, and host 

defense.

Aberrant TLR signaling is also linked to malignant hematopoiesis. Overexpression of TLR 

genes in HSCs may contribute to the pathogenesis of myelodysplastic syndrome (MDS) 

(73). A recent study of 149 MDS patients showed that TLR1, TLR2 and TLR6 and multiple 
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TLR downstream genes are significantly overexpressed in CD34+ MDS bone marrow 

cells(74). TLR signaling is promoted by several bromodomain and extra-terminal (BET) 

proteins, which bind to acetylated proteins including histones H3 and H4, and promote 

tumor growth in several lymphoma models (75). BET inhibitors suppress the expression 

of TLR2/4 and the transcription of IL-1β, IL-6, and TNF-α and thus may have anti-tumor 

activity(76).

NOD-like receptors (NLRs) and the inflammasome—NLRs are cytoplasmic 

receptors that mediate the innate immune response(77). Members of the NLR family of 

PRRs possess a C-terminal leucine-rich repeat (LRR) domain, a central nucleotide binding 

domain (NBD), and a distinct N-terminal domain that differs between subfamilies(78). 

The two most prominent NLR subfamilies have either a pyrin domain (PYD) at their 

N-terminus, or one or more caspase recruitment (CARD) domains(79). Upon sensing 

pathogens or host derived proteins, NLRs oligomerize and assemble the inflammasome, 

which serves as a caspase-1-activating scaffold to activate the proinflammatory IL-1 family 

of cytokines, IL-1β and IL-18, triggering a specific type of inflammatory cell death, termed 

pyroptosis(80). NLR-inflammasome pathways have been linked to both solid tumors and 

hematological malignancies (81, 82).

Priming signals are required for the expression of inflammasome components, which can be 

induced by TLR ligands, or via the TNF or IL-1β signaling pathways that lead to NF-κB 

activation (83). Hypomethylation of CpG sites within other inflammasome genes such as 

NLRC4 and NLRP12, and IL-1β has been associated with upregulation of their expression 

in Kawasaki disease(84). Furthermore, increased expression of CtBPs (C-terminal-binding 

proteins), together with p300 and AP-1, activates NLRP3 expression, which aggravates 

the inflammatory response in osteoarthritis(85). Histone deacetylase 6 (HDAC6), inhibits 

the activation of the NLRP3 inflammasome in mouse bone marrow-derived macrophages 

by directly associating with ubiquitinated NLRP3 through its ubiquitin-binding domain 

(86). Inflammasomes also regulate hematopoiesis and the generation of innate immune 

cells; loss of inflammasome components or caspase-1 inhibition inhibits myelopoiesis, in a 

GATA1-dependent manner(87). The impact of crosstalk between epigenetic modifiers and 

the various NLR-inflammasome pathways is largely unknown in specific cancers.

C-type lectin receptors (CLRs), RIG-I-like receptors (RLRs), and AIM2-like 
receptors (ALRs)—CLRs, characterized by C-type lectin-like domains, form a large 

heterogeneous group of transmembrane and soluble receptors(88). The roles of CLRs in 

immunity and cancer are being delineated and were recently reviewed(89, 90). However, 

little is known about the epigenetic regulation of CLR generation or function. The TF 

NFATc2 activates the expression of specific cytokines and chemokines in DCs in response 

to CLR dectin-1 stimulation, and induces the H3K4 trimethylation that is associated 

with enhanced gene expression(91). Manipulation, i.e. a decrease in the activity of the 

histone lysine-methyltransferase Ezh2 increases the generation of IL-15R(+) CD122(+) NK 

precursors and mature NK progeny from mouse and human HSPCs(92). The enhanced NK 

cell expansion and cytotoxicity against tumor cells are associated with the up-regulation of 

both CD122 and the CLR NKG2D(92).
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RLRs induce the transcription of type I IFNs and other genes by sensing viral and host-

derived RNAs. The regulatory mechanisms that control the generation of RLRs, their roles 

in viral infection, autoimmunity, and cancer, and their therapeutic potential, have recently 

been reviewed(93). ALRs represent a newly recognized class of PRRs that function in 

cytosolic and nuclear pathogen DNA sensing. ALRs recruit ASC and caspase-1 to form 

inflammasomes, which elicit inflammatory responses by producing IL-1β and IL-18, and by 

triggering pyroptosis (94). The epigenetic regulation of ALRs is yet to be studied.

Trained immunity in cancer

Transcriptional and epigenetic reprogramming—The molecular basis of trained 

immunity is only partially understood, but it is clearly regulated by transcriptional and 

epigenetic reprogramming, involving chromatin organization at the level of the topologically 

associated domains (TADs), long non-coding RNAs, and reprogramming of cellular 

metabolism (Figure 2)(95, 96). Trained immunity occurs in part via the epigenetic regulation 

of the monocyte-to-macrophage differentiation transition, where roughly equal numbers 

of promoters are turned on or off (97). Furthermore, DNA methylation patterns in 

peripheral blood mononuclear cells can also reflect their capability of undergoing trained 

immunity(98, 99). During adaptive NK cell responses, specific TFs promote permissive 

histone modifications and chromatin accessibility, including RUNX family members, STAT 

family members, IRF8, IRF9, KLF12, and T-box TFs(100–105).

Trained immunity also occurs within HSPCs. For example, exposure to β-glucans, which 

are fungal cell wall polysaccharides, promotes the expansion of myeloid progenitors and 

increases innate immune signaling in mice(106). Likewise, BCG (Bacille Calmette-Guérin), 

an attenuated version of Mycobacterium bovis, increases the chromatin openness of specific 

TADs in mouse HSCs (107). Intriguingly, inflammasomes promote trained immunity at the 

level of HSPCs. Transcriptomic and epigenomic reprogramming induced by a high-fat diet 

is dependent on NLRP3(108). Recently, trained immunity that occurs in HSPCs is termed 

central trained immunity, which in part explains the long-lasting phenotype of trained 

immunity (96).

Immunometabolism and inflammaging—Metabolic intermediates can function as 

signaling nodes, substrates, co-factors, or inhibitors for chromatin-modifying enzymes(109). 

Trained monocytes show increased glycolysis, which is dependent on activation of mTOR 

through the dectin-1/Akt/HIF1α pathway(110). Subsequent studies show that glycolysis, 

glutaminolysis, and the cholesterol synthesis pathway are essential for the induction 

of trained immunity in monocytes(111, 112). Accumulation of fumarate induces the 

epigenetic reprogramming of monocytes by inhibiting KDM5 histone demethylases(111), 

while mevalonate, an intermediate in the cholesterol synthesis pathway, contributes to the 

training of human monocytes, via activation of IGF1-R and mTOR and via subsequent 

histone modifications in inflammatory pathways(113). These findings indicate that rewiring 

of cellular metabolism toward aerobic glycolysis and cholesterol synthesis may be integral 

to trained immunity.
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How metabolic changes affect trained immunity in cancer is not well characterized. 

However, chronic, sterile, low-grade inflammation, termed inflammaging, has been studied 

in age-related diseases, including cancer(114). Clonal hematopoiesis of indeterminate 

potential (CHIP), more common in the elderly, is associated with an increased risk 

of developing myeloid malignancies and atherosclerosis (115, 116). Individuals with 

CHIP frequently have mutations in epigenetic modifiers such as DNMT3A, TET2, or 

ASXL1. Intriguingly, Tet2-deficient HSPCs demonstrate clonal expansion and accelerate 

atherosclerosis in mice, in a NLRP3 inflammasome/IL-1β pathway-dependent manner(117). 

Circulating monocytes of patients with atherosclerosis exhibit enhanced cytokine production 

and glycolytic metabolism, with epigenetic reprogramming at the level of histone 

methylation(118, 119). These findings highlight the role of metabolic and epigenetic 

changes in aging and age-related diseases. Further studies are needed to dissect the links 

between metabolic and epigenetic remodeling, trained immunity, aging, and cancer.

Targeting innate immunity: next generation of cancer immunotherapy

The current, FDA-approved immunotherapies for cancer rely largely on the adaptive 

immune system. However, advances in our understanding of innate immunity provide a 

novel framework for targeting this aspect of immune homeostasis to maintain health and 

prevent disease (Table 1). β-glucans and BCG have been evaluated in a variety of cancers, 

including neuroblastoma, bladder cancer, and lung cancer (120, 121). The protective effect 

of BCG vaccine relies on trained immunity, specifically the epigenetic reprogramming of 

monocytes at the level of H3K4m3 (122). Similarly, β-glucans induce trained immunity 

at the HSPC level and promote myeloid differentiation, innate immune signaling, and 

metabolic adaptations(106). β-glucans, given in combination with cetuximab in patients with 

KRAS-mutant colorectal cancer, have promising clinical activity in a phase II trial(123). 

While increases in the histone marks H3K4me3 and H3K9me3 underlie both BCG-induced 

and β-glucan-induced trained immunity(111, 112, 124), how this control trained immunity is 

unclear.

The synthetic peptide conjugate muramyl dipeptide (MDP), a peptidoglycan minimal 

bioactive motif common to all bacteria, activates innate immune cells through NOD2, 

activating NF-κB and inducing epigenetic rewiring and trained immunity (125). The ketone 

metabolite β-hydroxybutyrate and the small-molecule inhibitor MCC950 can inhibit NLRP3 

inflammasome-mediated trained immunity(108, 126–128). Combinatorial use of epigenetic 

drugs with immunotherapy are also being investigated. For example, DNMT inhibitor 5-

azacytidine triggers immune response via dsRNA sensing pathway, sensitizing melanoma 

cells to anti-CTLA4 therapy(129).

TLR agonists are being exploited as adjuvants for cancer vaccines as well as direct cancer 

therapeutics. Imiquimod binds to TLR7 to reverse local immunosuppression and induce 

skin cancer cell apoptosis (130). Flagellin fusion proteins can induce specific immune 

responses, mediated by TLR5 activation on target APCs (131). CpG oligo-deoxynucleotides, 

which are TLR9 agonists, have shown promising results as vaccine adjuvants and when 

used in combination with cancer immunotherapy(132). Polyriboinosinic-polyribocytidylic 
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acid (poly(I:C)), which targets TLR3 and TLR9, can boost immune system activation and 

promote anti-cancer effects (133).

Given the established track record of kinase inhibitors being approved to treat cancer, and 

other disorders, inhibitors of the kinases involved in innate immunity are being studied. 

IRAK functions downstream of TLRs and IL-1R to regulate the expression of inflammatory 

molecules. These kinases play a pro-tumor roles in several cancers (134): For example, 

inhibition of IRAK1/4 synergizes with sorafenib in suppressing the growth of hepatocellular 

carcinoma in a xenograft mouse model(135), while the combination of IRAK1/4 inhibition 

and lenvatinib decreases tumor volume in a mouse anaplastic thyroid cancer model, better 

than either therapy alone(136). A multikinase FLT3-IRAK1/4 inhibitor displays superior 

efficacy, compared to current FLT3-targeted therapies to eliminate adaptive resistance of 

FLT3-mutant AML (137). Other kinase inhibitors, such as those targeting TAK1 kinase, 

which is downstream of TLR and TNFR pathways, also show therapeutic efficacy in various 

cancer models(138–140). Taken together, kinase inhibitors and other drugs that target 

aspects of innate immunity, such as the cGAS-STING pathway or macrophage checkpoints 

(CD47/SIRPα axis) show important promise. Several of these approaches have recently 

been reviewed(141, 142).

Perspectives

The study of innate immunity in cancer is fast growing and drugs that target pro-tumorigenic 

cellular infiltration or inflammation are being tested preclinically and clinically. However, 

multiple challenges exist, given the complexity of the interactions between tumor cells 

and their environment and the importance of targeting only certain aspects of the immune 

system, without impairing others. On the molecular level, a better understanding of the 

mechanistic details underlying the intricate interactions between cancer biology, innate 

immunity signaling, and inflammation is needed. Clearly, the effects of feedback and 

compensatory pathways on tumor growth are hard to predict or control, despite the research 

advances we have outlined above. On the cellular level, the heterogeneity and plasticity of 

the immune cells that infiltrate tumors must be taken into account in cancer to target the 

biology of a specific immune cell type or the interactions between cell types. Also, the roles 

that aging or the microbiome has on the outcome of anti-inflammatory therapies remain to 

be characterized(143).

Notably, trained immunity provides a compelling layer of control on myeloid cell function 

by integrating epigenetic, transcriptional, and metabolic regulations, although the precise 

mechanisms are just beginning to be discovered. The presence of persistent epigenetic 

marks in trained innate immune cells, generated following a pathological process or during 

aging, could underlie an increased susceptibility to certain cancer events. Innate immunity 

can be therapeutically manipulated, at the level of epigenetic modifiers, TFs, cellular 

metabolism and signaling pathways. Moreover, mediators of innate immunity such as IFNs 

and cytokines can enhance adaptive immunity-based therapy by sensitizing tumor cells(144, 

145). Mechanistic studies of innate immunity regulation in cancer are underway, which 

will help lay the groundwork for the development of innate immunity-based mono- or 

combination therapies.
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Figure 1. Innate immune signaling pathways
TNF binding to TNFR1 triggers the assembly of LUBAC ssscomplex, and the activation 

of TAK1 and subsequently IKK. TLR4 or IL-1R1 triggers the interaction of the MyD88-

IRAK complex which engages TRAF6. Activated TLR4 can also be endocytosed and signal 

via RIPK1. RIG1 binding to dsRNA promotes its association to MAVS complex which 

converges on TRAF6. MAVS also interacts with TRAF3, TBK1, and STING to activate 

IRF3 and IRF7. NLRP3 triggers secretion of IL-1b and IL-18.
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Figure 2. Trained immunity
Challenge of innate immune cells and HSPCs with training stimuli induces changes in cell 

signaling and metabolism. Specific TFs, such as NF-κB or AP-1, and epigenetic enzymes, 

induce chromatin and DNA modifications, and regulate gene transcription. Expression of 

these genes in turn feeds the machinery of innate immunity and promotes cytokine secretion.
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Table 1.

Immunotherapies in cancer

Drugs Targets Effect on Epigenetics or Biology

Targeting Trained Immunotherapy

BCG vaccine Mycobacterium 
Tuberculosis

H3K4 trimethylation of monocytes

B-glucans Dectin-1 and complement 
receptor 3 (CR3)

H3K4 and H3K9 trimethylation

Muramyl dipeptide (MDP) NOD2 Activate NF-κB pathway

Statins Mevalonate Change DNA methylation and prevent trained immunity induction

B-hydroxybutyrate and MCC950 NLRP3 Inhibit NLRP3 inflammasome-mediated trained immunity

Targeting Innate Immune Signaling

CpG oligo-deoxynucleotides 
(ODNs)

TLR9 Active innate immune responses by producing pro-inflammation cytokines 
and Th1 the helper-T cells

Imiquimod TLR7 Reverse local immunosuppression and induce tumor cell specific apoptosis

Polyriboinosinic-
polyribocytidylic acid (poly(I:C))

TLR9
TLR3

Induce stable maturation of functionally active dendritic cells
Induce cancer cell apoptosis

Flagellin-protein fusions TLR5 Induces inflammatory responses through the activation of antigen-
presenting cells

IRAK1/4 Inhibitor I IRAK1/4 Suppresses solid tumor growth in several distinct combination therapies

NCGC1481 FLT3-IRAK1/4 Eliminates adaptive resistance of FLT3-mutant AML cells

NG25 TAK1 Inhibits colorectal cancer cell proliferation, especially for KRAS-mutant 
cells

5Z-7-oxozeaenol TAK1 Enhances the sensitivity of glioblastoma cells to chemotherapy
Suppresses triple-negative breast cancer metastasis by altering TAK1-p38 
signaling

C-178, C-176 STING Inhibits STING palmitoylation and attenuates autoinflammatory features 
in mice

NCGC00138783, Pep-20, etc CD47/SIRPα Small-molecule inhibitors targeting macrophage checkpoints that induce 
phagocytosis
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