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Abstract

High-quality genome assemblies are crucial to many biological studies, and utilizing long 

sequencing reads can help achieve higher assembly contiguity. While long reads can resolve 

complex and repetitive regions of a genome, their relatively high associated error rates are still a 

major limitation. Long reads generally produce draft genome assemblies with lower base quality, 

which must be corrected with a genome polishing step. Hybrid genome polishing solutions can 

greatly improve the quality of long-read genome assemblies by utilizing more accurate short 

reads to validate bases and correct errors. Currently available hybrid polishing methods rely on 

read alignments and are therefore memory-intensive and do not scale well to large genomes. 

Here we describe ntEdit+Sealer, an alignment-free, k-mer based genome finishing protocol 

that employs memory-efficient Bloom filters. The protocol includes ntEdit for correcting base 

errors and small indels, and marking potentially problematic regions, then Sealer for filling both 

assembly gaps and problematic regions flagged by ntEdit. ntEdit+Sealer produces highly accurate, 

error-corrected genome assemblies and is available as a Makefile pipeline from https://github.com/

bcgsc/ntedit_sealer_protocol.

Basic Protocol 1: Automated long-read genome finishing with short reads

Support Protocol 1: Selecting optimal values for k-mer lengths (k) and Bloom filter size (b)
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INTRODUCTION

High-quality genomes have enabled many recent advances in the broader life sciences. 

Genome assemblies provide a wealth of information for clinical applications, comparative 

genomics, population studies, and other research areas. Long-read or third generation 

sequencing technologies from Oxford Nanopore Technologies Ltd. (ONT, Oxford UK) 

and Pacific Biosciences of California, Inc. (PacBio) have drastically improved in cost 

and throughput over the past several years, and these improvements have allowed these 

technologies to be adopted in a broad range of applications (van Dijk, Jaszczyszyn, Naquin, 

& Thermes, 2018) and genomics studies (Logsdon, Vollger, & Eichler, 2020). The major 

advantage of long reads over short Illumina reads, the current gold standard, is their length. 

Long sequencing reads can span several thousands to millions of nucleotides, while Illumina 

reads are usually 150–250 base pairs (bp) long. Long reads provide valuable long range 

genomic information that greatly benefits de novo genome assembly projects, resolving 

repetitive regions to achieve high contiguity (Amarasinghe et al., 2020). However, the 

appreciable error rate of long reads relative to short reads remains a major limitation to this 

day, with a mean accuracy of 87–99% depending on sequencing platform, chemistry and 

base calling method (Logsdon et al., 2020).

High base accuracy in genome assemblies is crucial for annotating functional elements 

and calling variants, for instance. Therefore, long-read genome assemblies often undergo 

a genome polishing step to improve their base quality. Several genome polishing methods 

employ a hybrid approach, using more accurate short reads to correct long-read genome 

assemblies. Some notable examples of hybrid genome polishing tools include Pilon (Walker 

et al., 2014) and Racon (Vaser, Sović, Nagarajan, & Šikić, 2017). Both tools rely on read 

alignments for identifying and correcting erroneous regions. While read alignments are 

information-rich, they are also highly memory intensive and therefore not practical for 

organisms with large genomes. There is a need for scalable and automated tools to polish 

and finish long-read genome assemblies.

Here we describe a scalable and alignment-free protocol for correcting base errors and 

resolving problematic regions in long-read genome assemblies using short reads. This 

protocol relies on Bloom filters, a probabilistic data structure that stores and tests for 

elements in a set in constant time (Bloom, 1970). The protocol includes the assembly 

correction tools ntEdit (Warren et al., 2019) and Sealer (Paulino et al., 2015), and is called 

ntEdit+Sealer. Additionally, ntHits (Mohamadi, Chu, Coombe, Warren, & Birol, 2020) and 

ABySS-Bloom (Jackman et al., 2017) are required for creating Bloom filters from short read 

k-mers for the respective tools. A general overview of the ntEdit+Sealer genome finishing 

protocol is presented in Figure 1. We will illustrate this protocol with an Escherichia coli 
strain NDM5 dataset obtained from the NCBI Sequencing Read Archive (SRA) (Accession: 

SAMN21398207). We provide instructions for installing the required software, both from 

package managers and manually in the Strategic Planning section. Additionally, we provide 

a Support Protocol with guidelines for selecting optimal parameter values for the protocol.

The output of ntEdit+Sealer is a polished and gap-filled long-read genome assembly. The 

ntEdit+Sealer protocol provides an accessible solution for correcting errors and producing 
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high quality genome assemblies from long- and short-read sequencing data. This will allow 

users to take full advantage of the benefits of both technologies. We expect this genome 

assembly finishing protocol to be invaluable for hybrid sequencing efforts in pursuit of 

producing contiguous and accurate genome assemblies.

STRATEGIC PLANNING

Necessary Hardware:

ntEdit+Sealer is a command-line based protocol that requires a 64-bit Linux or Mac 

operating system and a sufficient amount of RAM and disk space for generating and storing 

Bloom filters. Requirements will depend on the genome size of the specific organism under 

study. The peak memory usage is approximately equal to the size of the Bloom filter 

generated by ABySS-Bloom. Guidelines for determining this Bloom filter size are described 

in Support Protocol 1.

Software Installation:

The ntEdit+Sealer genome finishing protocol requires three software packages and their 

dependencies:

• ntHits v0.0.1+ (https://github.com/bcgsc/nthits)

• ntEdit v1.3.5+ (https://github.com/bcgsc/ntEdit)

• ABySS v2.3.2+; contains Sealer and ABySS-Bloom (https://github.com/bcgsc/

abyss)

All tools can be installed using the Conda or Homebrew package managers, as well 

as by manually cloning and compiling the source code from Github. The protocol is 

implemented as a Makefile (GNU Make) pipeline available on Github at https://github.com/

bcgsc/ntedit_sealer_protocol.

Option A: Installation using the Conda package manager—Installation via the 

Conda package manager (Miniconda) is recommended. Conda allows easy installation 

of tools and their dependencies into standalone environments. Miniconda is a minimal, 

lightweight installation for Conda and can be obtained freely from https://docs.conda.io/en/

latest/miniconda.html. Once Miniconda is installed, create a new environment for the 

protocol with the following commands:

conda create -n ntedit_sealer python=3.7

conda activate ntedit_sealer

ntHits, ntEdit and ABySS can then be installed from the bioconda channel:

conda install -c bioconda “nthits>=0.0.1” “ntedit>=1.3.5” “abyss>=2.3.2”
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This command will install all three tools into the ntedit_sealer environment. This 

environment must be activated prior to running the protocol with the command conda 

activate ntedit_sealer.

Option B: Installation using the Homebrew package manager—The three 

packages are also available on Homebrew. The Homebrew package manager can be obtained 

freely from https://brew.sh. Once Homebrew is installed and configured, the required tools 

can be installed with the following commands:

brew tap brewsci/bio

brew install nthits ntedit abyss

Option C: Manual installation from Github—Since all tools are written in C++, 

several dependencies are required for compilation:

• Autoconf (https://www.gnu.org/software/autoconf)

• Automake (https://www.gnu.org/software/automake)

• A C++ compiler that supports OpenMP, such as GCC 4.2 or greater (https://

gcc.gnu.org)

ABySS requires the following additional libraries:

• Boost (https://www.boost.org)

• OpenMPI (https://www.open-mpi.org)

• Sparsehash (https://github.com/sparsehash/sparsehash)

ntHits

git clone https://github.com/bcgsc/ntHits.git

cd ntHits

./autogen.sh

./configure --prefix=/path/to/ntHits

make

make install

ntEdit

git clone https://github.com/bcgsc/ntEdit.git

cd ntEdit

make ntedit

ABySS
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git clone https://github.com/bcgsc/abyss.git

cd abyss

./autogen.sh

mkdir build

cd build

../configure --prefix=/path/to/abyss

make

make install

For ntHits and ABySS, the --prefix parameter of the configure script defines the path at 

which the tool will be installed. With sudo privileges, when this parameter is excluded the 

tool will install into /usr/local.

Final steps after all dependencies are installed (i.e., after Option A, B or 
C): The ntEdit+Sealer repository must also be downloaded after ensuring that the 

dependencies have been installed following options A, B or C, listed in the section above. 

The ntEdit+Sealer protocol is implemented as a Makefile pipeline, which is a wrapper for 

the ntHits, ntEdit, ABySS-Bloom and Sealer commands. The repository includes additional 

scripts required for integrating the tools and processing input files. The scripts can be cloned 

from Github and do not require any compilation:

git clone https://github.com/bcgsc/ntedit_sealer_protocol.git

To run the tools outside of their directories, their executables must be added to your PATH 

environment variable:

PATH=/path/to/ntedit_sealer_protocol:/path/to/ntHits/bin:path/to/ntEdit:/

path/to/abyss/bin:$PATH

More detailed instructions for installing the packages can be found in their respective Github 

repositories.

Basic Protocol: Automated long-read genome finishing with short reads

This Basic Protocol describes how to run ntEdit+Sealer with the protocol Makefile to polish 

and correct errors in a long-read genome assembly using short reads. The protocol involves 

populating several Bloom filters with short read k-mers for ntEdit and Sealer using several 

k-mer sizes. After the Bloom filters are created, ntEdit is run iteratively with long to short k 
values to correct base errors and flag unfixable and problematic regions in the assembly by 

soft-masking them. Unmasked sequences that are shorter than the lowest k value and flanked 

by soft-masked regions are further soft-masked after the ntEdit runs. Finally, Sealer is run 

with the same decreasing k values to fill in the erroneous soft-masked regions and existing 

assembly gaps by traversing an implicit Bloom filter de Bruijn graph.
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The pipeline is invoked with a single Makefile command. We illustrate the steps with an 

E. coli strain NDM5 dataset consisting of a long-read Shasta (Shafin et al., 2020) assembly 

generated from ONT MinION reads and paired-end Illumina MiSeq reads for assembly 

finishing. Additionally, we demonstrate how to analyze the draft and finished assemblies 

with QUAST (Gurevich, Saveliev, Vyahhi, & Tesler, 2013).

Necessary Resources:

Hardware—A server or machine running a 64-bit Linux or Mac operating system with a 

sufficient amount of disk space and RAM (see Support Protocol 1 for more details).

Software—The following packages and their dependencies must be installed and be 

referenced to in your PATH environment variable.

• sra-tools v2.9.1+ (https://github.com/ncbi/sra-tools)

• ntHits v0.0.1+ (https://github.com/bcgsc/nthits)

• ntEdit v1.3.5+ (https://github.com/bcgsc/ntEdit)

• ABySS v2.3.2+ (https://github.com/bcgsc/abyss)

• ntEdit+Sealer Protocol v1.0.0+ (https://github.com/bcgsc/ntedit_sealer_protocol)

• QUAST v5.0.0+ (https://github.com/ablab/quast)

Files—Short sequencing reads (paired- or single-end) can be provided in compressed or 

uncompressed FASTQ format. Paired-end reads do not need to be interleaved. The long-read 

draft genome assembly can be provided as either a multi- or single-line FASTA file.

Sample Data:

The example E. coli strain NDM5 draft genome assembly is included in the ntEdit+Sealer 

Protocol Github Repository under the “demo” subdirectory (https://github.com/bcgsc/

ntedit_sealer_protocol/blob/main/demo/ecoli_shasta.fa). The corresponding Illumina short 

reads will be used as demonstration for polishing and can be obtained from the NCBI 

Sequencing Read Archive (Accession: SRX12150405). Additionally, we will use the E. coli 
strain K-12 substr. MG1655 reference genome assembly (Accession: GCF_000005845.2) to 

assess the assemblies with QUAST.

Protocol steps

1. Install ntHits, ntEdit, ABySS and the ntEdit+Sealer repository as outlined in 

the Strategic Planning section and add all binaries to your PATH environment 

variable.

2. Install protocol-specific dependencies fasterq-dump (part of sra-tools) and 

QUAST via Conda or manually. Ensure sra-tools v2.9.1 or newer is installed 

in order to obtain fasterq-dump, a more performant, multi-threaded version of 

fastq-dump. If the correct version cannot be installed, fastq-dump can be used as 

a replacement (see Step 3 below for details). If installing the tools manually, the 

executables must be added to your PATH environment variable.
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Option A: Installation using the Conda package manager—If Option A of the 

Strategic Planning section was used to install ntHits, ntEdit and ABySS, dependencies may 

be installed into the same environment. Otherwise, a new Conda environment should be 

created. The Conda environment must be activated (using conda activate <env name>) 

prior to installing the tools.

conda install -c bioconda “sra-tools>=2.9.1” “quast>=5.0.0”

Option B: Manual installation

sra-tools: Identify the correct version of the SRA Toolkit for your operating system from 

https://github.com/ncbi/sra-tools/wiki/01.-Downloading-SRA-Toolkit, and replace the URL 

if necessary.

wget https://ftp-trace.ncbi.nlm.nih.gov/sra/sdk/3.0.0/sratoolkit.3.0.0-

centos_linux64.tar.gz

tar -xzf sratoolkit.3.0.0-centos_linux64.tar.gz

export PATH=/path/to/sratoolkit.3.0.0-centos_linux64/bin:$PATH

QUAST: 

wget https://github.com/ablab/quast/releases/download/quast_5.0.2/

quast-5.0.2.tar.gz

tar -xzf quast-5.0.2.tar.gz

export PATH=/path/to/quast:$PATH

3. Create a new directory for running the ntEdit+Sealer protocol. Enter the new 

directory, soft-link the draft genome assembly from the ntEdit+Sealer repository 

and download the reference genome assembly and short reads.

mkdir ecoli_demo

cd ecoli_demo

ln -s /path/to/ntedit_sealer_protocol/demo/ecoli_shasta.fa

wget https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/005/845/

GCF_000005845.2_ASM584v2/GCF_000005845.2_ASM584v2_genomic.fna.gz

fasterq-dump SRR15859208

The fasterq-dump command will download the short reads into two separate 

FASTQ files. These files are named according the SRA run accession number 

(i.e., SRR15859208_1.fastq and SRR15859208_2.fastq for the forward and 

reverse reads, respectively). If, for some reason, the correct version of sra-tools 

and fasterq-dump cannot be installed, fastq-dump may be used instead with 
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the following command: fastq-dump SRR15859208 --split-3 --skip-

technical

4. Run the ntEdit+Sealer Makefile with the “finish” command to polish 

and fill the draft assembly ecoli_shasta.fa with the two reads files 

SRR15859208_1.fastq and SRR15859208_2.fastq. Specify k-mer lengths 

of 80, 65 and 50 with the k parameter, and a Bloom filter size of 200 MB with 

the b parameter. The protocol should take approximately 5 minutes to complete 

and requires under 550 MB of RAM, so can easily be run on a modern laptop or 

desktop computer.

ntedit-sealer finish seqs=ecoli_shasta.fa \

reads=”SRR15859208_1.fastq SRR15859208_2.fastq” \

k=”80 65 50” b=200M

Ensure that quotation marks are used to enclose lists of parameter values 

(i.e., read files and k-mer lengths), and that individual items in lists are space-

separated. k-mer lengths must be passed in decreasing order. The command will 

run (1) ntHits and ABySS-bloom to populate Bloom filters from the short reads, 

(2) a Bash script to call ntEdit iteratively with decreasing k, (3) a Python script 

to consolidate (soft-mask) sequences shorter than the lowest k that are flanked by 

soft-masked regions, and finally (4) Sealer.

5. Ensure that the ntEdit+Sealer run completes successfully. Successful 

completion of will result in the Makefile reporting “ntEdit and 

Sealer polishing steps complete! Polished assembly can be found in: 

ecoli_shasta.ntedit_edited.prepd.sealer_scaffold.fa”.

6. Run QUAST to analyze the draft and ntEdit+Sealer-finished genome assemblies.

quast --fast -r GCF_000005845.2_ASM584v2_genomic.fna.gz \

-o ecoli_quast ecoli_shasta.fa \

ecoli_shasta.ntedit_edited.prepd.sealer_scaffold.fa

All QUAST output files will be printed to the ecoli_quast directory, specified 

by the -o parameter. A summary report will be printed in tab-separated format 

to a file named report.tsv, where each column describes one of the input 

assemblies. The “# mismatches per 100 kbp” metric in this summary describes 

the base accuracy of the draft and finished assemblies compared to the reference. 

The “# indels per 100 kbp” metric describes the average proportion of insertions 

or deletions of either assembly compared to the reference. The expected values 

for these metrics are shown in Table 1. If QUAST was installed manually, the 

executable will be quast.py.
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Support Protocol: Selecting optimal values for k-mer lengths (k) and Bloom 

filter size (b)

Both ntEdit and Sealer employ a k-sweep approach, iterating from long to short k-mer 

lengths. This approach is beneficial because different k-mer lengths can provide resolution at 

different scales. Larger k-mers can disambiguate repeats as they span longer regions, while 

shorter k-mers are useful when the local read coverage is low and for assemblies with lower 

base quality. The same sequence of k values is used for both tools. k=40 is the practical 

lower limit for Sealer, as shorter k values cause its runtime to increase sharply. We find that 

k=80 generally performs well for a variety of datasets and suggest decreasing in intervals of 

10–15. Generally speaking, there is no strict upper limit for k (apart from the read length), 

so a wide range of k-mer lengths can be used to achieve the best polishing results. Time and 

memory restrictions will be the limiting factors in these cases.

ntHits will automatically select the optimal Bloom filter size for ntEdit by calculating the 

k-mer distribution for the input reads, but ABySS-bloom requires the desired Bloom filter 

size to be specified. This parameter is controlled by the b parameter when invoking the 

protocol Makefile.

The optimal size of a Bloom filter depends on several factors, namely the desired false 

positive rate (FPR), number of hash functions used for insertion and number of elements that 

will be inserted. For large Bloom filters, the FPR can be approximated as (Equation 1):

f = 1 − e
−ℎn

m
ℎ

Equation 1

where f is the FPR, m is the size of the filter in bits, h is the number of hash functions and 

n is the number of elements (Broder & Mitzenmacher, 2004). By default, ABySS-Bloom 

uses one hash function for insertion. Using this relationship and asserting h=1, we can 

approximate the optimal m for a given dataset and desired FPR as (Equation 2):

m = Ceil   −n
ln 1 − f Equation 2

The following Bloom filter sizes (RAM) generally perform well for common model 

organisms:

• Homo sapiens (3 Gbp genome): 100 GB

• Caenorhabditis elegans (100 Mbp genome): 2.5 GB

• Escherichia coli (5 Mbp genome): 200 MB

The optimal b value for other genome sizes can be interpolated from these guidelines, or 

can be estimated using ntCard (Mohamadi, Khan, & Birol, 2017). ntCard is a streaming 

algorithm for estimating k-mer frequencies in genomic datasets and can be used to 

determine the number of unique k-mers in a set of short reads. ABySS-Bloom creates a 

2-level cascading Bloom filter (Salikhov, Sacomoto, & Kucherov, 2014) from short read k-
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mers; this means that only k-mers appearing two or more times are accounted for. Therefore, 

only k-mers with multiplicity of 2 or more should be considered when estimating optimal 

Bloom filter size.

The following steps in this Support Protocol describe how ntCard should be used to 

calculate the optimal Bloom filter size for a dataset, ensuring a false positive rate (FPR) 

of ~0.005. The same E. coli short reads from Basic Protocol 1 will be used to demonstrate 

the protocol.

Necessary Resources:

Hardware—A server or machine running a 64-bit Linux or Mac operating system capable 

of running ntCard.

Software

• ntCard v1.2.2+ (https://github.com/bcgsc/ntCard)

ntCard is available on the Conda and Homebrew package managers and can also be cloned 

and compiled from Github.

Files—The short sequencing reads that will be used as input to ntEdit+Sealer will be 

analyzed here. The reads can be provided in compressed or uncompressed FASTQ format 

and paired-end reads do not need to be interleaved.

Protocol steps

1. Install ntCard

Option A: Installation using the Conda package manager

conda create -n ntcard

conda activate ntcard

conda install -c bioconda “ntcard>=1.2.2”

Option B: Installation using the Homebrew package manager

brew install brewsci/bio/ntcard

Option C: Manual installation from Github

git clone https://github.com/bcgsc/ntCard.git

./autogen.sh

./configure –prefix=/path/to/ntCard

make

make install
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The --prefix parameter for the configure script installs ntCard to the provided path. 

This parameter can be excluded if you have sudo privileges and wish to install the tool 

into /usr/local. If using Conda, activate the environment that ntCard was installed to with 

the command conda activate environment_name. If manually installing ntCard to a 

specific directory, ensure that the path supplied to the --prefix parameter is on your PATH.

2. Run ntCard on the read files, providing all k values you are planning on using for 

ntEdit+Sealer. We will use k=80, k=65 and k=50.

ntcard -k80,65,50 -p freq \

SRR15859208_1.fastq SRR15859208_2.fastq

This command will generate a k-mer distribution histogram for each k provided. 

Each histogram will be printed to a two-column, tab-separated file with the 

prefix freq, e.g. freq_k80.hist, where the first column represents an 

Fk metric or multiplicity and the second column contains the number of 

corresponding k-mers.

3. Inspect the k-mer frequency histograms. Only the first three lines are necessary 

for our purposes.

head -n 3 freq_k*.hist

The first two lines of each histogram contain Fk metrics, which describe statistics 

for the input dataset. F0 is the number of distinct k-mers in the reads, and F1 

denotes the total number of k-mers in the dataset. The third line contains the 

number of k-mers appearing once in the reads. See Table 2 for the expected 

values of these metrics.

4. Estimate the number of k-mers that appear two or more times in the reads. 

Subtract the number of k-mers that appear only once from F0 with the following 

one-liner:

for k in 80 65 50; do distinct=$(grep “F0” freq_k$k.hist | awk 

‘{print $2}’); once=$(grep “^1\b” freq_k$k.hist | awk ‘{print 

$2}’); echo k=$k: n=$((${distinct} - ${once})); done

This command will calculate and print the number of k-mers appearing two or 

more times for each k. See Table 3 for the expected values for each k.

5. Calculate the optimal Bloom filter size from the k-mer distributions using the 

largest n calculated in Step 4 (k=65). This will maximize the number of unique 

k-mers considered and therefore produce the lowest FPR for the range of k, a 

method analogous to that employed by Kmergenie (Chikhi & Medvedev, 2013). 
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Using the relationship between FPR and Bloom filter density, the optimal value 

of m given an FPR (f) of 0.005 is (Equation 3):

m = Ceil −n
ln 1 − f Ceil −6720950

ln 0.995 = 1340826718 bits Equation 3

This equates to approximately 168 MB. We rounded this estimate up to 200 MB 

for the example in Basic Protocol 1.

GUIDELINES FOR UNDERSTANDING RESULTS

The final output of ntEdit+Sealer is a base corrected, gap-filled assembly. The file will have 

the suffix .ntedit_edited.prepd.sealer_scaffold.fa. The Makefile will exit with 

a non-zero code if an error occurs during any of the intermediate steps. Otherwise, the 

pipeline will log a success message to inform the user of its completion.

ntEdit keeps track of the base corrections made to the draft assembly, and these changes 

are printed for each iterative run to a tab-separated file with the suffix _changes.tsv. 

Each iterative run will also produce an intermediate edited FASTA file. Sealer will print 

information about how many gaps are closed during each iterative k to a single file with the 

suffix .sealer_log.txt.

Genome assembly assessment tools such as BUSCO (Simão, Waterhouse, Ioannidis, 

Kriventseva, & Zdobnov, 2015) and QUAST (Gurevich et al., 2013) can be used to assess 

assembly correctness before and after polishing. BUSCO is a tool that quantifies the 

completeness of genome assemblies, transcriptomes or gene sets with sets of evolutionarily 

conserved, single copy genes. These gene sets are referred to as Benchmarking Universal 

Single-Copy Orthologs (BUSCOs) and are available for many clades across the tree of life. 

The presence, absence, or duplication of BUSCO members within a genome assembly 

provides a metric for how complete the assembly is in genic space. Polishing with 

ntEdit+Sealer improves the base quality and therefore should increase the percentage of 

complete BUSCO genes in your draft assembly. Since BUSCO only searches for conserved 

genes within a genome assembly, it is a favourable solution when performing de novo 
assembly for an organism without a reference genome. QUAST is a genome assembly 

quality assessment tool that produces a wide range of metrics and visualizations and 

is particularly beneficial when a reference genome is available. Of note, the number of 

mismatches per 100 kbp and number of indels per 100 kbp describe the accuracy of your 

genome assembly in relation to the reference. These metrics should decrease after using 

ntEdit+Sealer to polish and finish your draft genome, assuming the assembled genome is 

highly similar to the reference genome.

COMMENTARY

Background Information

ntEdit was developed as an assembly polishing tool (Warren et al., 2019), and Sealer was 

developed as a tool for filling gaps in genome assemblies (Paulino et al., 2015). New 
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features (discussed in the Critical Parameters section) have been implemented in both tools 

that allow them to work harmoniously to resolve assembly errors. The multi-step approach 

allows error correction at different levels of resolution. ntEdit resolves assembly errors on a 

small scale, correcting base errors and insertions and deletions up to 5 nucleotides in length 

by querying the short-read Bloom filter for all possible edits. If none of the possible edits 

have sufficient support, the erroneous region is soft-masked for further base correction by 

Sealer. Sealer fills the larger erroneous assembly regions, as well as existing hard-masked 

assembly gaps, by traversing an implicit Bloom filter de Bruijn graph to find a path that 

connects the gap-flanking sequences.

Both tools employ Bloom filters, making them more memory efficient and quicker than 

alignment-based approaches. Bloom filters only consist of an array of bits, thereby requiring 

less memory during runtime and storage. Additionally, inserting and querying for elements 

in Bloom filters are both constant time operations, depending only on the number of hash 

functions used for insertion. These characteristics make Bloom filter-based tools beneficial 

for storing and querying large sequencing datasets and allow the ntEdit+Sealer protocol to 

be accessible to groups without access to large amounts of RAM and processing power.

Critical Parameters

When working with Bloom filters, the Bloom filter size and k-mer length are of critical 

importance. Support Protocol 1 provides guidelines for selecting the optimal values for these 

parameters. ntEdit and Sealer must be configured to be compatible with their respective 

soft-masking parameters. The soft-masking behaviour of ntEdit is controlled by setting 

-a 1. Sealer does not recognize lower-case (soft-masked) characters as assembly gaps by 

default; the --lower flag dictates this behaviour. The ntEdit+Sealer Makefile has these 

behaviours configured automatically.

Troubleshooting

The Makefile should not finish running (i.e., will exit with a non-zero status) if an error 

occurs during any of the intermediate steps. Carefully inspect the logs, output files and error 

codes if an error occurs. See Table 4 for possible problems, causes and solutions.

If other problems arise related to the ntEdit+Sealer protocol Makefile and scripts, 

create a Github Issue on the ntEdit+Sealer Github page at https://github.com/bcgsc/

ntedit_sealer_protocol/issues. Please address any problems related to specific tools in their 

respective Github Issues pages.
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NCBI SRA at https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR15859208 (Accession: 

SRR15859208). The draft long-read assembly was generated from MinION reads which 

are available from the SRA at https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR15859207 

(Accession: SRR15859207). The draft assembly can be found at https://www.bcgsc.ca/

downloads/btl/ntedit_sealer_protocol/ecoli_shasta.fa, and the E. coli reference assembly 

is available at https://www.ncbi.nlm.nih.gov/assembly/GCF_000005845.2 (Accession: 

GCF_000005845.2).
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Figure 1. 
ntEdit+Sealer genome finishing pipeline. ntHits extracts k-mers from short reads and creates 

a Bloom filter. ntEdit queries assembly k-mers in the short-read Bloom filter, making base 

corrections where possible and flagging problematic stretches of sequences. ABySS-Bloom 

extracts k-mers and creates another Bloom filter, which is used by Sealer as an implicit de 

Bruijn graph to fill assembly gaps and problematic regions flagged by ntEdit.
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Table 1.

Number of mismatches and indels per 100 kbp for E. coli assembly before and after finishing with 

ntEdit+Sealer.

Draft assembly After ntEdit+Sealer

# mismatches per 100 kbp 371.33 345.86

# indels per 100 kbp 122.38 7.22

Running ntEdit+Sealer assembly finishing protocol decreases the proportion of mismatched bases and the proportion of indels in the E. coli 
genome assembly.
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Table 2.

F1, F0 and number of multiplicity 1 k-mers for E. coli Illumina reads.

k F1 F0 1

50 322,869,315 47,853,592 41,155,307

65 300,812,763 50,900,032 44,179,082

80 278,838,102 52,274,328 45,577,189

Table values correspond to the first three rows of ntCard output histograms for 50-mer, 65-mer and 80-mer cardinality estimation of E. coli strain 
NDM5 Illumina reads.
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Table 3.

Number of k-mers appearing at least twice in E. coli Illumina reads.

k n

50 6,697,139

65 6,720,950

80 6,698,285

Number of k-mers with multiplicity of 2 or more calculated from ntCard output. For each k, n is equal to the number of unique k-mers in the 
dataset (F0) minus the number of k-mers with multiplicity of one.
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Table 4.

Sources and Solutions to Potential Errors

Problem Possible Cause Solution

ntEdit does not make any 
edits and/or Sealer does not 
fix any regions

The supplied k values may 
be too low or high

Sweep a larger range of k values. For ntEdit, check the _changes.tsv 
output files to determine which k values produce the most edits. For Sealer, 
check .sealer_log.txt file to determine which k values close the 
most gaps. Adjust the parameter values accordingly.

Sealer step takes too long The provided k value is too 
low

The realistic lower-bound for k is 40. Run the protocol again with higher k 
values.

Assembly accuracy metrics 
from BUSCO or QUAST 
deteriorate

False positive rate of 
ABySS-Bloom Bloom filter 
may be too high

Increase the Bloom filter size (b parameter) or try larger k values

The ntEdit+Sealer Makefile 
gives the error “No rule to 
make target…”

Parameter values or files 
were passed or named 
incorrectly

Ensure input files are named correctly and that parameters are passed as 
expected. Run ntedit-sealer help or check the ntEdit+Sealer 
Github page for more details.

Potential problems that a user may encounter when running ntEdit+Sealer protocol and corresponding potential causes and solutions.
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