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Objective: The aim of the current study is to understand why some individuals avoid developing 

Parkinson’s disease (PD) in spite of being at relatively high genetic risk, using the largest datasets 

of individual-level genetic data available.

Methods: We calculated polygenic risk score to identify controls and matched PD cases with 

the highest burden of genetic risk for PD in the discovery cohort (IPDGC, 7,204 PD cases and 

9,412 controls) and validation cohorts (COURAGE-PD, 8,968 cases and 7,598 controls; UKBB, 

2,639 PD cases and 14,301 controls; AMP-PD, 2,248 cases and 2,817 controls). A genome-

wide association study meta-analysis was performed on these individuals to understand genetic 

variation associated with resistance to disease. We further constructed a polygenic resilience score, 

performed MAGMA gene-based analyses and functional enrichment analyses.

Results: A higher polygenic resilience score was associated with a lower risk for PD (Beta= 

−0.054, SE = 0.022; P = 0.013). Although no single locus reached genome-wide significance, 

MAGMA gene-based analyses nominated TBCA as a putative gene. Furthermore, we estimated 

the narrow-sense heritability associated with resilience to PD (h2 = 0.081, SE = 0.035, P = 

0.0003). Subsequent functional enrichment analysis highlighted histone methylation as potential 

pathway harboring resilience alleles that could mitigate the effects of PD risk loci.

Interpretation: The present study represents a novel and comprehensive assessment of heritable 

genetic variation contributing to PD resistance. We show that a genetic resilience score can modify 

the penetrance of PD genetic risk factors and therefore protect individuals carrying a high-risk 

genetic burden from developing PD.
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Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disorder1. Although 

there are monogenic forms of PD, the majority of individuals with PD do not harbour 

pathogenic mutations and are often said to have ‘sporadic’ PD2. Over the past decade, 

significant progress has been made in understanding the genetic architecture of sporadic 

PD by conducting Genome-Wide Association Studies (GWAS). The latest PD GWAS meta-

analysis has robustly identified 90 independent risk signals which can explain between 

16–36% of the heritable risk of PD in individuals of European ancestry3. The genetic risk 

burden, or ‘polygenic risk score’ (PRS) - i.e. a weighted sum of the PD risk alleles an 

individual carries - has been shown to correlate with PD susceptibility, age of onset, and 

progression in independent cohorts4–6.

In the PD field, PRS has been extensively applied in an effort to distinguish PD cases 

from controls. Optimised PRS analyses are able to differentiate disease status with 56.9% 

sensitivity and 63.2% specificity when estimated alone, and with 83.4% sensitivity and 

90.3% specificity when the score is combined with family history, olfactory function, age 

and gender7. Furthermore, PRS has been successfully applied to explore novel functional 

pathways in PD8, to study gene-environment interactions9, to estimate potential shared 
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genetic etiologies10, and as a disease penetrance modifier in LRRK2 and GBA mutation 

carriers11,12 all towards the implementation of personalized medicine13.

In addition, polygenic scores and GWAS provide an opportunity to research genetic 

factors that confer resilience. In the context of genetics, resilience is defined as heritable 

variation that promotes resistance to disease by reducing the penetrance of risk loci. The 

first polygenic resilience score study on a complex genetic disorder has been recently 

published14. The authors found that a polygenic resilience score managed to differentiate 

high-risk controls from equal-risk schizophrenia cases. Furthermore, the Resilience Project 

by Chen et al. found that 13 out of 589,306 healthy adults were genetically resilient to 

highly penetrant forms of genetic childhood disorders15. Studies that focus on resilience 

genetic factors both in monogenic and polygenic forms of disease16,17 are therefore crucial 

to shed light on disease mechanisms that may be more amenable to therapeutic intervention.

Resilience is not simply the inverse of risk which refers to ‘protective variants’ (i.e. the 

alternate alleles at each risk-associated locus that have a higher frequency in controls than in 

cases)14. On the contrary, resilience alleles are thought to mitigate the effects of the risk loci 

and reduce the likelihood of the disorder in higher-risk groups.

A priority in elucidating PD etiology lies in defining cumulative risk, however, very little 

is known about genetic factors that enhance resistance to PD development. Indeed, why 

some people avoid illness despite being at elevated risk remains unexplored in the field. The 

current study aims to explore the genetic architecture of resilience in PD. Here we conduct 

the first GWAS of resilience to polygenic PD risk and construct a polygenic resilience 

score that could decrease susceptibility to PD risk variants. Finally, we explore functional 

enrichment of resilient variants by performing pathway analyses and expression enrichment 

across tissues and cell types.

Methods

Demographic and cohort characteristics, quality control procedures, and study design

Fig. 1 summarizes the workflow and data used in this project. To assess PD risk, we 

obtained summary statistics defining risk allele weights from Chang et al., PD GWAS meta-

analysis18, including 26,035 PD cases and 403,190 controls of European ancestry. There 

were 7,909,453 imputed SNPs tested for association with PD in this study. Individual-level 

genotyping data not included in Chang et al. and from the International Parkinson’s Disease 

Genomics Consortium (IPDGC)3 was used as a discovery cohort containing 7,204 PD 

cases and 9,412 controls, all unrelated and of European ancestry (Supplementary Table 1). 

Additional details of the IPDGC cohort and detailed quality control (QC) and imputation 

methods are further described elsewhere3.

Imputed individual-level genotyping data from the Comprehensive Unbiased Risk factor 

Assessment for Genetics and Environment in Parkinson’s Disease (COURAGE-PD), UK 

Biobank (UKBB) and whole-genome sequencing (WGS) data from the Accelerating 

Medicines Partnership - Parkinson’s Disease Initiative (AMP-PD v.2.5; www.amp-pd.org) 

were used as validation cohorts. All participants were of European ancestry. The 

Liu et al. Page 3

Ann Neurol. Author manuscript; available in PMC 2023 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.amp-pd.org/


COURAGE-PD cohort consists of 8,968 cases and 7,598 controls genotyped on 

Neurochip19. Demographic and clinical characteristics of COURAGE-PD are described in 

Supplementary Table 2. Imputation was performed in a cloned Michigan Imputation Server 

(MIS) (https://193.196.20.138:8080/) at the deNBI cloud (https://denbi.uni-tuebingen). The 

Haplotype Reference Consortium Release 1.1 (HRC) data usage request was approved 

by the Sanger Institute (Dataset ID: EGAD00001002729). The datasets were prepared 

in accordance with the reference panel criteria for the MIS (https://imputationserver). 

The HRC/1000G imputation preparation and checking tool (https://www.well.ox.ac.uk/~) 

was used to check for Ref/Alt allele assignments, incorrect strands, deviation from allele 

frequency and palindromic SNPs. Later, post-QC data was phased using Eagle v2.4 in our 

MIS. Imputation of autosomal variants was performed separately for each dataset using 

the HRC reference panel and the GRCh37/hg19 assembly with an R2 filter of 0.3. Finally, 

imputed data were hard-called using R2 of 0.8 on PLINK 2.020.

The UKBB cohort was composed of 2,639 unrelated PD cases and 14,301 unrelated controls 

(UK Biobank data v2) with recruitment age over 60 years and without medical history of 

neurological diseases (PD field code: 131023 and European ethnic grouping field code: 

22006). Additional details on this cohort, along with QC procedures are described in Clare 

et al21. Finally, the AMP-PD dataset (v2) was composed of 2,248 cases and 2,817 are 

controls of European ancestry, unrelated and without any PD known genetic cause, with 

an average AAO of 61.3 years in cases and an average age of 69.3 years in controls 

(Supplementary Table 3). Additional and detailed cohort characteristics, as well as QC 

methods, can be found in https://amp-pd.org/whole-genome-data.

Polygenic risk score calculation to identify high-risk resilient controls and equally risk 
matching PD cases

PRS analyses required two key input data sets. (i) reference data: published GWAS summary 

statistics including variants and effect sizes for which Chang et al., 2017 PD data was 

used. (ii) target data: genotyping, imputed individual-level data for which non-overlapping 

IPDGC, UKBB, AMP-PD, and COURAGE PD cohorts were used. The reference and 

target datasets used were independent from each other because sample overlap could cause 

substantial inflation between PRS and disease status association in the target dataset. Since 

the IPDGC and UKBB cohorts are included in the Nalls et al., 2019 summary statistics, we 

used the Chang GWAS summary statistics to avoid spurious results.

We applied supervised machine learning to select the p value threshold of independent 

variants that best predicted PD risk in the IPDGC dataset. We used GenoML, an open-source 

python package that automates machine learning workflows for genomics (genoml.com). 

Source code and documentation is available at [https://genoml.com/] and on GitHub [https://

github.com/GenoML/genoml2]. The process we used for selecting the best p value threshold 

mirrored that in Makarious et al22. We ran the discrete supervised learning workflow for 

munging, followed by training on a series of p value thresholds taken from the Chang et 
al. PD GWAS summary statistics, which included each incremental order of magnitude 

ranging from 0.01 to 1×10−8. Each model included SNPs as well as sex, age and 20 principal 
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components (PCs) to account for population stratification. In the following paragraph, we 

summarize the GenoML workflow carried out to establish our optimal p value threshold.

For each p value threshold, we first performed data munging that included feature 

selection via extraTreesClassifier (up to 500 trees), LD pruning (R2 > 0.1 within 1MB 

sliding windows) and normalization (Z-scaling of features including sex, age and principal 

components). Feature selection was performed using the extremely randomized trees 

classifier algorithm (extraTrees) on combined data modalities to remove redundant feature 

contributions that could overfit the model, and to optimize the information content from 

the features and limit artificial inflation in predictive accuracy that might be introduced by 

including such a large number of features before filtering. By removing redundant features 

using correlation-based pruning and an extraTrees classifier as a data munging step, the 

potential for overfitting is limited while also making models that are likely to be more 

conservative and generalizable.

We then completed all available algorithms in the package, which we trained on 70% of 

the samples and tested on the randomly selected remaining 30% of the sample (under 

default settings). Briefly, the GenoML workflow consists of the top dozen algorithms 

stemming from standard linear models used in genetic prediction analyses, employing 

tree-based methods (boosting), kernel based methods (k-nearest neighbors, support vectors, 

discriminant analysis and random forests), and deep learning (perceptron and gradient 

descent). For each p value threshold, we selected the model that produced the highest area 

under curve (AUC) and then compared across p value thresholded models. The p value 

threshold with the highest AUC was set at 1e-3. We selected this threshold for our PRS 

construction that followed. A total of 1,060 variants were used to construct PRS using the 

1e-3 p value threshold. The Chang GWAS only identified 41 significant loci of the current 

90 PD risk regions. This model included variants nominated by GenoML with p < 1e-3 to 

identify high-risk cases and equal high-risk controls through PRS analyses capturing current 

risk loci considered sub-top hits in Chang et al., study. PRS was computed using PLINK 

v1.920 and was standardized using z-score scaling. A logistic regression model, adjusted 

by age, sex and 10 PCs, was used to examine the correlation between PRS and PD status. 

We then ranked subjects by PRS and categorised the controls that had a PRS above the 

75th percentile as ‘PD resilient’14. PD cases whose PRS was between the 75th percentile 

and the maximum PRS for controls were retained as the comparison group. This method 

detected 2,353 high-risk resilient controls and 3,011 risk-matching cases in the IPDGC 

cohort (Supplementary Table 4).

Parkinson’s disease resilience GWAS and polygenic resilience score calculation

a) Discovery phase analyses—To avoid potential bias affecting our analyses, we 

excluded SNPs with a p ≤ 1e-3 in Chang et al., 2017 summary statistics in addition to 

variants in LD with these SNPs at a R2 > 0.1. This step avoided re-discovering risk variants, 

ensuring that any resilience genetic variants derived from our analysis were independent 

from known risk loci. We also excluded variants in the MHC region (hg19, chr6:28477797–

33448354), due to inter-region variability and extensive LD. A minor allele frequency 

threshold of 0.05 was applied to further filter the inclusion of variants due to power 
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concerns. A GWAS for PD resilience was conducted including 2,353 high-risk resilient 

controls and 3,011 equal-risk cases generated from the IPDGC cohort using PLINK v2.020.

To calculate a polygenic resilience score, we randomly split the 2,353 high-risk resilient 

controls and 3,011 equal-risk cases in a 70–30% ratio. The GenoML pipeline described 

above was applied to select the best p value threshold of independent variants predicting 

resilience. A total of 239 variants with a p value <1e-3 were used to construct a polygenic 

resilience profile, which was calculated using the “--score” function in PLINK v1.9. Risk 

allele dosages were counted (giving a dose of two if homozygous for the risk allele, one if 

heterozygous, and zero if homozygous for the reference allele). All SNPs were weighted by 

the log odds ratios obtained from the resilience GWAS using the 70% data subset, with a 

greater weight given to alleles with higher risk estimates. Polygenic resilience scores were 

converted to Z scores for easier interpretation. A logistic regression model was used to 

explore the resilience scores and resilience status after adjusting for age, sex, and 10 PCs. 

For easier interpretation, beta values are reported relating to an increasing dosage of alleles 

conferring resilience to PD (meaning that as the resilience score increases, the risk of PD 

decreases).

Finally, Pearson’s correlation coefficient was applied to explore the linear correlation 

between risk and resilience scores in four separate groups: (1) PD cases and controls, (2) 

resilient controls and risk matching cases.

b) Replication phase and meta-analysis—Polygenic risk scores were calculated in 

the validation cohorts (COURAGE-PD, UKBB, and AMP-PD) using weights derived from 

the Chang et al. GWAS summary statistics and mimicking the pipeline used in the discovery 

phase (IPDGC dataset). A logistic regression model, adjusted by age, sex and 10 PCs, was 

used to examine the association between PRS and PD status within each cohort. We applied 

the 75th percentile threshold method to identify resilient controls and equal-risk cases.

A resilience GWAS was conducted on these three validation cohorts following the same 

criteria described above. We then meta-analyzed GWAS summary statistics from all 4 

cohorts (IPDGC, COURAGE-PD, UKBB and AMP-PD) using the METAL package23. 

Briefly, results from the 4 GWAS analyses were combined in a fixed-effect meta-analysis 

to obtain the overall effects. Resilience scores were calculated in the validation cohorts 

using weights derived from the IPDGC resilience GWAS conducted in 70% of the data. 

A logistic regression model was used to explore the resilience scores and resilience status 

after adjusting for age, sex, and 10 PCs within each cohort. Similarly, we then performed a 

fixed-effect meta-analysis with the R package rmeta using effect sizes and standard errors 

for resilience scores obtained from the four cohorts to evaluate the aggregate predictive 

capacity of the resilience scores.

Heritability analyses

SNP-based heritability estimates associated with resilience to PD were calculated using LD 

score regression (LDSC)24. This approach involves running regression analyses to examine 

the relationship between linkage disequilibrium scores and the test statistics of the SNPs 
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from the GWAS. Here, the linkage disequilibrium score for a SNP is the sum of LD R2 

measured with all other SNPs.

Functional enrichment of resilience SNPs

To conduct gene-based GWAS and assess expression enrichment across tissues and 

cell types, we uploaded meta-GWAS summary statistics to the Functional Mapping 

and Annotation of Genome-Wide Association Studies (FUMA) webserver (https://

fuma.ctglab.nl/). Gene-based GWAS was computed by MAGMA implemented in FUMA. 

In the MAGMA gene-based GWAS, SNPs are mapped to 16,956 protein-coding genes and 

the resulting SNP p values are combined into a gene test-statistic using the SNP-wise mean 

model. MAGMA gene-set pathway analyses using the full distribution of SNP p values 

were performed for curated gene sets and Gene Ontology terms obtained from MSigDB 

(https://www.gsea-msigdb.org/gsea/msigdb/). To determine the tissues and cell types most 

relevant to PD resilience, summary statistics were analyzed using MAGMA gene property 

tests to compare enrichment of the average gene expression per tissue using GTEx v8 (54 

tissues) [https://gtexportal.org]. Bonferroni correction was performed for all tested gene sets. 

In addition, single-cell RNA sequencing data from Dropviz26 dataset (spanning 88 possible 

tissues and cell type combinations) was queried for cell enrichment analyses using FUMA.

Results

Polygenic risk score identifies high-risk resilient controls and matched-risk Parkinson’s 
disease cases

Using the largest datasets of individual-level genetic data available for PD to date, and in 

concordance with previous PD genetic studies, PRS could significantly detect an association 

with PD status in all four tested cohorts (Supplementary Fig.1). The regression model 

indicated that a higher PRS per standard deviation of genetic risk was significantly 

associated with PD risk in the IPDGC (1060 variants, Beta = 0.354; standard error (SE) 

= 0.020; P = 4.19e-70), COURAGE-PD (1034 variants, Beta = 0.240; SE = 0.017; P = 

2.95e-45), AMP-PD (977 variants, Beta = 0.283; SE = 0.030; P = 3.97e-21) and UKBB 

cohorts (802 variants, Beta = 0.215; SE = 0.022; P = 1.47e-22).

These analyses enabled the identification of high-risk controls and risk matching cases. We 

detected 2,353 resilient controls and 3,011 risk matched cases in the IPDGC, 1,900 resilient 

controls and 3,102 cases in the COURAGE-PD, 3,576 resilient controls and 847 cases in 

UKBB and 705 resilient controls and 798 cases in AMP-PD data (Supplementary Table 4).

Genome wide association study and meta-analysis of resilience in Parkinson’s disease 
provides insights into the genetic architecture of resistance to disease

A GWAS approach followed by meta-analysis was implemented to explore genetic variants 

associated with resilience to PD in high-risk controls and equally high-risk cases (λIPDGC 

= 1.03, λCOURAGE-PD = 1.01, λUKBB = 1.02, λAMP-PD = 1.01). We performed a fixed-

effect meta-analysis of GWAS summary statistics from all four cohorts. The resilience 

meta-GWAS included a total of 8,534 resilient controls and 7,758 risk matching cases. We 

compared the genome-wide resilience p values with an expected (i.e., null) distribution of p 
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values, revealing that the observed values fit closely with expected values as shown in the 

quantile-quantile (Q-Q) plot (λmeta = 1.065) (Supplementary Fig.2).

We performed power calculations using the GAS power calculator27 at our meta-analysis 

sample size to confirm we could achieve greater than 90% statistical power at genome-wide 

significance for a variant with a minor allele frequency of 20%, a genotype relative risk 

of 1.2 and a disease prevalence of 0.5%. When using a more stringent threshold (10% of 

the data), our ability to reach genome-wide significance drops to 17% of statistical power 

(Supplementary Fig.3).

No significant loci were found to be linked with resilience to PD at a genome-wide level 

(Fig. 2). However, our analyses nominated four independent sub-top resilience signals that 

require further validation at a p < 1.0 × 10−6 (Supplementary Table 5). We observed 

suggestive associations with rs62325099 (Beta = −0.328, SE = 0.061, P =1.03e-07) near 

LINC01262, rs2652202 (Beta = 0.127, SE = 0.024, P =1.64e-07) near TBCA, rs12245509 

(Beta = −0.248, SE = 0.049, P =5.21e-07) near LINC01375 and rs292289 (Beta = −0.301, 

SE = 0.056, P =9.85e-08) near C18orf42. The effect sizes of the four sub-top SNPs on PD 

risk in the Nalls et al GWAS3 are also shown in Supplementary Table 5. Expanding future 

studies will identify new loci and improve the AUC for a genetic predictor of resilience to 

PD.

Narrow-sense heritability analyses revealed that the proportion of resilience to PD explained 

by genetic factors was 9.6 % (h2 = 0.081, SE = 0.035, P = 0.0003).

Gene-based MAGMA analyses nominate TBCA as a potential gene involved in resilience to 
Parkinson’s disease

After performing MAGMA annotation and gene mapping, we conducted a gene-based 

association analysis using all SNPs in the GWAS. Our results nominated TBCA (top 

lead SNP: rs2652202, P =1.64e-07) as significantly associated with PD resilience (FUMA 

Bonferroni adjusted p value; 0.05/16,956 = 2.95e-6) (Supplementary Fig.4A and B). The 

Q-Q plot for the gene-based GWAS is shown in (Supplementary Fig.4C).

Polygenic resilience score modulates the effect of Parkinson’s disease genetic risk factors

The associations between resilience scores and PD status per high-risk cohort are 

represented in Fig. 3. The regression model indicated that a lower resilience score was 

significantly associated with PD risk in the IPDGC (239 variants, Beta = −0.097; SE = 

0.052; P = 0.060) and COURAGE-PD cohorts (227 variants, Beta = −0.080; SE = 0.031; P = 

0.011). We were not able to identify a significant association in the AMP-PD (216 variants, 

Beta = 0.002; SE = 0.060; P = 0.979) and UKBB (232 variants, Beta = 0.010; SE = 0.048; P 
= 0.838) cohorts likely given the limited sample size from the resilient controls and equally 

high-risk cases (Supplementary Fig.5). Meta-analysis results of the four cohorts showed that 

a higher resilience score was associated with a lower risk of PD (Beta= −0.054, SE = 0.022; 

P = 0.013, I2 = 0.262) (Fig. 3).

In the full IPDGC cohort, risk and resilience scores were positively correlated in controls 

(Pearson’s r = 0.132, 95% CI = [0.111,0.151], P = 2.2e-16) and negatively correlated in 
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PD cases (Pearson’s r = −0.092, 95% CI = [−0.115, −0.069], P = 2.2e-16) (Supplementary 

Fig.6). However, risk and resilience scores were not correlated in high-risk controls and 

cases in the IPDGC cohort and not correlated in all groups within validation cohorts 

(Supplementary Table 6).

Functional enrichment pathway analyses highlight molecular processes harbouring 
resilience alleles

Based on MAGMA gene-sets pathway analyses using GWAS summary statistics, we 

identified one significant enriched pathway (GO_bp: go_histone_h3_k9_dimethylation, Beta 

= 0.024, SE = 0.292, Bonferroni adjusted P = 0.021). The top ten biological pathways 

are shown in (Supplementary Table 7). Results of FUMA analysis for tissue and cell type-

specific expression enrichment are shown in (Supplementary Fig.7 and 8). We did not find 

any significant tissues and cell types associated with resilience to PD after false discovery 

rate correction. The top ten nominated tissues are brain-derived and the top five nominated 

brain cell types are neuronal.

Code availability

Analysis code is available at https://github.com/ipdgc/IPDGC-Trainees/blob/master/

RESILIENCE.md

Discussion

Despite success at unraveling genetic risk factors associated with PD, our understanding of 

the heritable variation that promotes resistance to PD risk is widely unknown. Using the 

largest genetic PD cohorts available to date, we aimed to explore the genetic architecture 

of resilience to PD with the goal of studying genetic variation that helps unaffected 

individuals cope with a relatively large genetic burden of disease-associated variants. To 

our knowledge, there are no previous reports in the PD field where a similar approach has 

been implemented.

We performed a meta-analysis of GWAS including four datasets of European ancestry 

totaling 7,758 cases and 8,534 controls. Although no variants reached genome-wide 

significance, we observed four sub-top loci: TBCA, LINC01262, LINC01375, and 

C18orf42. Gene-based GWAS analyses also highlighted TBCA as a potential gene involved 

in the resilience to PD. TBCA is thought to play a relevant role in modulating the stability 

and polymerization of microtubules. Substantial evidence supports the view that altered 

microtubule dynamics underlies or contributes to neurodegenerative disorders. Indeed, 

expression of the tubulin chaperone TBCA has been found to be altered in PD dementia 

patients, suggesting that defects in synaptic transmission and axonal function are early 

events in the pathogenesis of PD28. Interestingly, two long intergenic non-protein coding 

RNA genes (lincRNAs) (LINC01262 and LINC01375) were nominated as potential sub-top 

hits. Recent studies have shown that lncRNAs might alter the expression of PD-linked genes, 

such as PINK1, LRRK2, and SNCA29. Future studies are needed to explore the regulatory 

role of these two lincRNAs in PD. In addition to these two loci, C18orf42 encodes a protein 

kinase A (PKA) binding protein and is expressed preferentially in neural tissues30. It has 
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been shown that the loss of PKA signalling regulates mitochondrial function and neuronal 

development contributing to the etiology of PD31.

A novel aspect of this study is that a lower polygenic resilience score constructed from the 

resilience GWAS (conducted in 70% of the IPDGC data) was significantly associated with 

PD among high-risk individuals and that this is a cumulative protective score specific to 

samples in the highest quartile of generalized genetic risk from previous publications. The 

current study suggests that polygenic resilience score modifies the risk of PD in the top 

quartile of individuals carrying the highest burden of known genetic risk factors. Our results 

show a significant positive correlation between risk and resilience scores in the discovery 

IPDGC control cohort which validates the notion that, as risk score increases, so too must 

the resilience score in order for an at-risk individual to remain unaffected. In concordance, 

we observe a negative correlation between risk and resilience scores in the discovery IPDGC 

cases cohort. We assume the limitation that no significant correlations between risk and 

resilience scores were observed in the replication cohorts and the high-risk subset of cases or 

controls within IPDGC, probably due to a lack of statistical power. In the PD field, extensive 

research has been done in terms of risk, but few studies have focused on resilience. A study 

conducted by Iwaki et al11 found that lower PRS constructed from 89 PD risk variants 

was associated with a lower penetrance of disease in LRRK2 G2019S carriers, especially 

in younger individuals. In a similar context, Blauwendraat et al12 found that PRS modifies 

risk for disease and reduces age at onset in GBA carriers. Although we would have liked to 

further explore LRRK2, GBA and additional PD known risk loci in the context of resilience, 

the sample size required to draw meaningful conclusions in carriers versus non-carriers 

limited this genome-wide power-hungry approach. We were not able to assess resilience in 

specific carriers of LRRK2 and GBA mutations. Exploring resilience to PD in LRRK2 and 

GBA carriers through gene-gene interaction analyses, where the penetrance of a risk variant 

could change based on the effect of a resilience variant, presents an excellent opportunity 

to understand the complexity of disease, which in turn is crucial to developing predictive 

and preventive approaches. We encourage other researchers to expand on this pilot study. 

Additionally, although the current study sought to explore resilience from a mere genetics 

perspective, it should be pointed out that disease penetrance can largely be affected by 

environmental factors, which we did not account for. Further studies focused on analyzing 

gene-environment interactions and their role in resilience are warranted. It is hoped that 

large-scale, collaborative and multi-center research will help plug current knowledge gaps 

in the near future. Altogether, identification of factors influencing the penetrance of disease 

in high-risk burden carriers could be relevant to identify protective mechanisms against 

illness. Interestingly, our heritability estimates revealed a substantial contribution of genetic 

factors to the genetic architecture of resilience to PD. In the context of neurodegenerative 

diseases, Dumitrescu et al., have recently reported that the narrow-sense heritability of 

resilience in Alzheimer’s disease ranges between 19–67%16. Notably, the authors highlight a 

putative role of vascular risk, metabolism, and mental health in protection from the cognitive 

consequences of neuropathology in Alzheimer’s disease.

Overall, our genome-wide enrichment pathway analysis implicated the histone h3-

k9 dimethylation (H3K9me2) pathway in the resilience to PD. Interestingly, histone 

methylation is a crucial epigenetic mechanism regulating gene expression. Sugeno et al32 
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reported that overexpression of α-synuclein in transgenic drosophila and in inducible 

human neuroblastoma SH-SY5Y cells led to enhanced histone H3K9me2, which eventually 

impaired synaptic activity. Histone methylation H3K9me2 is also significantly elevated 

in the prefrontal cortex and hippocampus of late-stage familial Alzheimer’s disease (AD) 

mice, which links to the epigenetic regulation of reduced glutamate receptor transcription33. 

Interestingly, Belzil et al34 found that reduced C9orf72 mRNA levels in amyotrophic 

lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients was caused by histone 

H3K9me3. Future studies are warranted to investigate how specific histone methylation 

mechanisms regulate synaptic and other pathophysiological changes identified in PD 

patients. Although we did not find any significant enrichment for tissues or cell types 

associated with resilience likely due to limited sample size, our analyses suggested the 

possibility of resilience alleles being enriched for expression in brain and neuronal cell 

types, known to be involved in disease etiology3.

Finally, while this is the most comprehensive genetic analysis of resilience in PD, some 

limitations should be acknowledged in this work. Although the largest available individual 

level PD genetics cohorts were explored, the sample size of high-risk individuals was still 

limited, and we remained underpowered to detect genome-wide single variant effects. We 

defined individuals with PRS above the 75th percentile to the maximum of the control group 

as high-risk individuals. Future work including larger sample sizes containing non-European 

individuals, and stricter cuff-off (90th percentile to the maximum) are needed to further 

delineate PD resilience. Additionally, we are aware of the limitation that the current study 

only focused on European individuals. The genetic architecture of resilience in PD should 

further be explored in ancestrally diverse populations. Prior to running the ML model, 

principal component analyses were conducted similarly among the three datasets, where 

population outliers deviating 6SD from the population mean for European ancestry were 

removed. In addition, all SNP minor allele dosages were adjusted for principal components 

1–10 to account for population substructure allowing the model to be built using genotype 

dosages adjusted for population substructure. However, we cannot predict how this model 

might perform on other populations and future analyses should be conducted as new data 

in different populations becomes available. Our approach was designed to identify resilience 

SNPs that are LD-independent of risk SNPs based on liberal definitions of risk (p < 

0.001) and of LD (R2 < 0.1 with a risk-conferring variant) so that we avoided detecting 

additional risk SNPs. We assume the limitation that biologically, it is expected that resilience 

SNPs can reduce the penetrance of nearby risk SNPs, even those within the same gene 

or LD block. Future conditional association analysis in much larger datasets could be an 

accurate approach to test whether resilience signals are more likely to co-localize with loci 

harbouring risk variants. In our study, we only explored resilience variants that can confer 

resistance to disease. We encourage other researchers to study how resilience variants may 

affect the age at onset or disease progression.

In conclusion, the present study represents a step forward in understanding genetic 

factors contributing to PD resistance. We perform the first GWAS of PD resilience and 

conduct comprehensive follow-up analyses highlighting novel pathways contributing to PD 

resilience. We show that our resilience score can modify the penetrance of known and 

unknown PD genetic risk factors and therefore protect individuals carrying a high-risk 
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genetic burden from developing PD. Here we present a pipeline that can serve as a 

foundational publicly available resource to keep investigating a crucial scientific question 

as new data gets generated.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Summary for Social Media

1. If you and/or a co-author has a Twitter handle that you would like to be 

tagged, please enter it here. (format: @AUTHORSHANDLE).

@sarabandres1;@ liuhui1949

2. What is the current knowledge on the topic? (one to two sentences)

In the Parkinson’s disease field, our current knowledge on the heritable 

variation that promotes resistance to disease by reducing the penetrance of 

risk loci is widely unknown. Indeed, why some people avoid illness despite 

being at elevated risk remains unexplored in the field.

3. What question did this study address? (one to two sentences)

This study aims to conduct the first GWAS of resilience to polygenic PD risk 

and construct a polygenic resilience score that could decrease susceptibility 

to PD risk variants. Furthermore, it explores the functional enrichment of 

resilient variants by performing pathway analyses and expression enrichment 

across tissues and cell types.

4. What does this study add to our knowledge? (one to two sentences)

The present study represents a novel assessment of heritable genetic variation 

contributing to PD resistance. We show that a genetic resilience score can 

modify the penetrance of PD genetic risk factors and therefore protect 

individuals carrying a high-risk genetic burden from developing PD.

5. How might this potentially impact the practice of neurology? (one to two 

sentences)

This manuscript itself does not have an impact on the practice of neurology, 

however, this study represents the most comprehensive genetic analysis of 

resilience in PD.
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Figure 1. 
Workflow and rationale summary.
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Figure 2. 
Manhattan plot showing genome-wide association results conferring resilience to PD.
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Figure 3. 
Forest plot depicting the effect (Beta coefficient) of polygenic resilience score on PD risk 

(95% confidence interval) across cohorts.
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