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Abstract

Sex as a biological variable is the focus of much literature and has been emphasized by the 

National Institutes of Health, in part, to remedy a long history of male-dominated studies in 

preclinical and clinical research. We propose that time-of-day is also a crucial biological variable 

in biomedical research. In common with sex differences, time-of-day should be considered in 

analyses and reported to improve reproducibility of studies and to provide the appropriate context 

to the conclusions. Endogenous circadian rhythms are present in virtually all living organisms, 

including bacteria, plants, invertebrates, and vertebrates. Virtually all physiological and behavioral 

processes display daily fluctuations in optimal performance that are driven by these endogenous 

circadian clocks; importantly, many of those circadian rhythms also show sex differences. In this 

review, we describe some of the documented sex differences in circadian rhythms.

Circadian rhythms are endogenous biological rhythms with periods of about 24 hours. 

Circadian rhythms persist in the absence of environmental cues; however, organisms use 

environmental cues, especially light, to entrain circadian rhythms precisely to the 24-hour 

solar day (Czeisler and Wright 1999). Synchronizing (or entraining) circadian rhythms to 

the solar day allows individuals to match physiological and behavioral responses with the 

appropriate temporal environmental conditions. Endogenous circadian rhythms are present 

in virtually all living organisms, including bacteria, plants, invertebrates, and vertebrates. 

Again, light is the most effective entraining agent, or zeitgeber. Among individuals of many 

vertebrate species, light stimulates intrinsically photosensitive retinal ganglion cells, which 

depolarize and synapse directly onto neurons in the suprachiasmatic nucleus (SCN) of the 

hypothalamus.

The master biological clock is located within the SCN where, dependent upon species, 

approximately 20,000–50,000 neurons maintain a transcriptional autoregulatory feedback 

loop. The molecular mechanism of the mammalian circadian clock has been reviewed in 

detail elsewhere (Partch et al. 2014). Virtually all cells have the clockwork mechanisms and 

are organized hierarchically throughout the body with the SCN serving as the master clock 

organizing all rhythms. The clockwork mechanism comprises an autoregulatory loop as the 
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primary mechanism driving circadian rhythms; however, there is increasing evidence of 

additional processes, including posttranslational modifications (Gallego and Virshup 2007) 

and cAMP signaling (O’Neill et al. 2008), that are also critical to function. Time-of-day 

information, based on light intensity, is then relayed from the SCN to other brain regions, 

as well as to peripheral tissues, via neural and humoral pathways to provoke appropriate 

responses.

Sex as a biological variable is the focus of much literature and has been emphasized by the 

National Institutes of Health (NIH), in part, to remedy a long history of male-dominated 

studies in preclinical and clinical research (Beery and Zucker 2011; Zucker et al. 2021). 

Given the legions of sex differences in physiology and behavior, the exclusion of females 

from clinical and nonclinical research has likely had negative consequences for women’s 

health (Beery and Zucker 2011; Zucker et al. 2021). Similarly, there are well-documented 

temporal differences in physiology and behavior that should be considered across all 

biological studies (Nelson et al. 2021).

We propose that time-of-day is also a crucial biological variable in biomedical research. 

In common with sex differences, time-of-day should be considered in analyses and 

reported to improve reproducibility of studies and to provide the appropriate context to the 

conclusions. Virtually all physiological and behavioral processes display daily fluctuations 

in optimal performance that are driven by endogenous circadian clocks; importantly, many 

of those circadian rhythms also show sex differences. Sex differences exist at multiple 

levels, from DNA to behavior, throughout the animal kingdom. In this article, we focus 

on sex differences in biological rhythms and how the neuroanatomical organization and 

hormonal milieu may transduce these differences or compensate for differences to normalize 

behavioral or physiological rhythms.

ANATOMICAL DIFFERENCES IN THE CIRCADIAN TIMING SYSTEM

There are three major afferent pathways through which zeitgebers can entrain the SCN; 

photic information via the retinohypothalamic tract (RHT) from the retinato the SCN, 

and nonphotic information transduced via the geniculohypothalamic tract (GHT) from the 

intergeniculate leaflet (IGL) to the SCN, or via direct projections from the dorsal and 

median raphe to the SCN. All of these afferent structures and the SCN express estrogen 

receptors (ERs) and androgen receptors (ARs) in various patterns (for reviews, see Bailey 

and Silver 2014; Yan and Silver 2016; Hatcher et al. 2020; Nicolaides and Chrousos 2020). 

Indeed, there are sex differences (and species-specific sex differences) in sex steroid receptor 

expression in the SCN (Iwahana et al. 2008), the retina (Wickham et al. 2000), the IGL 

(Horvath et al. 1999), and the raphe (Sheng et al. 2004); thus, gonadal and neurosteroids can 

directly affect the brain’s master clock and its afferent pathways to influence the circadian 

system.

There are sex differences in how gonadal hormones affect both organization and modulation 

of SCN rhythmicity (Zucker et al. 1980; Albers 1981). Gonadal hormones can act directly 

on the SCN or indirectly via neurosteroid metabolites of gonadal steroids. Indeed, there 

is evidence that the SCN can synthesize neurosteroids such as progesterone, androsterone, 
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and allotetrahydroxy-corticosterone (THDOC), which can alter SCN activity (Trachsel et al. 

1996; Pinto and Golombek 1999). Although gonadal and neurosteroids and their receptors 

are in a position to directly modulate the SCN, sex differences in the effects of neurosteroids 

on the circadian system have yet to be fully investigated.

The SCN projects major efferents to over a dozen brain areas (Kriegsfeld and Silver 

2006; Morin 2013), and these targets all express ERs and ARs in various combinations 

(Bailey and Silver 2014). Additionally, sex differences in function and anatomy of these 

SCN efferent target sites underlie sex differences in the hypothalamic pituitary adrenal 

(HPA) and hypothalamic pituitary gonadal (HPG) axes, as well as in sleep architecture and 

daily activity patterns (Semaan and Kauffman 2010; Morin 2013; Bailey and Silver 2014; 

Nicolaides and Chrousos 2020), which are discussed below.

PHYSIOLOGICAL DIFFERENCES IN THE CIRCADIAN TIMING SYSTEM

Hypothalamic Pituitary Gonadal (HPG) Axis

One of the most robust sex differences in circadian rhythmicity is found in circadian gating 

of the HPG axis. In female rodents, the SCN gates circadian timing of the preovulatory 

luteinizing hormone (LH) surge; however, estradiol concentration must be sufficiently 

high for the surge to occur (Christian and Moenter 2010; Williams and Kriegsfeld 2012). 

Similarly, there is a daily LH rhythm in women that also occurs at the onset of activity 

(Cahill et al. 1998). Males are unable to produce an LH surge, and it appears that this 

difference lies in sexually dimorphic population of kisspeptin neurons in the anteroventral 

periventricular nucleus (AVPV) (25 times more neurons in females than males), which 

project to GnRH neurons (for reviews, see Williams and Kriegsfeld 2012; Bailey and 

Silver 2014; Yan and Silver 2016). This neuroanatomical sex difference is a result of 

an organizational effect of gonadal steroids as developmental exposure to testosterone 

suppresses AVPV kisspeptin neuron numbers (Kauffman et al. 2007; Homma et al. 2009).

Hypothalamic Pituitary Adrenal (HPA) Axis

The SCN also regulates the HPA axis to affect glucocorticoid rhythms (Moore and Eichler 

1972). At the level of the pituitary, this occurs presumably through direct and indirect 

actions of AVP neurons in the SCN and the PVN (Kalsbeek et al. 1992, 2010). The SCN can 

also regulate sensitivity of the adrenal cortex to ACTH in a circadian manner (Kaneko et al. 

1981). There are also sex differences in HPA axis stress responsiveness (Handa et al. 1994, 

2021), potentially due to sex differences in corticotropin-releasing factor (Bangasser and 

Wiersielis 2018) and/or liver X receptor α (Feillet et al. 2016), which may be downstream 

of sex-specific differences in AVP signaling in the SCN (Rohr et al. 2021). Some of these 

sex differences in stress responsiveness and the HPA axis can manifest in downstream 

physiological systems, such as the cardiovascular system.

Cardiovascular System

Various physiological features of the cardiovascular system are regulated by circadian 

rhythms, including heart rate, heart rate variability (HRV), cardiovascular tone, 

angiogenesis, and vascular remodeling (Paschos and FitzGerald 2010). The circadian 
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rhythms of these features are dictated by clock gene loops in the vascular endothelium, 

hormonal signals, and autonomic nervous signaling ultimately regulated by the SCN. As 

with many other circadian rhythms, several sex differences in cardiovascular circadian 

rhythms have been observed.

In general, females have higher resting and active heart rates than males, and this has been 

observed in humans to persist across the entire circadian day when examining the MESOR 

of heart rate (Hermida et al. 2002, 2007). For example, in a study in which ambulatory 

cardiovascular function was observed in referred patients, women had a slightly higher 

ambulatory heart rate across both the sleep and wake periods of the day (Ben-Dov et al. 

2008). This observation persisted in another cohort study examining cardiovascular function 

in young and elderly populations (Stein et al. 1997). Another study demonstrated that the 

largest sex differences in heart rate occurred during the inactive phase in humans (Zhao et al. 

2015).

Heart Rate Variability

Additional sex differences in cardiac function have been observed when examining time 

and frequency-domain indices of HRV across the day. Time-domain measures examine the 

intervals between specific components of polarization events during each cardiac cycle 

as measured by electrocardiograms. Frequency-domain measures assess the individual 

frequencies of functions of time-domain plots. For example, R-R intervals are a time-domain 

measurement, and the frequency-domain of the R-R interval can be determined through a 

Fourier transform of the R-R plotted over time (Shaffer and Ginsberg 2017).

In the time-domain, one study observed that men had greater R-R intervals across the entire 

circadian day (Bonnemeier et al. 2003). Men had increased standard deviations of NN 

intervals (SDNNs), standard deviation of the average NN intervals of each 5 min segment 

across a 24 h HRV recording (SDANN), and mean of SDANN (SDNNi) across the entire 

day and greater root mean square of successive R-R interval differences (rMSSD) at night 

(Bonnemeier et al. 2003). Similar results were reported in a cohort study examining ~33-yr-

old adults, where men had higher SDNN, SDANN, SDNNi, and average heart period in ms 

(AVGNN) than women (Stein et al. 1997). In contrast, a third study observed that women 

had lower R-R intervals during the inactive phase, but this difference was not statistically 

significant during the active phase (Extramiana et al. 1999). The same study reported that 

women had faster cardiac repolarization rates across the entire day, with the exception of the 

intervals between Q onset and T wave apex (Extramiana et al. 1999). In contrast, one study 

reported no difference in mean 24 h heart rates between male and female rhesus monkeys 

(Barger et al. 2010).

Sex differences in the frequency-domain of HRV across the day have also been observed. 

Women have lower LF/HF ratios than men during the circadian day (O’Connor et al. 2007). 

Another study reported similar results, where older men had greater LF/HF ratios across 

the entire day, but younger men only had a greater ratio during the inactive phase (Stein 

et al. 1997). Men display elevated LF during the active phase (Yamasaki et al. 1996) and 

across the entire day (Stein et al. 1997). Conversely, women displayed greater HF across the 
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day (O’Connor et al. 2007), whereas another study reported that women have greater HF 

between 12:00–06:00 h (Yamasaki et al. 1996).

Last, depression differentially affects HRV across the day between women and men. In 

women, greater depressive scores were found to reduce the MESOR of circadian variation 

patterns of vagal activity, whereas the opposite effect was observed in men (Jarczok et al. 

2018).

Blood Pressure Rhythms

In general, men tend to have higher systolic and diastolic blood pressure levels than women 

(Burt et al. 1995), an effect that persists across the day (Hermida et al. 2002, 2007, 2013). 

Ambulatory blood pressure monitoring in a cardiovascular clinic has also revealed that 

blood pressure levels are lower in women than men across the day in an ambulatory setting 

(Ben-Dov et al. 2008). Other circadian-regulated aspects of blood pressure, such as dipper 

versus non-dipper patterns do not appear to be affected by biological sex (Ragot et al. 1999).

Rodent studies examining circadian differences in blood pressure have generated mixed 

results. No differences in arterial pressure were reported between male and female rats 

across the day (Sampson et al. 2008). Conversely, another study demonstrated that male 

C57Bl/6 and FVB/N mice display greater diastolic and systolic blood pressures across the 

day (Barsha et al. 2016). Among other potential mechanisms, differences in blood pressure 

may be driven by circadian rhythms in renal function, as constitutive renal Bmal1 knockout 

in AQP2-Cre mice (C57Bl/6 background) led to reduced MESOR blood pressure in males 

but not females (Zhang et al. 2020).

Last, pharmacological treatment of blood pressure at different times of the day is affected 

by sex. Aspirin administration in the morning leads to elevated blood pressure in women, 

and aspirin administration in the evening leads to reduced blood pressure in both sexes, but a 

greater reduction is observed in women (Ayala and Hermida 2010).

Body Temperature Rhythms

Body temperature fluctuates across the day as a result of circadian regulated behavioral 

and physiological processes, such as variations in activity or metabolic function (Refinetti 

2010). In general, men have lower body temperatures than women across the day. 

One study examining the effects of oral contraceptives on body temperature reported 

that men and naturally cycling women had lower MESOR body temperatures, greater 

temperature amplitudes, and lower nighttime-specific body temperature than women using 

oral contraceptives (Kattapong et al. 1995). Similar results were observed in another study, 

in which men had greater amplitudes in body temperature than women (Cain et al. 2010). 

Several studies have reported sex differences in phase angles of body temperature rhythms, 

with the nadir of body temperature during the inactive phase occurring 30 min (Baehr et 

al. 2000) to an hour earlier in women than in men (Cain et al. 2010). In free-running (i.e., 

not entrained) humans, women have been observed to have shorter intrinsic periods (taus) 

of body temperature rhythms (Wever 1984; Duffy et al. 2011). However, during internal 

desynchrony during free-running rhythms, the difference in body temperature taus between 

men and women is reported to disappear (Wever 1984).
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Sex differences in body temperature have also been observed in other mammals. For 

example, female rhesus monkeys have lower body temperatures across the day with a greater 

phase angle than males, but with the acrophases being delayed rather than advanced as 

observed in humans (Barger et al. 2010). Potential mechanisms for sex differences in body 

temperature rhythms have been elucidated in mice. One study reported that differences in 

MESOR body temperatures between male and female mice are abolished after gonadectomy 

(GDX); GDX led to increased body temperatures in males and eliminated estrous-driven 

alterations of body temperature rhythms in females (Sanchez-Alavez et al. 2011).

Immune Function Rhythms

Sex differences in the immune system and function are discussed elsewhere in this collection 

(Moser 2021), and although there are well-studied circadian rhythms in the function of the 

immune system, few sex differences in the nature of these rhythms have been reported 

to date. For example, in humans, no differences in circadian rhythms were observed in 

the expression of Il-6 following lipopolysaccharide (LPS) stimulation; however, women 

mounted a more robust Il-6 response than men, which was associated with vagal tone 

and not with gonadal hormones (O’Connor et al. 2007). Female Lewis rats also display 

more robust responses to an immune challenge (ConA) than males; however, it is driven 

by biphasic increases in CD8+ and MHC class II lymphocytes from the spleen at the end 

of both the light and dark phases (Griffin and Whitacre 1991). This sex-specific circadian 

difference in immune response may underlie the sex differences in development of EAE 

(experimental allergic encephalomyelitis) in this strain of rats (Keith 1978), and reinforces 

the necessity of considering both sex and time-of-day as biological variables in future 

studies of autoimmune disorders.

SEX DIFFERENCES IN BEHAVIORAL RHYTHMS

Sleep–Wake Rhythms

Reports on sex differences in sleep–wake rhythms have been equivocal. Several studies 

reported that women have greater sleep fractions (Wever 1984) and greater sleep efficiency 

than men (Goel et al. 2005). These results are consistent with a survey where women stated 

greater ideal durations of sleep time in comparison to men (Tonetti et al. 2008). However, 

other self-reporting and survey studies have found no differences in sleep durations between 

men and women (Van Reen et al. 2013; Randler and Engelke 2019). Opposingly, one 

activity log study observed that adolescent women sleep less than men (Mathew et al. 

2019). Differences between these studies may be a reflection of study design, age, and 

data-collection methods.

Differences in onset of sleep and activity have also been reported. Several studies reported 

that women have earlier wake times than men during adolescence (Mathew et al. 2019) and 

adulthood (Van Reen et al. 2013). One questionnaire study reported that women teachers 

have earlier bedtimes than men on weekdays, but not weekends (Randler and Engelke 2019), 

coinciding with a questionnaire study reporting later bedtimes for men than women (Tonetti 

et al. 2008). Conversely, several groups have reported no sex differences in time of activity 

onset (Baehr et al. 2000) or sleep onset (Cain et al. 2010). The latter study did report a sex 
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difference in phase angle of sleep onset in relation to the onset of melatonin secretion (Cain 

et al. 2010). Last, young adult women (18–30 yr old) are reported to have earlier onsets of 

stage 1 and stage 2 sleep during the inactive phase than men (Goel et al. 2005).

In terms of chronotype, men generally have later chronotypes than women; this difference 

begins around age 16 and disappears around age 50 (Roenneberg et al. 2004), consistent 

with other results (Adan and Natale 2002; Randler and Engelke 2019).

Similar sex differences in sleep and activity exist in rodents. Female rodents have greater 

variability in the onset of activity that corresponds with varying stages of the estrous cycle 

(Takahashi and Menaker 1980; Albers et al. 1981; Kuljis et al. 2013; Krizo and Mintz 2015). 

Female C57Bl/6J mice have longer αs (active phases) during constant darkness (Kuljis et 

al. 2013). Differences in α may reflect sex-differences in spontaneous firing rates in the 

dorsal SCN between Zeitgeber time (ZT) 4–6 (Kuljis et al. 2013). C57Bl/6 female mice have 

greater total percent time awake across the day, primarily during the active phase (Paul et 

al. 2006). It was also reported that females had reduced non–rapid eye movement (NREM) 

sleep and increased δ power during the active phase compared to males, and that these 

effects were driven by gonadal hormones (Paul et al. 2006). Indeed, circulating estrogen 

and aromatase activity at target sites in the circadian system during development and in 

adulthood have been implicated in sex differences in activity and circadian coupling in mice 

(for review, see Hatcher et al. 2020).

Although many of the effects of sex-specific estrogen described above are thought to drive 

the differences in activity and sleep described above, there is some indication that there 

may be differing effects of gonadal steroids and chromosomal sex on these parameters. 

One study addressed this possibility by using FCG (four core genotype) mice in which 

genetic sex is uncoupled from gonadal sex (Kuljis et al. 2013). Interestingly, the largest sex 

differences in this study were found after GDX in FCG mice. After GDX, activity levels 

rhythm power were reduced in both chromosomal sexes, but the XY mice had the greatest 

reduction, indicating that gonadal steroids had a greater effect on circadian rhythmicity than 

chromosomal sex (Kuljis et al. 2013). Because the FCG mice showed no sex differences in 

these measures prior to GDX, the authors concluded that the role of gonadal steroids was to 

mask sex differences and normalize the behavior between sexes.

SEX DIFFERENCES IN THE EFFECTS OF DISRUPTION OF CIRCADIAN 

RHYTHMS

In humans, studies uncoupling endogenous circadian rhythms from the sleep–wake cycle 

using forced desynchrony and jet lag paradigms have revealed sex differences in cognition, 

affect, and physiology. In one study, compared to men, women had a higher amplitude 

of cognition performance and sleepiness after forced desynchrony (Santhi et al. 2016). 

Circadian misalignment after a 12 h phase shift increased circulating leptin in men, 

whereas women had decreased leptin coincident with increased ghrelin, resulting in altered 

food-type cravings between the sexes with no underlying difference in energy use (Qian 

et al. 2019). Although this study hints at a potential mechanism for sex differences in 

weight gain resulting from shift work, research in rodents has demonstrated that comparing 
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circadian metabolic and transcriptional profiles between sexes is not straightforward. In 

mice, circadian transcriptomic profiling of the liver revealed that in females rhythms in 

expression were found in genes involved in cell signaling and protein transport, whereas 

in males the rhythmically expressed genes were involved in drug and steroid metabolism. 

There were also sex-specific effects of the microbiome on circadian transcription patterns 

(Wegeret al. 2019). It may actually be a complex interaction among circadian rhythms in 

the gut microbiota, the circadian clock, and sex that feed back to regulate sex-specific 

differences in liver function and metabolism (Liang et al. 2015). Thus, it is apparent that 

future clinical metabolic studies must consider sex and time-of-day as critical biological 

variables.

Recent work in our laboratory has revealed striking sex differences in the effects of circadian 

disruption by exposure to dim light at night (dLAN) on many aspects of rodent physiology, 

behavior, and immune function. Although chronic mild circadian disruption by exposure to 

LAN (8 wk) in adulthood has similar effects on food intake resulting in obesity (Fonken 

et al. 2013; Aubrecht et al. 2015), LAN exposure during adolescence alters timing of food 

intake in male but not female mice, resulting in differential weight gain (Cissé et al. 2017). 

Brief disruption of circadian rhythms by as few as three nights of exposure to dLAN also 

alters brain physiology and behavior in a sex-specific manner in adult mice. Adult female 

mice displayed decreased anxiety-like behavior and had concurrent increases in VEGFR1 
and IL-1B expression in the brain, whereas males had reduced BDNF expression after 

three nights of dLAN exposure (Walker et al. 2020). These sex-specific effects of circadian 

disruption are not limited to adolescent and adult rodents however, because there appear 

to be transgenerational effects of circadian disruption that are sex-specific for both the sex 

of the parent and the sex of the offspring. In an experiment where adult male and female 

hamsters were exposed either to dark nights or to dLAN for 8 wk prior to conception, the 

male offspring of either sires or dams with preconception disrupted circadian rhythms had 

blunted immune responses and altered febrile response to an immune challenge compared 

to their female littermates (Cissé et al. 2020). However, only the female offspring of dams 

exposed to dLAN had enhanced bactericidal capacity of serum collected after an immune 

challenge, and none of these immunological effects were a result of altered maternal care 

(Cissé et al. 2020). This series of experiments makes it increasingly clear that even mild 

disruption of circadian rhythms has immediate and enduring sex-specific effects in animals 

at all stages of life, and these effects can be transgenerational in a sex-specific manner.

CONCLUDING REMARKS

Sex differences exist in circadian rhythms at all levels of analysis. In common with 

most areas of basic, clinical, and translational research, females have been understudied 

in circadian rhythm research. Furthermore, consideration of time-of-day as a biological 

variable is nearly nonexistent in most areas of research (Nelson et al. 2021). In this 

review, we have presented compelling evidence that there are critical sex differences in 

circadian rhythmicity in all aspects of biology across the life span. Furthermore, disruption 

of circadian rhythmicity by inappropriate exposure to LAN, shift work, or jet lag has 

sex-specific detrimental effects on physiology, behavior, and immune function, not only 

for those exposed, but potentially for future generations of their offspring as well. From 

Walton et al. Page 8

Cold Spring Harb Perspect Biol. Author manuscript; available in PMC 2023 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a research standpoint, to improve reproducibility of studies and to provide the appropriate 

context to the conclusions, time-of-day must be reported and considered in experimental 

design and analyses of data. In common with eliminating male bias in research, unmasking 

time as a critical biological variable is long overdue.
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