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Abstract

Endogenous replication stress is a major driver of genomic instability. Current assessments of 

replication stress are low throughput precluding its comprehensive assessment across tumors. Here 

we develop and validate a transcriptional profile of replication stress by leveraging established 

cellular characteristics that portend replication stress. The repstress gene signature defines a subset 

of tumors across lineages characterized by activated oncogenes, aneuploidy, extrachromosomal 

DNA amplification, immune evasion, high genomic instability, and poor survival, and importantly 

predicts response to agents targeting replication stress more robustly than previously reported 

transcriptomic measures of replication stress. Repstress score profiles the dual roles of replication 

stress during tumorigenesis and in established cancers and defines distinct molecular subtypes 

within cancers that may be more vulnerable to drugs targeting this dependency. Altogether, our 

study provides a molecular profile of replication stress, providing novel biological insights of the 

replication stress phenotype, with clinical implications.

Introduction

Genomic instability is an enabling characteristic of cancer, which by generating genetic 

diversity expedites the acquisition of multiple hallmark capabilities (1). DNA damage 

resulting from unabated replication – referred to as replication stress – is a major driver 

of genomic instability (2). Cells have evolved multiple mechanisms to sense and respond to 

replication stress, together referred to as the replication stress-response (3). When replication 

fork stalls, the exposed single-stranded DNA (ssDNA) is rapidly coated by ssDNA-binding 
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proteins such as replication protein-A (RPA), leading to activation of ataxia telangiectasia 

and Rad3-related kinase (ATR), which subsequently phosphorylates downstream kinases 

including CHK1 (4). ATR and CHK1 negatively regulate cyclin dependent kinase (CDK) 

activity through phosphorylation of WEE1 and other substrates. ATR also delays exhaustion 

of RPA and global breakage of active forks by limiting origin firing (5). Together, 

the replication stress-response cascade prevents stalling of replication forks, controls the 

initiation of DNA replication, ensures sufficient supply of nucleotides, and limits mitotic 

entry of cells that have not yet completed DNA replication. Failure to resolve replication 

stress can lead to collapse of replication forks, DNA double strand breaks, and acquisition of 

mutations that are deleterious to genome integrity (2).

Replication stress is a feature of pre-cancerous (6) and cancerous cells (7). Cancer cells 

exhibit heightened replication stress-response, for example through CHEK1 amplification, 

to support rapid proliferation and tolerate the higher levels of replication stress (8). 

Replication stress itself and the mechanisms that mitigate replication stress are increasingly 

recognized as cancer cell-specific vulnerabilities that could be exploited therapeutically (9–

12). However, rational targeting of these dependencies requires reliable approaches to assess 

replication stress and its cellular response in patient tumors. Measures of replication stress – 

including single-stranded DNA (ssDNA) or ssDNA-bound RPA levels, phosphorylated form 

of histone H2AX (γH2AX) – are widely used in experimental settings (13,14), but are not 

optimized for use in large cohorts of clinical tumor samples. Here we develop and validate 

a transcriptional profiling-based approach – the repstress gene signature – that characterizes 

the cellular response to replication stress at a functional network level (Fig. S1).

Materials and Methods

Data acquisition

RNA sequencing (RNA-seq), mutations, copy number states, drug activity, and doubling 

time in National Cancer Institute Development Therapeutics Program small cell lung 

cancer (NCI-DTP SCLC), Cancer Cell Line Encyclopedia (CCLE), Genomics of Drug 

Sensitivity in Cancer (GDSC), Cancer Therapeutics Response Portal (CTRP), and NCI60 

were downloaded from CellMiner CDB (15,16). Clinical, pathological, and molecular 

characteristics, survival, RNA-seq, expression of RPPA, genomic alteration, and copy 

number alteration for the Cancer Cell Genome Atlas (TCGA) samples were retrieved from 

data hub of Pan-Cancer TCGA dataset in University of California Santa Cruz Xena platform 

(17). For other dataset used in this study, please refer supplementary text in Supplementary 

Materials.

Development of repstress gene signature

To develop repstress gene signature, we focused on four biological characteristics 

associating with replication stress in SCLC cell lines: MYC-paralogue genes amplification, 

sensitivity to cell cycle checkpoint inhibitors, high expression of phosphorylated Chk1 

(p-Chk1), and neuroendocrine differentiation. We defined MYC amplified SCLC cell lines 

using the cutoff of 0.7 or more of copy number score (the average log2-transformed 

probe intensity ratio of gene specific chromosomal segment DNA relative to normal DNA) 
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in either of MYC family genes (MYC, MYCL, MYCN). Cell cycle checkpoint inhibitor-

sensitive SCLC cell lines were defined as those with drug activity score (standardized, 

z-score normalized measurements provided from the mean and standard deviation of 

-log10[molar concentration causing 50% cell growth inhibition, GI50] values over NCI-DTP 

SCLC cell lines) of more than 6 with CHK1 inhibitor AZD-7762 (drug ID: 754352) or 

WEE1 inhibitor MK-1775 (drug ID: 757148). For details of these scores, please refer 

a previous report describing methods used in CellMiner CDB (16). High expression of 

p-Chk1 was defined as Chk1_pS345 RPPA expression of more than 0.15. We subsequently 

applied gene set enrichment analysis (GSEA) using Hallmark gene sets (18) comparing 

differentially regulated pathways between SCLC cell lines with one of these characteristics 

and those without. By using adjusted P value of < 0.05, we identified two shared hallmark 

gene sets (HALLMARK_E2F_TARGET and HALLMARK_G2M_CHECKPOINT) as 

commonly upregulated pathways in SCLC cell lines with one of the repstress characteristics 

across all of the hallmark genesets. During the GSEA, 11 genes (AURKB, CCNA2, 

GINS1, KPNA2, LIG3, MTF2, ORC6, PRPS1, SRSF1, SUV39H1, TNPO2) were found 

as shared leading-edge genes of the two gene sets. Neuroendocrine status of SCLC cell 

lines (19) and clinical tumors in an independent cohort (20) were assessed using single 

sample GSEA(21) of previously described 50 neuroendocrine differentiation gene set, 

containing 25 genes associated with high neuroendocrine and 25 genes associated with 

low neuroendocrine differentiation (22). High-neuroendocrine score and low-neuroendocrine 

score were calculated by single sample GSEA separately using each of the 25 high of low 

neuroendocrine differentiation genes and compared the two scores to define high vs. low 

neuroendocrine differentiated SCLC cell lines (15) and clinical tumors (20). Subsequently, 

differentially expressing genes were analyzed between high vs. low neuroendocrine 

differentiated SCLC cell lines or tumors in each cohort. Among identified highly expressing 

genes in neuroendocrine differentiated SCLC, by false discovery rate of < 10% by Mann-

Whitney U test followed by adjusting multiple testing with Benjamini-Hochberg test, those 

identified in both two cohort and involved in DNA damage repair pathways (23) were 

defined as additional repstress signature genes (GADD45G, POLA1, POLD4, POLE4, 

RFC5, RMI1, and RRM1). We finally excluded the gene KPNA2 from the repstress gene 

signature because it did not frequently express in cell lines other than SCLC (Table S1).

Repstress score was calculated by applying principal component analysis-based weighting 

score. In detail, SCLC cell lines were projected onto principal component analysis plot using 

the scores for biological characteristics associated with replication stress described above 

and the 17 repstress gene expression were also projected onto the plot, which achieved 

variable loadings of first principal component dimension for each gene as gene weight (Fig. 

S2A, Table S1). We summed up the measurements of repstress signature gene expressions 

(Z score-normalized in each cell line across all of sequenced gene expressions) multiplied by 

each gene weight and defined as reptress score. Repstress scores were Z score-normalized 

among samples used in each analysis and shown in figures.

SCLC Cell lines

Nine SCLC cell lines (NCI-H1048; RRID: CVCL_1453, NCI-H1341; RRID: CVCL_1463, 

NCI-H841; RRID: CVCL_1595, DMS114; RRID: CVCL_1562, NCI-H211; RRID: 
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CVCL_1529, NCI-H446 RRID: CVCL_1562, NCI-H889: RRID: CVCL_1598, NCI-H146; 

RRID: CVCL_1473, NCI-H524; RRID: CVCL_1568) were purchased from ATCC and 

maintained in cell culture. H211, H889, H1048, and H1341 cell lines are female and the 

rest are male. Cell lines were authenticated using short tandem repeat analysis, and were 

monthly tested for mycoplasma contamination. Cell media was RPMI-1640 supplemented 

with 10% FBS for all lines to maintain consistency. Cells were grown at 37˚C and 5% CO2. 

were used in subsequent experiments.

Western blot

Cells were lysed with RIPA buffer containing protease inhibitor cocktail (Thermo Fisher 

Scientific) and micrococcal nuclease (Thermo Fisher Scientific). The resulting mixtures 

were incubated on ice for 30 minutes, then centrifuged 20 minutes to get the supernatants. 

After adding Tris-Glycine SDS sample buffer including 5% of 2-Mercaptoethanol, the 

lysates were boiled for 10 min, analyzed by SDS–polyacrylamide gel electrophoresis 

(SDSPAGE), and immunoblotted with various antibodies as follows: RPA phosphorylation 

(pS4/8, from Bethyl; RRID: AB_2891810); total RPA (from Bethyl; RRID: AB_185548); 

pATR (T1989, from Cell signaling; RRID:AB_2722679); and pCHK1(S345, from cell 

signaling; RRID:AB_330023). To proceed Western blot, block nitrocellulose membrane 

with 5% nonfat milk, then incubate with primary antibodies at 1:1000 dilution in PBST 

buffer (PBS containing 0.1% Tween 20) containing 1% nonfat milk, at 4C for overnight. 

After 3 times washing with PBST, the membrane was incubated with 2nd antibody at 1:2000 

dilution in PBST buffer containing 1% nonfat milk, at room temperature for 1h. Develop the 

western blot results by BIO-RAD ChemiDoc MP Imaging System.

Immunofluorescence assay

Cells were fixed with 2% paraformaldehyde (PFA), followed by the incubation with 70% 

cold ethanol. After block with 5% BSA. Primary antibody staining was performed as 

follows: anti γH2AX (1:500, Millipore, 05–636), anti-pRPA (1:500, Bethyl lab, A300–

245A; RRID: AB_210547). Secondary antibody staining was performed as follows: Alexa 

488 conjugated anti-mouse lgG and Alexa 594 conjugated anti-rabbit lgG (1:500, Cell 

signaling Technology, 4408 and 8889). DAPI staining was performed with VECTASHIELD 

mounting medium with DAPI (H-1200, VECTOR Laboratories). A Zeiss LSM780 confocal 

microscope was used to capture the fluorescence. The Colocalization Plugin of the FIJI-

ImageJ software was used to calculate the fluorescence density.

EdU incorporation and γH2AX induction upon topotecan treatment

Cell lines were plated at 1 million cells per 10 cm plate. After 24 hours cells were treated 

for two hours with either DMSO control or 10 µM topotecan, and for 1 hour (the second 

hour of topotecan treatment) with 1 µM EdU. Cells were fixed in and stained for γH2AX 

as previously described (24), followed by click it chemistry per manufacturer instructions 

utilizing the Click-iT™ Plus EdU Alexa Fluor™ 647 Flow Cytometry Assay Kit C10634 

(Thermo Fisher). Flow cytometry data was collected using a BD LSRFortesa and analyzed 

utilizing FlowJo V10.7.1.
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DNA combing analysis

As previously described (25), asynchronous DMS114 and H524 cells were sequentially 

labelled with 20 μM IdU for 20 min and 50 μM CldU for 20 min. To preserve long genomic 

DNA fibers, cells were embedded in low melting point agarose plugs and incubated 

in cell lysis buffer with proteinase K at 50°C for overnight. Washed plugs with TE 

buffer, and then melted plugs in 0.1M MES (pH 6.5) at 70°C for 20 min. Agarose was 

subsequently degraded by adding 2 μl of β-agarase (New England Biolabs). DNA fibers 

were then stretched onto salinized coverslips (Genomic Vision, cov-002-RUO) using an 

in-house combing machine. Combed DNA on coverslips was then baked at 60 °C for 2 

hours and denatured in 0.5 N NaOH for 20 min. IdU, CldU and single-strand DNA were 

detected using a mouse antibody directed against BrdU (IgG1, Becton Dickinson, 347580, 

1:25 dilution), a rat antibody directed against BrdU (Accurate chemical, OBT0030, 1:200 

dilution) and a mouse antibody directed against single-stranded DNA (ssDNA) (IgG 2a, 

Millipore, MAB3034, 1:100), respectively. The secondary antibodies used were goat anti-

mouse Cy3 (Abcam ab6946), goat anti-rat Cy5 (Abcam, ab6565), and goat anti-mouse 

BV480 (Jackson ImmunoResearch, 115–685-166) for ssDNA. Slides were scanned with 

a FiberVision Automated Scanner (Genomic Vision). Replication signals on single DNA 

fibers were analyzed using FiberStudio (Genomic Vision).

Graph generation and statistical analysis

All figures were generated using CellMiner CDB (16), GraphPad PRISM software version 

8.1.2 (GraphPad Software), R version 1.2.135 (R Foundation for Statistical Computing), and 

STATA software version 16.0 (Stata-Corp). Box plots in this manuscript were shown by box 

and Tukey whiskey appearances, unless specifically indicated in figure legends. Methods for 

statistical analyses were indicated in the manuscript and figure legends and were performed 

using softwares described above. Overall survival (OS) curves were created by the Kaplan-

Meier method and compared by log-rank test. All statistical tests were two-sided.

Data Availability

The data analyzed in this study were obtained from public database. The experimental data 

generated in this study are available upon request from the corresponding author.

Results

Development and validation of a replication stress-response signature

While replication stress is widely prevalent across cancers, it is more central to the 

tumorigenesis of some cancers than others (7). We chose to develop a replication stress-

response signature in SCLC, a fast-growing and deadly cancer with molecular and clinical 

features distinct from other lung cancers. We reasoned that signatures that report replication 

stress-response in SCLC could then be extended to other tumors that also exhibit this 

phenotype.

SCLCs are characterized by high degree of genomic instability, an important consequence 

of replication stress (26). Nearly all SCLCs have loss-of-function alterations in tumor 
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suppressors RB1 and TP53, and frequently exhibit amplification and overexpression 

of oncogenes such as MYC (20). SCLCs also exhibit sustained high expression of 

lineage transcription factors, which contribute to replication stress (27), and are highly 

vulnerable to perturbation of the transcriptional state (28,29). Not surprisingly, the standard 

treatment of SCLC consists mostly of DNA damaging agents such as platinum compounds, 

topoisomerase I and II inhibitors, and an alkylating agent temozolomide.

To obtain a comprehensive molecular understanding of the replication stress-response, we 

examined a panel of 67 SCLC cell lines characterized by microarray-based gene expression, 

representing the molecular diversity of the disease (15,19). We reasoned that SCLC cells 

under high replication stress might be characterized by amplification of MYC and its 

paralogs MYCN and MYCL (30,31); expression of p-Chk1 (32); sensitivity to inhibitors 

of cell cycle checkpoints CHK1 and WEE1 (33); and neuroendocrine differentiation 

(12,29,34). GSEA was performed to define differentially regulated biological processes 

between SCLCs with and without these features, revealing cell-cycle related targets of E2F 

transcription factors and genes involved in the G2/M checkpoint (AURKB, CCNA2, GINS1, 

LIG3, MTF2, ORC6, PRPS1, SRSF1, SUV39H1, TNPO2) and DNA replication and 

repair genes associated with neuroendocrine differentiation (GADD45G, POLA1, POLD4, 

POLE4, RFC5, RMI1, and RRM1), together designated as the repstress gene signature (Fig. 

1A, Table S1). Repstress signature score was calculated using weighted principal component 

analysis (Fig. S2A, Table S1), with most genes providing positive signature weightings 

except POLD4 and POLE4.

Repstress signature included genes involved in mitosis (AURKB), cell cycle progression 

(CCNA2), initiation of replication and replisome progression (GINS1, ORC6, RFC5), 

nuclear transport (TNPO2), DNA and RNA metabolism (LIG3, PRPS1, RMI1, RRM1), 

transcriptional regulation (MTF2, SUV39H1), RNA splicing (SRSF1), and DNA 

polymerases (POLA1, POLD4, POLE4). High repstress cells had elevated expression 

of MDC1, CLSPN, and TIMELESS, genes involved in replication stress tolerance 

by protecting the replication fork, downstream effectors CHEK2 and CDC25A, and 

genes associated with proliferation PCNA and MKI67 (ranges of Spearman’s correlation 

coefficient and multiple testing adjusted P value: 0.22 to 0.61 and 5.5 × 10−7 to 7.7 × 10−4, 

respectively). In contrast, DNA damage sensors RAD9A and RAD17 and sensor kinases 

ATM and ATR were less correlated with repstress score (Fig. 1B, C, S2B–D). Repstress 

score correlated positively with the expression of genes involved in solving topological 

problems during replication (TOP2A), facilitating the repair and restart of stalled replication 

forks (FANCD2), resolving barriers to replication fork progression (RNASEH2A), and DNA 

repair (POLQ and PARP1) (Fig. S2E–I).

Stalled replication forks require the surrounding chromatin to be compacted for their 

stabilization (35); the expansion of heterochromatic regions is mediated by histone 

modifications and attenuates replication stress signaling. We reasoned that if repstress 

score captures replication stress-response at a functional network level, it may be able to 

predict the heterochromatin response as well. To test this possibility, we examined pairwise 

correlations between the repstress score and expression of chromatin remodelers and histone 

modifiers. Repstress score correlated positively with the expressions of heterochromatin 
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proteins HP1α, HP1β and HP1γ that associate with methylated histone H3 on nucleosomes 

and mediate heterochromatin formation (ranges of Spearman’s correlation coefficients and 

multiple testing adjusted P values: 0.44 to 0.56 and 1.4 × 10−5 to 2.8 × 10−3, respectively). 

In contrast, genes involved in INO80 chromatin remodeling complex (INO80 and ARP8) 

were less correlated with repstress signature and clustered separately (0.11 to 0.25 and 0.6 to 

1.0, respectively, Fig. S2J).

Stressed DNA replication results in DNA double-strand breaks, which induce rapid 

phosphorylation of H2AX on Ser139, termed as γH2AX. γH2AX is a sensitive albeit 

indirect indicator of replication stress (36). We detected higher basal endogenous expression 

of γH2AX by Western blot in SCLC cells with high repstress score compared to cells 

with low repstress score (Spearman’s correlation coefficient and P value: 0.80 and 0.0096, 

respectively, Fig. 1D, E). Other replication-stress associated proteins such as phosphorylated 

RPA, Chk1, and ATR also had positive correlations with repstress score (Fig. 1F, G, S3). 

Higher basal levels of γH2AX and phosphorylated RPA were also detected by fluorescence 

microscopy in repstress-high H524 cell line compared with repstress-low DMS114 (Fig. 

S4).

We then assessed whether cells with variable repstress scores responded differentially 

to exogenous replication stress, using topotecan which produces replication blocks by 

generating topoisomerase I−DNA cleavage complexes, in two representative cell lines H524 

and DMS114 with high and low repstress scores, respectively. At basal levels without 

drug treatment, H524 cells exhibited lower DNA synthesis and more DNA damage during S-

phase, as indicated by the proportion of cells labelled with 5-ethynyl-2’-deoxyuridine (EdU) 

and γH2AX respectively, compared with DMS114 cells. Upon treatment with topotecan, 

DNA synthesis and cell proliferation were inhibited to a much lesser extent in H524 cells 

compared with DMS114 (Fig. 1H, S5), resulting in higher induction of γH2AX in H524 

(Fig. 1H, I). The γH2AX induction by topotecan treatment correlated with the repstress 

score in a larger panel of SCLC cell lines (Fig. S6). To further elucidate the dynamics 

of DNA replication, we performed DNA combing assay. H524 cells had markedly lower 

fork velocities and inter-origin distances compared with DMS114 (Fig. 1J–L). Shorter 

inter-origin distances can result from activation of dormant origins due to oncogene-induced 

replication stress which slows or stalls replication forks (37). Further, the patterns of 

bidirectional fork movement were more asymmetric in H524 cells compared with DMS114 

(Fig. 1M, N), indicating that higher repstress gene expression associates with replication 

fork stalling.

Together, we find that the molecular components involved in replication stress-response are 

interconnected. Repstress score captures the coordinate expression of key components of 

this cascade downstream of checkpoint sensors and kinases with the associated chromatin 

changes.

Even in an unchallenged S phase, high repstress score cells exhibit more endogenous 

replication stress and robust activation of DNA damage response than low repstress 

cells. However, they are hypersensitive to exogenous replicative stress likely because 

further recruitment of replication stress-response is less effective. Thus, the repstress gene 
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signature could allow for interrogation of endogenous replication stress and efficiency of the 

replication stress-response in SCLC cell lines.

Repstress score captures transcriptional responses to replication stress across cancer 
types

To determine whether the repstress gene signature was generalizable and able to predict 

replication stress-response signaling in cancers beyond SCLC, we queried RNA-seq and 

Reverse Phase Protein Array (RPPA) data from the CCLE of 937 cell lines across 20 

cancer types (Fig. 2A) (38). Highest repstress scores were found in SCLC (the number and 

proportion of SCLC cells with repstress score ≥ 95% confidence interval of repstress score 

across all CCLE cell lines: 48/50, 96.0%), hematopoietic malignancies (non-Hodgkin’s 

lymphoma [43/49, 87.8%] and leukemia [57/78, 73.1%]) and sarcoma (55/87, 63.2%), 

consistent with previous reports of these malignancies exhibiting high replication stress 

phenotype (39,40). Low repstress scores were observed in renal cell carcinoma (the number 

and proportion of cells with repstress score <95% confidence interval of repstress score 

across all CCLE cell lines: 22/31, 71.0%), pancreatic cancer (15/23, 65.2%), ovarian 

cancer (30/46, 65.2%), melanoma (35/56, 62.5%), and thyroid cancer (6/11, 54.5%). The 

distribution of repstress score across cancer types was overall similar when DNA repair 

genes associated with neuroendocrine differentiation were excluded from the signature, with 

SCLC and hematopoietic malignancies exhibiting the highest scores (Fig. S7), suggesting 

that the high repstress score in SCLC is not confounded by neuroendocrine differentiation, a 

pathophysiological characteristic of this cancer.

Similar to SCLC cell lines, the repstress score was positively correlated with expression of 

key genes involved in increasing replication stress tolerance across cancer types (Fig. 2B). 

Pairwise correlations recapitulated the correlation of repstress score with expression of DNA 

damage response mediators, effectors, and heterochromatin, in contrast to sensors and sensor 

kinases at the mRNA and protein levels (Fig. S8).

Genotoxic agents currently used for cancer therapy include many potent inducers of 

replication stress, such as platinum derivatives, topoisomerase inhibitors, and nucleotide 

analogues (41). We hypothesized that repstress gene signature may profile these changes in 

diverse cancers types. To investigate this possibility, we examined repstress score dynamics 

pre-and post-treatment with 15 anticancer agents across a panel of 60 human cancer cell 

lines of different lineages (42). Cells were exposed to these agents at concentrations below 

the human peak plasma concentration and the average concentration resulting in 50% cell 

growth inhibition. In a group of cell lines, we identified similar transcriptional responses to 

gemcitabine, cisplatin, and topotecan, which resulted in notable induction of repstress gene 

expression after treatment (Fig. 2C, S9A–C). Topotecan and cisplatin induce replication 

blocks respectively by generating topoisomerase I−DNA cleavage complexes and platinum–

DNA adducts, whereas gemcitabine stalls replication through its integration into DNA 

and depletion of the deoxyribonucleotide pool. In contrast, treatment with tyrosine kinase 

inhibitors sorafenib and dasatinib, and the histone deacetylase inhibitor vorinostat resulted in 

uniformly decreased repstress gene expression (Fig. 2D, S9A, D, E).
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Together, repstress gene signature stratifies cancer cell lines across tumor types based on 

their adaptability to replication stress and profiles transcriptional responses to drug-induced 

modulation of replication stress. Molecular features that contribute to the replication stress 

phenotype including drug responses across cancer cell line databases may be explored at this 

web-based resource: https://discover.nci.nih.gov/cellminercdb/ (15,16).

Repstress score predicts sensitivity to replication stress targeted therapies including 
novel ATR inhibitors

Cancers with heightened replication stress-response may be particularly vulnerable to drugs 

that target this dependency. We investigated whether the repstress score predicts drug 

sensitivity using 481 anticancer drugs across 823 cell lines of the Cancer Therapeutics 

Response Portal (CTRP) (43). Drug sensitivities were compared between cell lines defined 

by the lowest (<25th) and highest (≥75th) repstress score percentiles. With false discovery 

rate of 5%, 280 compounds were identified as significantly more or less active in repstress-

high compared with repstress-low cell lines (Fig. S10A). High repstress score cells were 

more sensitive to inhibitors of polo-like kinase-1 (BI-2536: adjusted P value = 2.4 × 

10−28), topoisomerase I (topotecan: adjusted P value = 1.1 × 10−21), aurora kinase A and B 

(alisertib: adjusted P value = 2.0 × 10−20), and regulators of cell cycle progression and DNA 

replication (gemcitabine: adjusted P value = 9.4 × 10−17) (Fig. 2E, S10). In contrast, low 

repstress score cells were more sensitive to compounds targeting pathways such as mitogen-

activated protein kinase (MEK) and epidermal growth factor receptor (Fig. 2E, S10A). This 

observation is consistent with a recent study in isogenic cell lines which reported MEK 

signaling-dependence in replication stress-response defective cells (44). Repstress score 

exhibited a higher positive correlation with response to agents that induce replication stress, 

including alisertib, BI-2536, topotecan, and gemcitabine, than the currently available cell 

cycle proliferation genes (39,45–47) (Fig. 2F, S11).

Because of the critical functions of ATR in protecting cells under replication stress, small-

molecule ATR inhibitors are being explored as cancer therapeutic agents to selectively 

kill cancer cells under replication stress (9). A reliable method to measure replication 

stress levels could in principle enable patient stratification for ATR inhibitor therapies. 

We examined whether the repstress signature predicted sensitivity to ATR inhibitors (48). 

Across 16 cancer cell lines from different histologies, cells with high repstress score showed 

higher sensitivity to ATR inhibitor M4344 than cells with low repstress score (Spearman’s 

r = 0.88, P < 2.0 × 10−16, Fig. 2G). Repstress score better predicted ATR inhibitor 

response than the previously described signatures of replication stress and proliferative gene 

expression signatures (Fig. 2H, S12) (39,45–47).

Repstress score defines subsets of cancers characterized by genomic instability, immune 
evasion, and poor prognosis across tumor types

Replication stress is a driver for cancer progression and is linked to genomic instability in 

precancerous lesions and cancers (7). In precancerous lesions, the replication stress-response 

provides a barrier to delay or prevent tumorigenesis (6,8,49). Using repstress score, we 

assessed replication stress along the continuum of cancer development (50). Repstress scores 

were higher in bronchial precancerous lesions which eventually regressed and those that 
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progressed to become cancers, compared with lesions that maintained stable precancerous 

characteristics (Fig. 3A), supporting the dual roles of replication stress in promoting 

genomic instability, and in slowing down cell proliferation and activating anticancer barriers 

(8).

To explore the replication stress-response profiles of cancers, we analyzed over 10,000 

tumors of 33 cancer types from TCGA. As with cell lines, expressions of genes required 

for survival of replication stress and DNA damage repair (TIMELESS, CLSPN, TOP2A, 

FANCD2, RNASEH2A, POLQ, and PARP1) positively correlated with repstress scores (Fig. 

S13A–G). These associations were also maintained at the protein level across tumor types; 

expression of proteins that most highly correlated with repstress score included CYCLINB1, 

CYCLINE1, CHK2, 4EBP1, phosphorylated CDK1 and PCNA (Fig. S13H). We next 

assessed repstress scores across normal tissue, localized, and metastatic cancers. Normal 

tissue had the lowest repstress score compared with cancers, and hematologic malignancies 

had higher repstress score than epithelial cancers (Fig. 3B).

We observed large variance in repstress scores across cancer types, implying significant 

differences in replication stress-response proficiency among different cancers (Fig. 3C). 

High repstress gene expression was observed in testicular germ cell tumors (TCGT, the 

number and proportion of TCGT with repstress scores ≥ 95% confidence interval of 

repstress score across TCGA: 148/156, 94.9%), cervical squamous cell carcinoma (CESC: 

302/307, 98.4%), and hematologic malignancies (diffuse large B cell lymphoma, DLBCL: 

46/48, 95.8%; and acute myeloid leukemia, LAML: 161/173, 93.1%). In general, tumors 

with high repstress scores were highly proliferative tumors typically treated with DNA 

damaging therapies such as platinum and topoisomerase inhibitors. A notable exception 

was thymoma which had high repstress scores (THYM: 96/120: 80.0%) despite a relatively 

indolent growth pattern. This may be explained by the prominent role of E2F2 in promoting 

unscheduled cell division and oncogenic transformation of thymic epithelial cells (51). 

Cancer types with lower repstress scores included thyroid cancers (THCA: the number 

and proportion of THCA with repstress scores <95% confidence interval of repstress score 

across TCGA: 513/513, 100%), kidney cancers (renal papillary cell carcinoma [KIRP]: 

284/291, 97.6%; renal clear cell carcinoma [KIRC]: 521/534, 97.6%; kidney chromophobe 

[KICH]: 63/66, 95.5%), and pancreatic adenocarcinoma (PAAD: 172/179, 96.1%). The 

distribution of repstress score across cancers was overall similar even we excluded the seven 

genes associated with neuroendocrine differentiation (Fig. S14).

Since replication stress is driven by activation of oncogenes and absence of tumor 

suppressor genes (52), we examined the association between repstress score and mutations 

or copy number states in these genes. Tumors with mutated oncogenes (Fig. 3D) and 

tumor suppressor genes (Fig. 3E) had higher repstress scores compared with tumors with 

no mutations affecting these genes. In most cancer types, repstress score was significantly 

higher in tumors harboring mutations in DNA repair and cell cycle-related genes (Fig. 

S15A), suggesting deregulation of these pathways underlying increased replication stress. 

Tumors with TP53 or RB1 mutations had significantly higher repstress score compared with 

those without (Fig. S15B, C) and a loss of Rb1 function score (53) positively correlated 

with repstress score (Fig. S15D). Notably, there was no association between repstress score 
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and the number of point mutations (Fig. S15E). In contrast, somatic copy number alterations 

(54) at chromosome, arm, and focal levels (Fig. 3F, S15F) and whole genome doubling (Fig. 

S15G) were positively correlated with repstress score. Extrachromosomal DNA (ecDNA) 

amplification has recently been reported to promote aneuploidy and genomic instability 

(55). Tumors with ecDNA amplification had higher repstress scores compared with those 

without (Fig. 3G), with increasing number of ecDNA amplicons associated with higher 

repstress scores (Fig. S16). Consistent with cancer stem cells displaying robust replication 

stress-response to prevent the accumulation of genetic lesions (56), a cancer stemness gene 

signature score (57) positively correlated with repstress score (Fig. 3H).

Next, we examined repstress score among previously defined cancer immune subtypes (58). 

The wound healing and interferon-gamma dominant subtypes had higher repstress scores 

compared with the other immune subtypes, including notably the inflammatory subtype 

which had lower repstress scores (Fig. 3I). The association of wound healing and repstress 

score (Pearson’s r = 0.81, P < 0.0001, Fig. S17A) (58), consistently observed across nearly 

all cancer types (Fig. S17B), is supported by previous work showing the similarities in 

cellular responses to cancer progression and wound healing (59). Helper T (Th) cells play 

a key role in the adaptive immune system by coordinating effector functions leading to 

destructive responses, including pathogen clearance and autoimmunity. A proinflammatory 

Th1 subtype response score was negatively correlated with repstress score (Pearson’s r = 

−0.34, P < 0.0001), whereas immunosuppressive Th2 subtype response score correlated 

positively (Pearson’s r = 0.76, P < 0.0001) (Fig. 3J, K). Accordingly, high repstress score 

was associated with poor survival in an independent cohort of melanoma patients treated 

with immune checkpoint inhibitor nivolumab (60) (Fig. S18).

Finally, we analyzed the impact of repstress score on patient outcomes. Patients with high 

repstress tumors had poorer OS compared to patients with low repstress tumors (hazard ratio 

[95% confidence interval]: 2.0 [1.8–2.3], P < 0.0001 by log-rank test, Fig. 3L). Multivariate 

Cox regression analysis revealed that the repstress score independently contributed to poor 

survival after adjusting known variables associated with survival including age at diagnosis, 

sex, pathological/clinical stage, and cancer type (Table S2, Fig. S19). Together, these 

analyses functionally link replication stress and its cellular response as measured by the 

repstress score with oncogene alterations, tumor aneuploidy, ecDNA amplification, cancer 

stemness, immunosuppressive T cell responses, and inferior survival across cancers.

Repstress score defines distinct molecular subtypes within cancer types

Given the wide range of repstress scores in individual cancers (Fig. 3C), we hypothesized 

that the repstress score can identify distinct molecular subtypes within cancer types. 

Among breast cancers, the basal subtype, characterized by expression of markers such as 

cytokeratins 5 and 6 (61), had significantly higher repstress score compared with the luminal 

A, luminal B, and HER2-enriched subtypes (Fig. 4A). Triple-negative breast cancers, which 

share similarities to the basal subtype, were also characterized by higher repstress score 

gene expression than tumors that expressed estrogen, progesterone, or HER2 receptors (Fig. 

S20A). Pancreatic cancers with transcriptionally defined basal characteristics and squamous 

features on histology harbored higher repstress score than those without these features in 
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TCGA and an independent cohort (Fig. 4B, S20B–F) (62). Malignant mesothelioma with 

sarcomatoid histology, defined by infiltrative spindle or mesenchymal appearing cells and 

poor prognosis, were characterized by higher repstress score than epithelioid mesothelioma 

(Fig. 4C). Among prostate cancers, repstress score showed a positive correlation with 

Gleason score (Fig. 4D), an indicator of prostate cancer differentiation, with the highest 

Gleason score associated with the most poorly differentiated and aggressive subtype (63). 

Additionally, prostate cancers with higher copy number alterations (64) had higher repstress 

scores compared to those with less frequent copy number alterations (Fig. 4E). Similarly, 

uterine corpus endometrial carcinoma with genomic instability defined by high copy number 

alterations, POLE mutations, and microsatellite instability (65) had higher repstress score 

compared with low copy number altered tumors (Fig. 4F). Repstress score also identified 

a proliferative subtype of ovarian cancer (66) (Fig. 4G), and aggressive subtypes of 

hepatocellular carcinoma (iCluster 3) (67) with higher degree of chromosomal instability 

and TP53 mutations (Fig. 4H).

Given recent studies linking oncoviruses with genomic instability and replication stress 

(68), we examined repstress score in oncovirus-derived cancers. Human papilloma 

virus (HPV)-associated head and neck cancers had significantly higher repstress scores 

compared with non-HPV-associated cancers (Fig. 4I). A similar trend was also observed 

in cervical cancer, another HPV-related cancer (Fig. S20G). Replication stress exposes 

tracts of ssDNA that form substrates for APOBEC3-deaminase-mediated mutagenesis 

(69). Accordingly, repstress score positively correlated with APOBEC3B expression in 

breast cancer, lung adenocarcinoma, and acute myeloid leukemia, malignancies wherein 

APOBEC3B is upregulated and plays a key role in mutagenesis (70) (Fig. 4J-L). STK11 
and KEAP1 co-mutated lung adenocarcinoma that are associated with aggressive tumor 

growth and immunotherapy resistance (71) had higher repstress scores compared with lung 

adenocarcinoma without concomitant loss of these genes (Fig. 4M). Among KRAS-mutant 

lung adenocarcinoma, a particularly aggressive subset with STK11 co-mutations (72) had 

higher repstress scores compared to tumors without co-mutations (Fig. 4N). Non-small cell 

lung cancer cell lines with KRAS/STK11 co-mutations were more sensitive to a CHK1/2 

inhibitor than cell lines without STK11 co-mutations (Fig. S21). Together, our analysis 

brings to light the dependence of certain tumor types and subtypes of tumors on replication 

stress-response, potentially representing important therapeutic opportunities.

Discussion

DNA replication is a tightly regulated process. Replication stress and DNA damage ensue 

when these regulatory mechanisms fail. Causes of replication stress are diverse. Even 

single oncogene can induce replication stress by different mechanisms depending on the 

context (73). In fact, the causes of replicative stress might be quite dynamic during 

tumorigenesis. Independent of the causes of replication stress, cells have evolved a complex 

mechanism which ensures that the genome is accurately duplicated in each cell cycle. 

Despite its critical role in tumorigenesis and emerging importance as a potential therapeutic 

target, replication stress and its phenotypic characteristics have not been explored in 

high-throughput sequencing studies of human cancers. Many available studies examining 

replication stress to date have focused on individual tumor types, for example in ovarian 
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cancer (74), pancreatic cancer (75,76), or selected features that drive replication stress, 

for example overexpression of oncogenes (via overexpression of CDC25A, CCNE1 or 

MYC) (77) or replication stress response defects (via depletion of ATR, ATM, CHEK1, 

or CHEK2) (44). Here we describe a gene expression signature, capturing broad measures 

of replication stress-related gene expression using an approach compatible with formalin-

fixed paraffin-embedded clinical samples, allowing interrogation of replication stress at a 

functional network level across cancers, independent of the underlying mechanisms. The 

global view of replication stress provided by the repstress signature reveals heightened 

genomic instability, immune evasion, and poor survival in subsets of tumors across lineages, 

and enabled identification of cancer subtypes that may be more vulnerable to replication and 

replication stress-response inhibitors including the novel ATR inhibitors (Fig. 4O, S1).

Repstress score provides a framework to investigate the link between replication stress 

and its functional consequences. Our analyses implicate copy number alterations rather 

than base-pair mutations as a key consequence of genomic instability linked to DNA 

replication stress. These results support the oncogene-induced DNA replication stress model 

for cancer development wherein chromosomal instability in sporadic cancers results from 

oncogene-induced collapse of DNA replication forks, which in turn leads to DNA double-

strand breaks and genomic instability (78). Another consequence of replication stress is 

abnormal chromosome segregation which may result in formation of micronuclei (79) and 

non-chromosomal DNA elements (55). Indeed, we find a positive correlation between 

repstress gene expression and ecDNA amplification, suggesting that oncogene-induced 

replication, abnormal chromosome segregation, and chromosome instability may be driving 

ecDNA formation.

Repstress gene signature reveals the dynamic nature of the replication stress-response during 

tumorigenesis and following drug treatment. Bronchial precancerous lesions that eventually 

regress and those that progress to become cancers are characterized by high repstress 

score compared with lesions that maintain stable precancerous characteristics. These results 

are consistent with the fundamental role of replication stress-response in early stages of 

cancer development maintaining genomic integrity and preventing tumorigenesis (6,8) while 

generating DNA damage and contributing to rapid evolution and genetic heterogeneity in 

established cancers (52). Whether these insights could enable the currently sparse toolset to 

identify and treat premalignant lesions at risk for progression to cancer needs further study 

(80). Modulation of repstress score following treatment suggests the utility of the signature 

to profile to study agents in terms of their impact on replication stress.

Repstress score provides insights into tumor phenotypes associated with high replication 

stress. Across multiple datasets, repstress score was an independent predictor of 

poor survival after adjusting known variables associated with survival. Notably, we 

find substantial enrichment of TCGA wound healing and interferon-gamma dominant 

phenotypes among high repstress tumors. The dominant anti-inflammatory Th2 response 

and rapid tumor growth that preclude immune control may explain the notably less favorable 

outcomes in high repstress score tumors despite a substantial immune component. It is also 

likely that these tumors have already been remodeled by the existing robust Th1 infiltrate 

and have escaped immune recognition. Further, the repstress score enabled delineation 
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of several prognostically relevant subtypes within diverse cancer types, including high 

Gleason score prostate cancer, basal subtype of breast cancer, sarcomatoid mesothelioma, 

proliferative subtypes of ovarian cancer and hepatocellular carcinoma, and pancreatic cancer 

with squamous differentiation.

Additional studies are warranted to define clinically relevant and tumor-type specific 

repstress score thresholds, but it is notable, and probably the singular strength of the 

study, that repstress gene signature stratifies tumors across and within cancer types beyond 

SCLC based on the likelihood of drug response and prognosis. The generalizability of 

repstress score beyond SCLC suggests that while the causes of replication stress are 

varied, the replication stress-response pathways are conserved across cancers, and thus may 

represent a shared therapeutic vulnerability. Up-regulation of cell cycle genes is a common 

denominator between highly proliferative cells and cells under high replication stress, and 

further studies are needed to understand the contribution of individual repstress genes to 

these characteristics. It is notable that repstress signature better predicted response to ATR 

inhibitors than previously described gene signatures of proliferation (39,45–47), suggesting 

that repstress signature captures transcriptional changes of replication stress in addition 

to proliferation. In conclusion, gene expression profiling-based assessment of replication 

stress using the repstress signature represents a powerful approach to dissect the replication 

stress-response. We anticipate the repstress score to have therapeutic implications, enabling 

stratification of patients for therapies that modulate replication stress.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Significance

We develop a transcriptional profile of replication stress which characterizes replication 

stress and its cellular response, revealing phenotypes of replication stress across cancer 

types. We envision the repstress score to serve as an effective discovery platform to 

predict efficacies of targeting replication stress and clinical outcomes.
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Fig. 1. Generation and in vitro functional validation of a repstress gene signature in small cell 
lung cancer cell lines
(A), Schematic representation of the repstress gene signature derivation, which is based 

on four key characteristics associated with replication stress: (i) amplification of MYC 

paralogs; (ii) expression of p-Chk1; (iii) sensitivity with CHK1 and WEE1 inhibitors; and 

(iv) neuroendocrine differentiation.

(B), Schematic representation highlighting key components of the replication stress-response 

pathway

The DNA damage sensors recruit kinases ATM and ATR that in turn phosphorylate 

mediators such as MDC1 and BRCA1 which sustain the DNA damage response signaling. 

DNA damage response signaling then engages downstream kinases CHK1 and CHK2 

and eventually activates downstream effectors such as CDC25A phosphatases triggering 

transient cell cycle arrest.
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(C), Pairwise correlations between expression of DNA damage response genes, proliferation 

markers PCNA and MKI67, and repstress score in 67 SCLC cell lines

Colors of gene name labels denote replication stress-response functions indicated in panel 

B. Genes are clustered by Euclidean distance, using the complete-linkage clustering method, 

indicated with squares with black and red lines.

(D), (E), Western blot (D) and correlations (E) of γH2AX signal with repstress score in 

SCLC cell lines

SCLC cell lines are ordered from low to high repstress score (range: −1.2 – 1.8) from left to 

right in panel D.

(F), (G), Western blot (F) and correlations (G) of pRPA signal with repstress score in SCLC 

cell lines

SCLC cell lines are ordered from low to high repstress score (range: −1.2 – 1.8) from left to 

right in panel F.

(H), (I), S phase arrest and induction of γH2AX by exogenous replication stress by 

topotecan treatment in S phase SCLC cell lines

EdU incorporation (top) and γH2AX induction (bottom) in SCLC cell lines with low 

(DMS114) and high repstress score (H524) are shown in panelH. Cell cycle effects are 

defined by PI staining (Fig. S5) and G1, S, G2/M phases are indicated on the bottom of the 

panels with light green, light blue with the letter of S, and light orange bars, respectively. 

Black squares indicate proportion of EdU incorporating S phase cells, gated by cutoff of 

EdU signal intensity > 1.0 × 103. A comparison of quantified γH2AX signal intensity per 

nucleus with topotecan treatment in S phase cells is shown in panel I. ****: P < 0.0001 by 

unpaired Student t test.

(J), (K), (L), DNA combing analysis of SCLC cell lines with low (DMS114) and high 

(H524) repstress scores

Representative images (J) and quantifications of replication fork speed (K) and inter-origin 

distance (L) are shown. Green and red lines in panel J indicate IdU and CIdU, respectively. 

****: P < 0.0001 by Mann-Whitney U test.

(M), (N), Representative images (M) and quantification (N) of fork asymmetry in DNA 

combing analysis of SCLC cell lines with low (DMS114) and high (H524) repstress score 

Fork asymmetry was defined by > 30% difference of fork speed between one direction with 

the other as previously described (25), indicating with a redline in panel N. The proportions 

of DNAs with fork asymmetry in each cell line were indicated on top of panel N.

Abbreviations: SCLC: small cell lung cancer; DDR: DNA damage response; NE: 

neuroendocrine differentiation; MYCamp: MYC amplification; WEEi1: WEE1 inhibitor; 

CHK1i: CHK1 inhibitor; p-Chk1: phosphorylated Chk1; pRPA: phosphorylated replication 

protein A; EdU: 5-ethynyl-2’-deoxyuridine; Cont: control; PI: propidium iodide; DAPI: 

4′,6-diamidino-2-phenylindole; IdU: iododeoxyuridine; CIdU: chlorodeoxyuridine; kb: 

kilobase; IOD: inter-origin distance; ori: origin.
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Fig. 2. Across cancer cell lines, repstress score profiles replication stress at a functional network 
level
(A), Dot plot showing distribution of repstress score across 839 cancer cell lines from 20 

cancer types represented in the CCLE

A black bar in each cancer type indicates the mean repstress score within each cancer type. 

Dash line indicates zero of Z-normalized repstress score across all of cancer cell lines in 

CCLE. The numbers with cancer type labels on x-axis indicate the numbers of cell lines 

included.

(B), Across cancers, repstress score correlates with expression of representative genes 

involved in: (i) increasing replication stress tolerance by protecting replication forks 

(TIMELESS, CLSPN), (ii) solving topological problems during replication (TOP2A), (iii) 

facilitating the repair and restart of stalled replication forks (FANCD2), (iv) resolving 

barriers to replication fork progression (RNASEH2A), and (v) DNA damage repair factors 

(POLQ and PARP1)
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Correlations are analyzed in CellMiner CDB (16). Spearman’s correlation coefficients (r) 

are indicated. All of P values by Spearman’s correlation test are < 0.0001.

(C), (D), Dynamics of normalized repstress score with treatment of gemcitabine (C) and 

sorafenib (D) in NCI60 cell lines

Dynamics of gene expression pre- and post-treatment are retrieved from The NCI 

Transcriptional Pharmacodynamics Workbench (42). *: P < 0.05; ****: P < 0.0001 

by Wilcoxon signed rank test. For detailed method, please refer supplementary text in 

Supplementary Materials.

(E), Heatmap of sensitive or resistant agents in cell lines with high vs. low repstress score in 

the CTRP

Drug activity scores indicate calculated area under the curve over a 16-point concentration 

range using an automated, high-throughput workflow fitting concentration-response curves 

(43). The drug activity score are retrieved from CellMiner CDB (16) and z score-normalized 

in the heatmap. Cell lines are sorted by repstress score from high (left) to low (right). The 

heatmap shows 30 mostly sensitive compounds in high repstress score cell lines, and all of 

sensitive compounds in low repstress score cell lines with false discovery rate of < 5%. For 

detailed method, please refer supplementary text in Supplementary Materials.

(F), Heatmap of Pearson’s correlations between gene signature scores and activities of drugs 

targeting replication stress

The color in each column indicates log-transformed P value of Pearson’s correlation 

between annotated gene signature score and drug activity score. The number in each column 

shows Pearson’s correlation coefficient between them. CCP, CCS, CINSARC, and CES 

scores are calculated as previously reported (39,45–47).

(G), Correlations between IC50 of M4344 (an ataxia telangiectasia and Rad3-related 

inhibitor) and repstress score in different cancer type cell lines

The IC50 of M4344 in different cancer type cell lines was examined in a previous report 

(48).

(H), Comparison of Spearman’s correlations between M4344 IC50 and scores of repstress 

and other cell proliferation gene signatures

Each bar represents log-transformed P value of Spearman’s correlation between annotated 

gene signature and M4344 IC50. The IC50 of M4344 in different cancer type cell lines is 

examined in a previous report (48). CCP, CCS, CINSARC, and CES scores are calculated as 

previously reported (39,45–47).

Abbreviations: CCLE; Cancer Cell Line Encyclopedia; SCLC: small cell lung cancer; 

NHL: non-Hodgkin’s lymphoma; LEUK: leukemia; SARC: sarcoma; UCEC: uterine 

endometrioid cancer; EGC: esophagogastric adenocarcinoma; COADREAD: colorectal 

adenocarcinoma; HCC: hepatocellular carcinoma; HL: Hodgkin’s lymphoma; BLCA: 

bladder urothelial carcinoma; NSCLC: non-small cell lung cancer; DIFG: diffuse glioma; 

MESO: mesothelioma; ESCC: Esophageal squamous cell carcinoma; BRCA: breast 

carcinoma; THCA: Thyroid cancer; SKCM: skin melanoma; OV: ovarian cancer; PAAD: 

pancreatic adenocarcinoma; RCC: renal cell carcinoma; FC: fold change; hr: hour; CTRP: 

Cancer Therapeutics Response Portal; AURKA, B: aurora kinase A and B; PLK1: 

polo-like kinase-1; TOP1: topoisomerase I; EGFR: Epidermal growth factor receptor; 

MEK1, 2: mitogen-activated protein kinase kinase 1 and 2. IC50: half maximal inhibitory 

concentration; CCP: cell cycle progression; CCS: cell cycle score; CINSARC: complexity 
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index in sarcomas; CES: Centromere and kinetochore gene Expression Score; IC50: half 

maximal inhibitory concentration.
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Fig. 3. Across cancer types, repstress score defines cancers characterized by genomic instability, 
immune evasion, and poor prognosis.
(A), Comparison of repstress score among bronchial premalignant lesions which regressed 

to normal tissue (regressive), did not change the premalignant histology (stable), and 

progressed to invasive malignancy (progressive) after biopsy

Gene expression data are obtained from a previous report (50). **: P < 0.01 by one-way 

ANOVA followed by Tukey’s multiple comparison test.

(B), Comparison of repstress score among TCGA normal tissue, primary and metastatic 

epithelial cancers, and hematopoietic malignancies

P < 0.0001 by comparing repstress scores in normal tissues vs. primary and metastatic 

epithelial cancers, and hematologic malignancies; and comparing those in hematologic 

malignancies vs. primary cancer and metastatic cancers; whereas P > 0.05 comparing those 

in primary and metastatic epithelial cancers. P values are analyzed by One-way ANOVA 

followed by Tukey’s multiple comparison test.
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(C), Distribution of repstress scores across 33 cancer types in TCGA

The number in the x-axis label indicates the number of tumors included in each cancer type. 

A dash line indicates zero of Z-normalized repstress score across all of tumors in TCGA.

(D), (E), Pan-cancer analysis showing the relationship between repstress score with the 

number of mutated oncogenes (D) and tumor suppressor genes (E) (54)

Spearman’s correlation coefficient (r) and p values are indicated on top of each panel. 

Hypermutated tumors (i.e. mutational burden of ≥ 50 mutations per megabase) are excluded.

(F), Copy number alteration heatmap sorted by high (top) to low (bottom) repstress 

score Chromosome with copy number deletion or gain are indicated with blue and red, 

respectively. Copy number alteration data in TCGA tumors are retrieved from a previous 

report (81).

(G), Comparison of repstress scores among tumors with amplicons of circular ecDNA, 

breakage-fusion-bridge, heavily rearranged, linear, and no focal somatic copy number 

amplification

Annotations of amplification for each tumor in TCGA are reported previously (55). ****: P 

< 0.0001 by One-way ANOVA followed by Tukey’s multiple comparison test.

(H), Correlation between cancer stemness score and repstress score

Cancer stemness score is derived by integrative transcriptome- and methylation-based 

analysis (57). The P value of Pearson’s correlation is < 0.0001.

(I), Comparison of repstress score across six distinct TCGA immune subtypes, derived by 

gene signature-based clustering approach

Immune subtypes are previously described (58). P < 0.0001 by comparing repstress score 

in Wound Healing group vs. the others; IFN-gamma Dominant group vs. the others; and 

Inflammatory vs. the others, respectively. P values are analyzed by One-way ANOVA 

followed by Tukey’s multiple comparison test.

(J), (K), Correlations between Th1 (J) and Th2 (K) scores, and repstress score across cancer 

types

Th1 and Th2 scores are available in a previous report (58). The P values of Pearson’s 

correlation are < 0.0001 in panel J and K.

(L), Overall survival in cancer patients with high vs. low repstress score

High vs. low repstress scores are defined as patients whose cancers have repstress score ≥ 

75th or < 25th percentiles across TCGA tumors. P value is derived from the log-rank test.

Abbreviations: TCGA: The Cancer Genome Atlas; ecDNA: extrachromosomal DNA; 

fSCNA: focal somatic copy number alteration; Th1: type 1 helper T cell; Th2: type 2 

helper T cell; HR: hazard ratio; CI: confidence interval; Abbreviations for cancer types 

in TCGA are available in https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-

study-abbreviations.
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Fig. 4. Resptress score identifies distinct molecular subtypes among various cancer types
(A), Repstress scores among different breast cancer molecular subtypes

****: P < 0.0001 by one-way ANOVA followed by Tukey’s multiple comparison test.

(B), Repstress scores in pancreatic cancers with adenocarcinoma (PDAC) vs. 

adenosquamous (AD/SC) histology

****: P < 0.0001 by Mann-Whitney U test

(C), Repstress scores in malignant mesothelioma with epithelioid (Epi) vs. sarcomatoid or 

mixed epithelioid and sarcomatoid (Sarc) histology

**: P < 0.01 by Mann-Whitney U test

(D), Repstress scores among prostate cancers with different Gleason scores

****: P < 0.0001 by linear trend test from left to right.
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(E), Repstress scores and somatic copy number alterations (SCNA) of TCGA prostate 

cancers SCNA subtype are defined by copy number-based clustering in a previous report 

(64). ****: P < 0.0001 by linear trend test from left to right.

(F), Repstress scores among uterine corpus endometrial carcinomas with different somatic 

copy number alteration (SCNA) subtypes

SCNA subtypes are defined by copy number-based clustering in a previous report (65). 

****: P < 0.0001 by one-way ANOVA followed by Tukey’s multiple comparison test.

(G), Repstress scores among transcriptomic subtypes in ovarian carcinoma

The molecular subtypes are defined based on transcriptome-based clustering in a previous 

report (66). ****: P < 0.0001 by one-way ANOVA followed by Tukey’s multiple 

comparison test.

(H), Repstress scores among genomic subtypes in hepatocellular carcinoma The molecular 

subtypes (iCluster) are defined based on an integrative analysis of DNA copy number, DNA 

methylation, mRNA expression, microRNA expression, and reverse phase protein array in 

a previous report (67). ***: P < 0.001 by one-way ANOVA followed by Tukey’s multiple 

comparison test.

(I), Repstress scores between patients with HPV-null (HPV-) and HPV-driven (HPV+) head 

and neck cancers

****: P < 0.0001 by unpaired Student t test.

(J), (K), (L), Correlations between gene expression of APOBEC3B and repstress score in 

breast cancer (J), lung adenocarcinoma (K), and acute myeloid leukemia (L)

(M), (N), Repstress score comparison between tumors with KEAP1/STK11 co-alterations 

compared with those without (M), and tumors with KRAS/STK11 co-alterations compared 

with KRAS single-altered tumors (N) in lung adenocarcinoma

Gene alterations or copy number deletion (either heterozygous or homozygous) are 

considered as genetically alteration in KRAS, KEAP1, and STK11. Lung adenocarcinoma 

with KRAS/TP53 or KRAS/CDKN2A co-mutations are excluded from the analysis in panel 

(N) given a previous study reporting that non-small cell lung cancer with these co-mutations 

is different subtype from KRAS/STK11 co-mutated subtype (71,72). ****: P < 0.0001; **: 

P < 0.01 by Mann-Whitney U test.

(O), A schema of repstress gene signature characterizing replication stress and its response

Abbreviations: TCGA: The Cancer Genomic Atlas; LumA: luminal A; LumB: luminal 

B; PDAC: pancreatic adenocarcinoma; AD/SC: adenosquamous; Epi: epithelioid; Sarc: 

sarcomatoid; GS: Gleason score; SCNA: somatic copy number alteration; CN: copy number; 

POLE: DNA polymerase epsilon, catalytic subunit; MSI: microsatellite instable; HPV: 

human papilloma virus; APOBEC: apolipoprotein B mRNA editing enzyme, catalytic 

polypeptide-like; STK11: Serine/threonine kinase 11; KEAP1: Kelch-like ECH-associated 

protein 1; RS: replication stress; Abbreviations for cancer types in TCGA are available in 

https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations.
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