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1. Introduction

There exist limited data to inform mechanism-based understanding and management of 

chronic pain, and thus there is a clear unmet need to better define the molecular mechanisms 

of pain in order to develop novel treatment strategies. Generating knowledge regarding 

molecular pathophysiology of pain states using human cohorts has an obvious advantage 

over animal models, and can be achieved using molecular and cellular genome-wide 

approaches in cohorts that have been characterized for different pain states and different 

pain-related intermediate phenotypes. Crucially, such approaches are hypothesis-free, and 

thus both heuristic and resulting in the unbiased interpretation of data, not restricted by 

or funnelled through specific hypotheses or gene candidates. There has been tremendous 

progress lately in the development of unbiased molecular screening approaches and analytic 

tools [67]. These multi-omics approaches include molecular assays of DNA, RNA, proteins, 

and small molecules in a high-throughput, comprehensive manner. Their use has advanced 

and even changed our understanding of the pathophysiology of many diseases including 

stroke, diabetes, and cancer [27]. Importantly, -omics approaches permit the systematic use 

and integration of multiple datasets, creating further dimensionality in the interpretation of 

the results that can lead to the development of new conceptual approaches and treatment 

strategies.

In this review, we will discuss these approaches for studying the molecular pathophysiology 

of pain states at molecular and genetic levels using three recent examples from our 

laboratories, describing both the -omic techniques identifying hypotheses and the animal 

model mechanistic studies that follow. Overall, these findings support the critical role of 
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neuro-immune interactions in pain resolution processes that involve, over time, different 

subsets of immune cells.

2. Genome-Wide Association Analysis of Pain Phenotypes

At the level of DNA, whole-genome or exome sequencing [23], genome-wide genotyping 

[80], and DNA methylation assays [2; 89] have been rapidly developing. Genotyping 

platform development for genome-wide association studies (GWASs) was the first-

developed high-throughput -omics approach, and as such today there exist a large number 

of published pain-relevant GWASs. The GWAS approach identifies genetic variants with 

relatively high frequency in the population and associates them statistically with either the 

presence or severity of a particular disease. The genetic variants, called alleles, are either 

single nucleotide polymorphisms (SNPs) or indels (insertion or deletion of nucleotides). 

Variants considered in GWAS studies generally appear in the study population at relatively 

high frequencies, typically >1%, whereas lower-frequency alleles would be termed rare 

variants, which are usually identified using direct DNA sequencing approaches. Functional 

annotation of the variants establishes the consequences of each allele at each variant that 

are found inside a gene’s locus. Examples of the impacts of variants in a protein-coding 

gene—which can be dramatic or subtle—include single amino acid substitution, insertion 

of a premature stop codon, or alteration in the expression levels (so-called expression 

quantitative trait loci, eQTLs).

The first pain GWAS was published in 2010, on migraineurs [1]. Multiple published 

migraine GWASs, each bigger than the last, have to date identified 38 genetic variants 

and 123 genetic susceptibility loci [14]. In the beginning, emphasis was placed on the 

genome-wide significance of the finding, and tying each genetic variant to a particular gene. 

Over time, the substantial polygenic nature of pain phenotypes (similar to other complex 

phenotypes) became apparent, undermining the importance of any individual genes and 

demanding new types of integrative analyses.

For migraine, a meta-analysis of 22 migraine GWASs [24] first allowed an unbiased 

reconstructing of the pathophysiology of migraine. Since strong arguments for both vascular 

and neuronal mechanisms of migraine existed [62], it was tempting to use GWAS results 

to try to establish which of these is the exclusive or at least major driver of migraine 

development. The first migraine-associated variants provided much stronger support for 

the involvement of vascular and smooth muscle dysfunction in migraine, with only 5 loci 

out of 38 containing neuronal (ion channel) genes. However, the latest even larger GWAS 

meta-analysis on 102,084 migraine cases and 771,257 controls [28] showed equal support 

for both vascular and neuronal contribution to the pathophysiology of migraine, suggesting 

that instead of contrasting these hypotheses we perhaps should embrace the possibility of 

their interacting contribution, or that migraine may have more substantial heterogeneity than 

previously thought.

Existing GWASs for other chronic pain syndromes include back pain [6; 20; 73], 

shoulder pain [10; 49], temporomandibular disorder (TMD) [66; 70], multisite pain [33–

35], neuropathic pain [55; 64], and other chronic musculoskeletal pain conditions [61; 
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63; 72; 79]. Functional analyses of these GWASs has provided critical information on 

the pathophysiology of chronic pain. These functional analyses derive mostly from the 

annotating the corresponding genes [60; 88]; partitioning heritability [18; 19], a method 

which estimates enrichment of corresponding gene expression in specific tissues; and, 

pathway analysis, an approach which tests for the enrichment of the corresponding genes 

in predefined biological pathways like those in the Gene Ontology (GO) dataset [3]. 

Such functional analyses revealed the strong contribution of the central nervous system 

to the pathophysiology of back pain [20], neck/shoulder pain [49], and multisite pain 

[33]. Genes expressed in the muscle and skeletal tissues were found to contribute to the 

pathophysiology of back pain [6; 20] and chronic widespread musculoskeletal pain [63]. 

Finally, immune system genes were found to contribute to back pain [6; 57], TMD [57; 

70], and shoulder impingement syndrome [10]. The most recent GWAS meta-analysis on 

seventeen pain susceptibility traits reveals equal neuronal and immunological etiology for 

pain susceptibility [51].

Further analyses of different sub-clusters of human pain conditions have provided additional 

critical information on the pathophysiology of chronic pain. It seems that chronic versus 

acute pain, as well as chronic overlapping pain conditions (COPC) versus single body site 

pain, are mediated by different biological pathways. For example, genes mapped to variants 

associated with chronic back pain, but not acute back pain, were found to be significantly 

enriched in the pathways for neurogenesis and synaptic plasticity. In contrast, connective 

tissue and bone remodeling pathways, cardiac muscle depolarization, and immune response 

via Th2-helper cells were enriched in acute back pain, but not at all in chronic pain back 

[6]. Whereas a report of chronic single-site pain did not identify enrichment in any GO 

biological process pathway, the GWAS on COPC identified a total of 60 pathways, with 

the overwhelming majority of the pathways involved in neural function and development 

[35]. The other significant pathways included the contribution of the immune system, such 

as regulation of monocyte differentiation, and vascular system development, such as aorta 

morphogenesis. Importantly, a further functional analysis pointed to axonogenesis in brain 

tissues as a major contributor to COPC. This observation was also supported by multimodal 

structural brain imaging, demonstrating that the top associated gene in this analysis, DCC 

netrin-1 receptor (DCC), is strongly expressed in subcortical limbic regions and is associated 

with alterations in the uncinate fasciculus microstructure, suggesting that DCC-dependent 

axonogenesis may contribute to COPC via cortico-limbic circuits (Figure 1) [35].

In addition to understanding biological pathways contributing to pain states, GWAS-derived 

heritability estimates—the proportion of variation in pain phenotypes due to genes versus 

the environment—has provided valuable information. Contrasting chronic and acute back 

pain [6] demonstrates that the heritability of chronic back pain (4.6%) is much higher than 

for acute back pain (0.8%), and, similarly, the heritability of COPC (19%) is much higher 

than the heritability of pain in any single chronic body site (1–10%) [35].

Among other insights provided by the analyses of human GWASs to the pathophysiology 

of chronic pain is a strong genetic correlation between different chronic pain conditions. 

In line with existing epidemiological data on the comorbidity between different pain 

conditions [69], this genetic correlation was the strongest for the physically proximal 
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pain sites [35]. Also, in line with previous observations in twin studies [82], headaches 

demonstrated the smallest genetic correlations with any other chronic pain site, suggestive 

of distinct pathophysiology relative to other chronic pain conditions. Furthermore, genetic 

correlations between chronic pain and other comorbid conditions have been reported. 

Psychiatric phenotypes showed the strongest genetic correlations, including depressive 

symptoms, neuroticism, anxiety, schizophrenia, and post-traumatic stress disorder [6; 20; 

33; 35]. Importantly, GWAS-based Mendelian Randomization, an analysis that investigates 

causal relationships between phenotypes, identified an effect of chronic multisite pain on 

major depressive disorders, but not the other way around [33]. Other reported genetic 

correlations with chronic pain include immune and sleep disorders [6; 20; 33]. These results 

provide a molecular genetic basis for pain-related comorbidities previously reported by 

epidemiological studies.

Sex-specific analyses of GWASs of pain conditions have also provided important insights. 

For both back pain [21] and multisite pain [34], the genetic correlation between male- and 

female-specific association results were very high: 0.84 and 0.92, respectively. Nonetheless, 

the exact list of statistically significant SNPs looked quite different between males and 

females. On the one hand, these results suggest that the genetic mechanisms contributing to 

chronic pain susceptibility are largely shared by men and women. On the other hand, the 

results suggest that different pathways contribute to pain with different relative strengths in a 

sex-specific fashion. Limited efforts have been made in these two studies to elaborate on the 

true sex-specificity of identified SNPs beyond measuring the relative strength of association. 

As sex-specific differences in pain mechanisms continue to be identified in animal models, 

further efforts in identifying genetic sex differences are required. In particular, it will 

be interesting to highlight differences not only at the SNP-level, but also at the gene-, 

pathway-, and even at the tissue-level as well. Furthermore, since sex chromosomes have 

been excluded from the reported analyses due to technical difficulties with analyses of the 

sex chromosomes in GWASs [36], their inclusion in future analyses may provide more 

insights into sex-specific pain mechanisms

Finally, many more genetic avenues are left to be explored for a complete understanding of 

pain. Of these, polygenic risk scores have become increasingly popular to summarize the 

effects at hundreds or thousands of genetic loci into a single score [78]. The scores are not 

only useful for diagnostic and prognostic purposes, but also to highlight the shared genetic 

burden of painful conditions [40; 42; 81]. Alongside genes, the environment also has a great 

deal of say in the variability of pain sensitivity as well as in the development of painful 

conditions. Moreover, there are also interactions between genetics and environmental factors 

(termed GxE), which are now possible to investigate using genome-wide by environment 

interaction studies (GWEIS) [90]. For pain, exposure to chemicals known to affect the 

nervous or immune systems and traumas of any kind are of particular interest. At the level of 

the single gene, even a gene-sex-environment interaction for stress response was reported for 

COMT [48] and vasopressin [53]. Most large genetics cohorts have focused on populations 

of European ancestry, but arguments for inclusion of diverse racial/ethnic groups have been 

proposed [5], despite challenges in conducting GWAS in diverse or admixed populations 

(e.g. [47]), prompting renewed interest in methodological developments (e.g. [41; 59]).
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3. Transcriptome Profiling of Pain Phenotypes

High-throughput measurement of gene expression at the transcriptome-wide level (i.e., 

measurement of all mRNAs expressed in a tissue) was first demonstrated in 1996 by Derisi 

et. al. [13] using a method that allowed very high-density cDNA arrays on glass substrates, 

although cDNA microarray technologies date back to the 1980s [8; 71]. Fueled by the fast 

development of human genome sequencing technologies at the turn of the 21st century, an 

approach to sequence short nucleic acid fragments (DNA or RNA) in a high-throughput 

fashion was developed: so-called next-generation deep-sequencing, which is usually referred 

to as RNA-seq for transcriptomics [23; 45]. Even though both technologies quantify gene 

the RNA-seq approach has many advantages. Analysis of publicly available gene expression 

data from pain phenotypes in the Gene Expression Omnibus [16] indicated the popularity 

of cDNA microarrays in early pain-relevant studies, with the focus shifted now towards 

RNA-seq as costs diminish. Now, gene expression at the level of the single cell in a 

particular tissue (e.g., dorsal root ganglia [45; 86] called single cell RNA-seq (scRNA-seq) 

yields even more detailed results [37; 74]). Noteworthy is the fact that RNA-seq not only 

permits gene quantification at the level of transcription (transcriptomics), but also at the 

translation level (translatomics) via sequencing of ribosome-protected fragments or Ribo-seq 

[30]. The validity of transcriptional analyses as a substitute for direct protein quantification 

or indirect ribosomal footprints is suggested by their highly correlated measurements [87], 

although the method is blind to post-transcriptional and post-translational gene regulation.

Fewer studies have tested human samples characterized for pain conditions at the 

transcriptome level (i.e., RNA expression) in comparison with the genome level (i.e., DNA 

variants). A concern remains that the only tissue readily available for human transcriptomics 

studies – peripheral blood – is not fully relevant to pain conditions. However, increasing 

evidence suggests that the pathophysiology of chronic pain involves an interplay between 

the nervous and immune systems [31]. For example, when eQTL analysis of human 

dorsal root ganglia were mapped to human pain GWASs [57], the strongest evidence for 

overlap was the human leukocyte antigen (HLA) locus containing MHCII genes. This newly 

identified role of MHCII genes in the development and maintenance of pain states was 

validated in a mouse pain model [57], suggesting that the MHCII complex contributes to 

successful pain resolution after injury, and highlighting the critical role of the immune 

system in the pathophysiology of pain states. In general, neuro-immune interactions are 

thought to contribute to the development of pain states and are possibly especially important 

in the first stages of the acute-to-chronic pain transition[9; 32; 50].

A number of transcriptome profiling studies have been performed in humans to help decode 

the molecular pathways responsible for pain states. In particular, Guo and colleagues 

studied the stages in rheumatoid arthritis to understand the disease’s progression, and 

more specifically inflammation markers [26]. Changes in the transcriptomes between 

osteoarthritis patients with and without pain were tracked by Bratus-Neuenschwander and 

co-workers [7]. In this study, proteins promoting neuronal cell survival under stress were 

found to be enriched in top differentially expressed genes, alongside other genes modulating 

GABAergic activity. Theken and collaborators [77] investigated Ibuprofen’s efficacy in 

humans in relation to transcriptional changes in third molar extraction setting, highlighting 
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the role of cyclooxygenase activation. Held and colleagues looked at differences in immune-

related expression patterns in patients with sustained peripheral nerve lesions that did or 

didn’t feature neuropathic pain [29]. They found that neuropathic pain patients exhibited a 

systemic proinflammatory gene expression pattern. Finally, whole blood transcriptomes of 

healthy subjects were compared with those with acute or chronic back pain [15]. It was 

found that genes of the extracellular matrix, from the major histocompatibility complex 

(MHC) locus, and those participating in mitochondria’s oxidative phosphorylation pathway 

defined a unique genomic signature in the risk for chronic back pain.

Our recent prospective whole-transcriptome analysis of peripheral immune blood cells of 

patients with acute low back pain (LBP) provided new and unexpected insights into the 

pathophysiology of the acute-to-chronic pain transition [58]. We found that patients who 

resolve their acute back pain within three months after the acute episode have thousands of 

genes that change their expression levels over this time period. However, no statistically 

significant transcriptional changes were identified in the blood of the patients whose 

pain persisted at three months. These transcriptional change dynamics were mirrored by 

identified changes in white blood cell composition, and only in the blood of the patients with 

resolved pain: their neutrophils and mast cells precursors were decreased in number, and T- 

and natural killer (NK) cells were increased over the 3-month observation period.

We next found that one of the strongest biological processes that drive these dynamic 

changes is the transient neutrophil-dependent upregulation of inflammatory responses. There 

was a strong correlation between transcriptional processes in the subjects who resolve their 

pain and those who don’t; however, in patients who resolve their pain these processes 

are about 30-fold more active. We validated these results in an independent cohort of 

temporomandibular disorder (TMD) patients. Unlike the LBP cohort, the TMD cohort also 

contained healthy controls. Comparing the transcriptomics of the recent onset TMD, chronic 

TMD and healthy controls, as well with existing data of inflammatory response at different 

stages of chronic pain development [68; 83], we concluded that although it is the patients 

with resolved pain that have robust upregulation of the inflammatory response at acute 

pain stage, the patients who will not resolve their pain display a higher inflammatory 

state prior to tissue damage. Furthermore, patients with persistent pain continue to increase 

their inflammatory state over time (Figure 2). Overall, our analysis suggested that there 

is an active, adaptive component of the immune system that protects against a transition 

to chronic pain. Inefficiency in these processes—either intrinsic or drug-induced—and, in 

particular, in the transient inflammatory response in humans with physical injury may lead 

to pain chronification.

We tested this counterintuitive hypothesis in mouse pain assays. We found that early 

treatment with the steroid drug, dexamethasone, or a non-steroidal anti-inflammatory drug 

(NSAID), but not other analgesics, greatly prolongs the duration of mechanical allodynia 

caused by complete Freund’s adjuvant (CFA), chronic constriction injury (CCI) of the 

sciatic nerve, or injection of nerve growth factor (NGF) into the muscles of the low 

back. Experimental depletion of neutrophils also greatly delayed the resolution of pain 

behavior, whereas peripheral injection of neutrophils (or the S100A8 and S100A9 “alarmin” 

compounds released by neutrophils) prevented the development of long-lasting pain.

Diatchenko et al. Page 6

Pain. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Finally, we analyzed the reported back pain trajectories in the large UK Biobank cohort. 

We found that human subjects reporting acute back pain at the baseline data collection time 

point were much more likely to report having chronic back pain 2–6 years later if they were 

taking NSAIDs in comparison with those who were not. This relationship was not observed 

for back pain sufferers taking antidepressants or acetaminophen (paracetamol).

In summary, our transcriptome-wide analysis of longitudinal data of the blood of human 

patients with acute back pain provided important insight into the pathophysiology of the 

acute-to-chronic pain transition. A heuristic model based on our findings is presented in 

Figure 2. Overall, our results have several translational ramifications, the most immediate 

of which is that despite high analgesic efficacy at early time points, the inhibition of 

acute inflammatory response in pain management may be counterproductive for long-term 

outcomes of pain patients.

The results of these studies let us generate new hypotheses regarding the pathophysiology of 

chronic pain and provide new frameworks to think about chronic pain development. That is, 

although we generally think about chronic pain as an active pathological process, it might 

be better conceptualized as resulting from the absence of an active adaptive process. We 

generally try to find the ”pain genes”, when it might be more accurate to think in terms 

of “pain pathways”. We generally measure and value pain intensity, and forget about the 

equal or greater importance of pain duration. We generally think about pain resolution as a 

linear process, when it might be better conceptualized as an inverted U-shaped process, in 

which one biological process can go through a full temporal cycle resulting in the initiation 

of the next one. These results also pose a new set of questions. What are the dynamics of 

this cascade of immune responses? When does the anti-inflammatory response start to take 

place? What are the triggers for the adaptive immune response? Which pharmacological 

target(s) with analgesic effects can be beneficial and safe for people with a painful injury?

4. Unbiased Immune Profiling of Pain Phenotypes

The final example presented in this review is based on the results of unbiased immune 

profiling of peripheral blood mononuclear cells (PBMCs) of fibromyalgia patients compared 

to healthy controls [84]. Although there is solid evidence regarding the contribution of 

the immune system to fibromyalgia development, existing studies have typically focused 

on a specific immune cell subset [4; 11]. This is true for other chronic pain conditions 

as well, with the largest focus overall on macrophages/monocytes, T-cells, and mast cells 

[39; 43; 56]. Technological limitations are perhaps an important reason for this cell type-

focused approach. Although multicolor fluorescence-based flow cytometry was introduced 

approximately four decades ago and has proven to be an extremely effective tool for 

the phenotypic characterization and functional analysis of immune cells, it still cannot 

capture all immune cells subtypes in one run [80]. The number of parameters that can 

be measured simultaneously has steadily increased, resulting in higher throughput and 

possibility of capturing more and more immune cell subtypes. However, the integration of 

other molecular approaches, such as RNA-seq and multiplexed functional assays with higher 

high-throughput capacities, has been proposed as a method of further expansion [80].
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In our recent study, we tested PBMCs of fibromyalgia patients via multicolor flow 

cytometry in a case-control design. Our analysis used markers for cytokine production, 

chemokine receptor expression, and cell surface markers that allowed us to distinguish all 

major blood cell types and many of their subtypes [84]. In this hypothesis-free comparison, 

we found that fibromyalgia patients have fewer circulating natural killer (NK) cells, and 

increased numbers of circulating B cells. As the changes in the NK cells were stronger, we 

concentrated our study on NK cells. It is interesting to note, though, that neither NK nor B 

cells have been considered “major suspects” in the pathophysiology of fibromyalgia or other 

chronic pain conditions.

To characterize circulating NK cells from fibromyalgia patients, we tested them via a set 

of known surface markers and cytokines. To our surprise, we found that even though the 

NK cells are depleted in the blood of fibromyalgia patients; they are hyperactivated, yet 

exhausted. These conclusions are based on the decreased surface expression of resting 

NK cell markers, namely, CD16, CD96, and CD226, and increased surface expression of 

degranulation marker, CD107a, and cell exhaustion marker, TIGIT. The hyperactivation 

of NK cells in fibromyalgia patients was also confirmed through the functional in-vitro 
activation assays. When co-cultured with HLA-null target cells, fibromyalgic NK cells 

showed increased production of the chemokine CCL4 and increased expression of CD107a. 

Following our immunophenotyping experiments, we also performed GWAS and RNA-seq 

analyses of whole blood samples of both fibromyalgia patients and healthy controls. Our 

genetic and transcriptomic pathway analyses confirmed the immune profiling conclusions.

Looking for an explanation for the observed cellular phenotype of NK cells in fibromyalgia 

patients, we hypothesized that they may be redistributed somewhere else in the body 

(i.e., out of the bloodstream) where they are chronically activated. Since infiltration of 

cytotoxic NK cells into the sciatic nerve following peripheral nerve injury has been recently 

reported in mice [12], we explored if the depletion of circulating NK cells in the blood 

of fibromyalgia patients may be associated with their recruitment to and consequent 

degeneration of peripheral nerves. Such a hypothesis would be also in line with the 

previously observed presence of small-fiber neuropathy in fibromyalgia patients [17; 25; 

46].

We tested this hypothesis in an independent cohort of fibromyalgia patients. Indeed, relative 

to healthy controls, the skin biopsies of fibromyalgia patients showed increased expression 

of the NK cell activation ligand, UL16-binding protein (ULBP), on the subepidermal nerves. 

This elevated expression of ULBP was correlated with an increased number of NK cells 

near the peripheral nerves, and reduced epidermal nerve density. Usually, the expression 

of these ligands is restricted in normal tissues, but they are known to be expressed in 

infected, malignant, or stressed cells, marking those cells for removal through the NK cell 

cytotoxic mechanism [22]. Importantly, in the mouse model, an endogenous ligand for 

NK cells was shown to be expressed in DRG neurons following peripheral nerve injury, 

triggering selective degeneration of injured axons [12]. It remains a question why DRG 

neurons in fibromyalgia patients marked themselves, via ULBP, as damaged and needing to 

be removed. Moreover, it is unclear if ULBP expression is a cause or consequence of the 
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nerve damage in fibromyalgia patients. Based on our results, we propose a new heuristic 

model of the neuro-immune interaction pathogenesis of fibromyalgia (Figure 3).

The contribution of NK cells to the pathogenesis of chronic pain has just started to be 

understood, and NK cells are clearly not the “usual suspects” among immune cell types. 

However, we note that another unbiased immune profiling experiment in the cerebrospinal 

fluid of patients with ostherpetic neuralgia, and patients with polyneuropathy in the ERA-

Net NEURON study, also identified the reduction of NK cells as a major change in the 

immune cell composition associated with clinical pain [38].

5. Discussion

-Omics analyses provide a new and critical tool for pain research, contributing new pieces of 

the puzzle of the pathophysiology of chronic pain. Our GWAS, transcriptomics, and immune 

profiling studies provided separate examples of these approaches. In each case, the study 

led to an independent novel insight, and it is our vision that with the increased numbers 

of such studies being conducted the gaps between seemingly unrelated findings will close. 

Needless to say, the list of -omics approaches to study pain is growing, and many studies 

are analyzing human samples at the levels of methylomics, metabolomics, lipidomics, and 

proteomics, promising new and exciting discoveries. These -omics studies will be also 

combined with other techniques in the wider context of pain research, including use of 

demographic data, health data, psycho-social data, qualitative research, and contributions 

from people living with pain who can ensure that relevant phenotypes are researched.

Importantly, each -omics approach has its own strengths and limitations, and in the long 

term, a wide variety of -omics analyses should be used. The integration between different 

-omics approaches is also important, and the genetics field offers more and more tools 

allowing the integration of -omics approaches in an efficient and meaningful manner, such as 

in our example with unbiased immune profiling [84].

We note that although the fact that -omics approaches can be performed in human pain 

patients represents an obvious advantage compared to prior approaches using animal 

models, animal models are still critical to the overall strategy. There is very limited value 

in simply identifying genetic, cellular, or pathway “targets” without the ability to define the 

mechanism by which those targets cause or maintain pain. Animal models remain critical 

to this aim, and we note that modern animal model implementation, with its increased 

focus on spontaneous, non-reflexive, and integrative behaviors [52; 65], features much more 

translational relevance than has been true previously. In addition, more attention is starting 

to be paid to duration of behaviors in these assays as well as their peak intensity [54; 57; 70; 

75]

It is important to note that some biological processes can be captured well by one 

-omics method but not others. The genes of the inflammatory response represent one 

example. Because of the inverted U-shaped time-dependent contribution of inflammatory 

processes to pain resolution, and the gradual increase of a pro-inflammatory state in 

chronic pain development, inflammatory genes relevant to pain can be captured well only 
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by -omics methods measuring dynamic responses, such as transcriptomics and, probably, 

metabolomics and methylomics. In contrast, genetic variation in the inflammatory genes 

themselves, which is a static, inherited molecular feature, may not easily be found among 

the genome-wide significant SNPs in a GWAS. The same genetic variant that, for example, 

increases the intensity of inflammatory response, will be protective for the transition from 

acute to chronic pain but if a patient nevertheless develops chronic pain, this same variant 

will be a risk factor for chronic pain. Similarly, the same genetic variant could be associated 

with the intensity of acute pain in an opposite manner to its association with chronic pain. In 

general, acute pain measures will be difficult for genetic association analyses, as the results 

will always depend on the degree of injury and degree of inflammation-dependent pain. 

This may be one reason why post-GWAS functional analyses for pain phenotypes identify 

more robust evidence for brain-expressed genes among top associated SNPs [6; 20; 33; 35; 

49], but less evidence for immune cell-specific SNPs [6; 10; 35; 70]. The enrichment for 

brain-expressed genes in the GWAS results may be a reflection of the linear dose-dependent 

and time-dependent relationship between neuronal processes and chronic pain development, 

in contrast to the curvilinear features of immune cell processes.

We observed a similar phenomenon for loss-of-function genetic variants of the gene 

encoding epiregulin (EREG) [85]. A strong association with lower chronic pain intensity 

in facial pain (TMD) patients was observed for an alternative (minor) allele of the EREG-

adjacent SNP rs6836436. However, the same allele was associated with higher facial pain 

intensity among recent-onset patients. These results were validated in an independent cohort, 

the UK Biobank, where this minor allele was associated with a higher number of reported 

acute pain sites but a lower number of chronic pain sites. Mouse models of chronic and acute 

pain confirmed the dichotomous role of epiregulin in pain states [85].

The -omics studies results suggest that chronic pain is a multi-stage process developing over 

a substantial period of time. For example, our study on LBP patients showed different blood 

cell types dynamically changed their levels; neutrophils and mast cells were increased and 

activated in the blood at the acute pain stage of those who resolved their pain, and then were 

substantially reduced over 3 months, whereas NK and T cells, in contrast, increased over 

the three months of pain resolution [58]. In the blood of chronic fibromyalgia patients, we 

found decreased levels of NK cells and increased B cell levels [84]. Even though a particular 

-omics analysis might identify the association with a specific immune cell type (or specific 

gene, or specific biological process), the overall process of pain development or resolution 

most likely includes multiple immune cell types. These cells might contribute to the process 

in a sequential manner, or they might be complementary to each other.

Furthermore, it will be useful to further our understanding of downstream neuro-immune 

interactions using human -omics approaches. Neuro-immune interactions are obviously 

more difficult to capture in humans in large datasets due to highly limited access to relevant 

nervous system tissues (e.g., peripheral nerve, DRG, spinal cord, cortex) in comparison with 

blood, although single-cell RNA-seq has started to be applied to human and primate DRGs 

[37; 76]. The integration of the results of multiple -omics approaches will be the next step 

in building a holistic picture of the pathophysiology of chronic pain through the generation 

of testable hypotheses. For example, GWAS association of chronic pain with netrin-driven 
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axonal guidance [35] can be related to the proposed NK-dependent reduction in epidermal 

nerve density in fibromyalgia patients [84], as the regrowth of the peripheral nerves removed 

by activated NK cells will rely on the efficiency of axonal guidance pathways.

The -omics approaches are well-known to be prone to Type I errors; that is, false positives, 

and an increasing sample size, is the most robust way to mitigate these risks. -Omics 

integration approaches would require even further increases in required sample sizes. There 

is a clear need to consolidate pain cohorts to facilitate further studies and summarize current 

results, and now is the time to start to create a pain genetics consortium(s) to combine 

cohorts across the field. A recent effort using the UK Biobank in which a pain questionnaire 

was assembled by experts and filled online by more than 157,000 participants is highly 

commendable (https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=154), and should prove 

very useful despite limitations [44].

In summary, human -omics approaches provide a useful avenue to study the 

pathophysiology of human chronic pain, and for the first time enable the full complexity 

of various contributing biological processes to be considered. We have started to identify a 

mosaic of “pain genes” and biological pathways contributing to human chronic pain, which 

we believe will result in new targets for more effective therapeutic interventions.
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Figure 1. The contribution of axonogenesis to chronic overlapping pain conditions (COPCs) 
based on the results from genome-wide association studies (GWASs) and brain imaging data 
(based on Khoury etal. 2022).
GWASs were conducted in human subjects reporting chronic pain at a single body site 

(N=1 site, blue) or multiple body sites (N≥2 sites, purple), compared with human subjects 

not reporting any pain (N=0). The DCC Netrin 1 Receptor (DCC) gene was found to be 

strongly associated with multisite chronic pain but not with single-site chronic pain. DCC 
is a gene that critically contributes to axonogenesis, the process of steered development of 

neuronal axons towards their synaptic targets. Consistent with the association of DCC gene 

with chronic multisite pain, the GWAS-based pathways analyses identified axonogenesis 

in brain tissues as the major contributing pathway to chronic multisite pain. Genetic 

partitioned heritability (h2) analysis indicated a significant enrichment of heritability in 

Diatchenko et al. Page 19

Pain. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SNPs at loci of genes exclusively expressed in brain regions for multisite chronic pain but 

not for single-site chronic pain. Brain imaging data identified increased neurite orientation 

dispersion (OD) with an increased number of chronic pain sites. The OD of neurites can 

range from highly parallel (coherently oriented white matter structures) to highly dispersed 

(grey matter structures characterized by sprawling dendritic processes in all directions), 

as suggested by the neuronal networks inside the bar plot’s bars. OD is shown for the 

uncinate fasciculus (UF) brain sub-structure. The background brain image shows evidence 

for DCC expression in the UF. Together, our results suggest that genetically determined 

DCC-dependent disorganization in axonal tracks in patients with chronic overlapping pain 

conditions may contribute to pathgenesis of disease via corticolimbic circuits.
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Figure 2. Inflammatory response contribution to acute pain resolution based on the results from 
transcriptomics-wide profiling of a prospective cohort of acute low back pain (LBP) patients 
(based on Parisien et al. 2022).
Human patients incur tissue damage eliciting back pain. After an acute pain period, pain 

in some patients resolves, the “resolved pain” group (left, green), whereas for others 

the pain persists, the “persistent pain” group (right, red). Evidence from transcriptomics 

studies indicates different time trajectories for the inflammatory response in the two groups 

(bottom row). During the acute pain stage, the inflammatory response in the resolved pain 

group is stronger than for the persistent pain group. With time, the inflammatory response 

substantially lessened in patients with resolved pain (left). In patients with persistent pain, 

the inflammatory response is already elevated at the time of injury but does not rise during 

the acute pain stage, however transitions to a low-grade inflammatory state over time 

(right). The inflammatory response seems to coincide with neutrophil count and activation. 

Together, the acute-to-chronic pain transition features the absence of active processes of 

upregulation and subsequent resolution of inflammation.
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Figure 3. The contribution of Natural Killer cells to the pathogenesis of fibromyalgia based on 
the results of unbiased immune profiling of fibromyalgia cases and controls (based on Verma et 
al. 2021).
Panels show intraepidermal innervation (purple) in control human subjects (left) and patients 

with fibromyalgia (right). In those with fibromyalgia, but not in the controls, intraepidermal 

nerves express a ligand for NK cell activation, which in turn coaxes NK cells to extravasate 

from the bloodstream and follow the ligand’s gradient. Thus, depletion of NK cells can be 

observed in blood samples of patients with fibromyalgia compared to controls. The NK cells 

recruited to the damaged nerve are activated through the immune synapse formation leading 

to peripheral nerve degeneration through NK cell cytotoxic functions. Thus, the chronic 

expression of an NK activation ligand(s) stimulates chronic extravasation, recruitment, and 

activation of circulating NK cells, resulting in persistent peripheral nerve degeneration, and 

chronic activation of NK cells.
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