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Abstract

Technological advances in both genome sequencing and prenatal imaging are increasing our 

ability to accurately recognize and diagnose Mendelian conditions prenatally. Phenotype-driven 

early genetic diagnosis of fetal genetic disease can help to strategize treatment options and clinical 

preventive measures during the perinatal period, to plan in utero therapies, and to inform parental 

decision-making. Fetal phenotypes of genetic diseases are often unique and at present are not 

well understood; more comprehensive knowledge about prenatal phenotypes and computational 

resources have an enormous potential to improve diagnostics and translational research. The 

Human Phenotype Ontology (HPO) has been widely used to support diagnostics and translational 

research in human genetics. To better support prenatal usage, the HPO consortium conducted a 

series of workshops with a group of domain experts in a variety of medical specialties, diagnostic 

techniques, as well as diseases and phenotypes related to prenatal medicine, including perinatal 

pathology, musculoskeletal anomalies, neurology, medical genetics, hydrops fetalis, craniofacial 
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malformations, cardiology, neonatal-perinatal medicine, fetal medicine, placental pathology, 

prenatal imaging, and bioinformatics. We expanded the representation of prenatal phenotypes 

in HPO by adding 95 new phenotype terms under the Abnormality of prenatal development or 
birth (HP:0001197) grouping term, and revised definitions, synonyms, and disease annotations for 

most of the 152 terms that existed before the beginning of this effort. The expansion of prenatal 

phenotypes in HPO will support phenotype-driven prenatal exome and genome sequencing for 

precision genetic diagnostics of rare diseases to support prenatal care.

Keywords

Human Phenotype Ontology; HPO; Prenatal phenotyping; Phenopacket; Prenatal diagnosis; Fetal 
pathology

Introduction

Genetic diagnosis can define fetal prognosis, inform parental decision-making, and guide 

clinical management during pregnancy and the perinatal period. Congenital anomalies affect 

2–4% of all infants and are responsible for 20% of perinatal deaths [Osterman et al., 2015]. 

The most recent systematic review of prenatal genomic testing with Exome Sequencing 

(ES) and/or Genome Sequencing (GS), identified 72 reports from 66 studies involving 

4350 fetuses with a pooled diagnostic yield of 31% [Mellis et al., 2022]. This represents 

a compelling justification for the adoption of genomic diagnostics into fetal medicine, but 

there is still significant room for improvement to facilitate clinical use.

The Human Phenotype Ontology (HPO) is a rich representation of abnormal human 

phenotypic features including signs, symptoms, laboratory test results, imaging findings, 

and others. HPO is logically structured as an ontology and enables sophisticated 

algorithms that support combined genomic and phenotypic analysis in diverse clinical and 

research applications. Examples include genomic interpretation for diagnostics, gene-disease 

discovery, mechanism discovery, and Electronic Health Record (EHR) cohort analytics – 

all of which assist in realizing the promise of precision medicine [Haendel et al., 2018]. 

The HPO development team has developed free and open community resources consisting 

of the ontology itself and a comprehensive corpus of phenotype annotations (HPOA) 

corresponding to each of over 8,400 rare diseases. HPO has become a global standard 

for the International Rare Disease Research Consortium (IRDiRC) [Lochmüller et al., 2017] 

and has been translated into more than 10 languages for use in rare disease diagnostic tools 

[Köhler et al., 2018]. Almost all clinical genetics diagnostic tools now leverage the HPO to 

encode and compute over patient features in the context of genomic variant classification. 

Further, by enabling data exchange, HPO unites an ever-growing community of diverse 

users and contributors across the world, illuminating the natural history of disease, revealing 

new diseases, supporting patient registries and n-of-1 matchmaking for diagnosis, as well 

as numerous national genomic initiatives including the 100,000 Genomes Project, the NIH 

Undiagnosed Diseases Program and Network, the Deciphering Developmental Disorders 

study, and biobanking programs [Robinson et al., 2008; Köhler et al., 2021]. It has also 

supported the discovery of genes associated with both previously known and novel human 
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diseases by comparing HPO terms and those of the Mammalian Phenotype Ontology (MP) 

[Cacheiro et al., 2020; Oellrich et al., 2012].

Accurate and comprehensive phenotyping matters for accurate diagnosis. Many ES and 

GS pipelines incorporate phenotype analysis into approaches for ranking and interpreting 

variants, and having a standardized computational resource such as HPO is key to sharing 

and analyzing both prenatal and postnatal features. Since its inception in 2008, the majority 

of work on the HPO has been dedicated to describing phenotypes observed postnatally. 

With the advent of sophisticated methods for prenatal phenotyping and recent successes 

in the application of next-generation sequencing including ES and GS, an opportunity has 

arisen to apply HPO-based, phenotype-driven, genomic analysis to prenatal sequencing. For 

this reason, a group of specialists in multiple disciplines related to prenatal medicine came 

together over a period of two years to extend HPO resources to better cover the prenatal 

phenotype. This article describes the result of this work and provides guidelines for using 

HPO for prenatal phenotyping.

Prenatal phenotyping

Common non-invasive prenatal evaluations in the first trimester include first trimester 

screening (FTS), non-invasive prenatal testing (NIPT) on cell-free DNA (cfDNA) 

in maternal serum, and ultrasound for nuchal translucency (NT) measurement and 

morphological assessment of the fetus. As screening tests, these are designed to identify 

women with pregnancies at high risk for chromosomal and genetic conditions and congenital 

anomalies [Carlson and Vora, 2017]. The FTS for aneuploidy risk assessment generally 

comprises a multiparameter algorithm including maternal age, serum screening (usually 

pregnancy-associated plasma protein A and free beta-human chorionic gonadotropin), and 

ultrasonographic measurement of the NT and the crown-rump length (CRL) performed 

between 11 weeks and 13 weeks 6 days gestational age [Salomon et al., 2013].

The morphological assessment of the fetus is based on ultrasound examination. High 

resolution ultrasound can potentially detect the majority of severe or lethal fetal structural 

anomalies in the first trimester scan [Blaas, 2014; Rossi and Prefumo, 2013]. In most 

countries, a 2nd trimester detailed anomaly scan between 18–22 weeks’ gestation (WG) is 

standard of care, and with the advances of high resolution ultrasound technologies, it allows 

detection of the majority of fetal anomalies and assessment of the fetal phenotype at this 

developmental stage with high precision. Resources available for following up on potentially 

abnormal findings continue to improve and additional modalities, including magnetic 

resonance imaging (MRI), computerized tomography (CT-Scan), and 3D/4D ultrasound, are 

entering the prenatal imaging space [Gray et al., 2019]. The catalog of prenatal phenotypes 

in HPO, therefore, needs to be extended to include data from these modalities.

There are a number of challenges to fetal phenotypic assessment. Prenatal phenotypes are 

generally less well characterized than postnatal phenotypes; further, there is a clear difficulty 

in identifying some organs in the prenatal period (e.g. the skin) and some anatomical 

structures change significantly in the postnatal period (e.g. the lungs, the cardiovascular 

system). Fetal phenotypes are observed indirectly by imaging modalities and the clinical 
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information inferred from prenatal imaging is sparse in comparison with that obtained 

through clinical, behavioral, functional, and pathological phenotyping of the infant after 

delivery [Filges and Friedman, 2015]. It is substantially more difficult and in some 

cases impossible in the prenatal period to assess functional anomalies such as seizures, 

developmental delay, or hearing loss. This is reflected in our assessment that only about 10% 

of HPO terms are identifiable through imaging modalities in the prenatal setting. A review 

of HPO terms with a focus on their “identifiability” during prenatal life has confirmed 

that only a minority are detectable with high sensitivity. Therefore, fetal phenotypes may 

differ from those classically associated with a newborn, child or adult with the same genetic 

condition. In addition, a significant proportion of abnormal phenotypes encountered during 

the antenatal developmental stages may be specific to fetal life since they will lead to 

embryonic, fetal or perinatal lethality and will have escaped etiological research and clinical 

delineation so far. This is epitomized by fetal Noonan syndrome where, in the second 

trimester fetus, pleural effusions and polyhydramnios are common, and the typical pulmonic 

stenosis is not easily ascertained [Scott et al., 2021]. This was also noted in a cohort of 

246 stillborn probands evaluated using ES in which there was an enrichment of loss of 

function (LOF) variants in genes intolerant to such variation in humans; the LOF variants 

were was concentrated in genes not previously associated with human disease and 44% of 

the candidate genes were embryonic lethal in mice [Stanley et al., 2020]. Fetal phenotypes 

may also represent an incomplete or severe allelic presentation of a phenotype described 

to occur postnatally, and the diagnosis therefore can remain unrecognized at this stage of 

development [Filges and Friedman, 2015]. Recent studies on GS/ES amongst sick infants in 

ICU showed that in a significant proportion of cases an abnormal prenatal phenotype would 

not be expected in cases where a genomic etiology was identified postnatally [Kingsmore et 

al., 2019; Meng et al., 2017].

Fetal phenotypes may also evolve over time since the occurrence of symptoms may 

be specific to the developmental stage [Mone et al., 2021a]. New phenotypes can be 

observed with increasing gestational age, and phenotypes can resolve (i.e., cystic hygromas 

or hydrops fetalis may resolve) even in the presence of an underlying genetic disease. 

A recently published systematic review has shown that during routine third-trimester 

ultrasound, an incidental fetal anomaly will be found in about 1 in 300 scanned 

women. This not only includes anomalies missed at the earlier 20 weeks scan but also 

abnormalities that can only be seen with fetal maturation, such as certain malformations 

of cortical development, microcephaly, or hydrocephalus; some congenital heart defects; 

gastrointestinal abnormalities relating to intestinal obstruction; urinary tract abnormalities 

that change over time such as renal pelvis dilatation; and some skeletal dysplasias [Drukker 

et al., 2021]. Tracking and real-time updating of the fetal phenotype in combination with 

the application of genomic testing in prenatal diagnosis has become an active field of 

research. As a consequence, HPO can support this effort by curation of prenatal phenotypes 

as available. For example, a finding in the fetal period may sometimes suggest a specific 

disease and the same finding in a child or adult may not be related to the same disease. 

This is the case of cardiac rhabdomyomas: when observed in the fetal age they suggest 

the diagnosis of tuberous sclerosis but when observed in teenagers or adults, alternative 

diagnoses are more likely [Boitor Borza et al., 2022].
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In summary, fetal phenotypes of genetic diseases are often unique and at present are 

not well understood. We lack knowledge of the natural history of most genetic diseases 

in the prenatal period. Certain manifestations can occur prenatally but resolve or evolve 

postnatally. For instance, fetal effusions, polyhydramnios, and contractures can be prenatal 

manifestations of RASopathies but are not postnatal features of these diseases. In order to 

extend our understanding of these diseases and their prenatal manifestations, it is essential 

to create HPO resources to allow comprehensive and precise computational models of fetal 

phenotypes and to link these features to fetal manifestations of disease.

Prenatal genetic and genomic diagnosis (PD).

In contrast to screening approaches, PD provides diagnostic information as to the etiology 

and prognosis as well as informing pregnancy, perinatal and neonatal decision-making 

and management. Fetal aneuploidy and unbalanced chromosomal rearrangements can be 

identified in about 35% of structurally abnormal fetuses, and chromosomal microarray 

(CMA) analysis identifies copy number variants in an additional 3–6.5% of cases [Hillman 

et al., 2013; Wapner et al., 2012]. Altogether, these tests identify a genetic etiology in up 

to 40% of abnormal fetuses. Until recently, published experience on the diagnostic yield of 

prenatal ES/GS was limited to relatively small cohorts but suggested the ability of ES/GS to 

diagnose monogenic disorders in fetuses with normal CMA analysis. Retrospective studies 

for selected indications and in small patient series using various sequencing approaches 

show diagnostic yields between 6.5 and 80% [Best et al., 2018]. Targeted exome testing 

on fetuses with a suspected skeletal dysplasia phenotype showed a diagnostic rate of 81% 

[Chandler et al., 2018], and in some cases ES/GS reduced morbidity and lowered inpatient 

costs [Clark et al., 2018; Warburton, 1991; Talkowski et al., 2012; Farnaes et al., 2018]. Two 

large prospective studies that applied ES to large cohorts of fetuses with structural anomalies 

were performed in cases where CMA was unrevealing. One prospective study of 610 

fetuses with structural anomalies (PAGE) identified a clinically significant genetic variant 

in 8.5% of cases [Lord et al., 2019]. In the second study, a diagnostic variant was found 

in 10.3% of fetuses [Petrovski et al., 2019]. Both studies and subsequent studies showed 

that the diagnostic yield was higher in fetuses with multiple congenital anomalies, skeletal 

dysplasias and cardiac anomalies [Mone et al., 2021b, 2021e; Lord et al., 2019; Petrovski 

et al., 2019]. In 3.2% of pregnancies with an isolated increased first trimester nuchal 

translucency, monogenic etiologies were identified as compared to 25% of pregnancies 

with non-immunological hydrops. Pathogenic variants in genes of the RASopathy pathways 

seem to account for the majority of such severe phenotypes [Sparks et al., 2020; Mone 

et al., 2021b]. When including deep phenotyping throughout pregnancy and postnatally on 

the initial patients of the PAGE cohort, a genetic diagnosis was obtained in over half of 

ultrasound detected fetal structural anomalies [Mone et al., 2021a]. A systematic review and 

meta-analysis of 66 ES/GS studies in fetal structural anomalies representing 4350 fetuses 

concluded that prenatal exome sequencing provides an additional diagnostic yield of 31% 

after normal CMA [Mellis et al., 2022]. The diagnostic yield was reported to be significantly 

higher in clinically pre-selected cases (42% vs. 15%) and differed between phenotypic 

subgroups ranging from 53% for isolated skeletal abnormalities to 2% for isolated nuchal 

translucency [Mellis et al., 2022].
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HPO Terms and Annotations

In addition to the ontology itself, the HPO project provides HPO annotations (HPOAs) 

of diseases. For instance, the disease ‘Marfan syndrome’ is characterized by — and 

therefore annotated to — over 50 phenotypic abnormalities including ‘Aortic aneurysm’ 

(HP:0004942) (each abnormality is represented by an HPO term). The annotations can have 

modifiers that describe the age of onset and the frequencies of features. For instance, the 

phenotypic abnormality ‘Brachydactyly’ (HP:0001156) is rare in ‘Hydrolethalus syndrome’ 

(3/56 according to a published study referenced in our data), but affects nearly 100% of 

patients diagnosed with most of the 484 other diseases annotated to this term. This type 

of information can be used by algorithms to weight findings in the context of clinical 

differential diagnosis. The Monarch Initiative is additionally creating the Medical Action 

Ontology (MAxO), a new ontology of clinically relevant actions (e.g., treatments and 

interventions) to integrate these actions into the HPO disease models for use in clinical 

decision-making when interpreting variants and performing diagnostics for RDs. A full 

disease model includes phenotypic features, links to genes and variants, a representation of 

treatments and other actions, and (if relevant) environmental exposures (Figure 1).

The description of phenotypic variation has become central to translational research and 

genomic medicine [Biesecker, 2004; Robinson and Webber, 2014; Robinson, 2012; Deans et 

al., 2015], and computable descriptions of human disease using HPOAs have become key to 

a number of genomic diagnostic algorithms. Our group has developed HPO-based software 

for genomic diagnostics called Exomiser/Genomiser [Robinson et al., 2014; Smedley et al., 

2015, 2016] that is widely used by projects such as the NIH Undiagnosed Diseases Program 

[Bone et al., 2016; Gall et al., 2017] and Genomics England’s 100,000 Genomes project 

[100,000 Genomes Project Pilot Investigators et al., 2021] [Chief Medical Officer annual 

report 2016: Generation Genome]. The HPO allows algorithms to ‘compute over’ clinical 

phenotype data in a wide variety of contexts. The ontological structure of the HPO allows 

fuzzy phenotype matching (semantic similarity) of sets of individual terms (phenotypic 

profiles, encoded within HPOAs) [Köhler et al., 2009; Bauer et al., 2012; Schulz et al., 

2009]. Additionally, the underlying logical definitions enable HPO terms to be integrated 

with numerous other resources, such as model organism data [Robinson and Webber, 2014; 

Doelken et al., 2013; Köhler et al., 2014, 2013; Washington et al., 2009; Mungall et al., 

2015].

Prenatal extension of the HPO

The HPO consortium has periodically organized collaborative workshops to revise and 

extend specific areas such as ophthalmology, immunology, nephrology, and neurology 

[Lewis-Smith et al., 2021; Haimel et al., 2021; Ong et al., 2020; Gasteiger et al., 

2020; Köhler et al., 2019, 2017]. In 2020, we began a series of workshops to expand 

the representation of phenotypic abnormalities that are observed in the prenatal period. 

Because of the COVID-19 pandemic, the workshops were conducted by videoconferencing. 

Participants included experts in perinatal pathology, musculoskeletal anomalies, neurology, 

medical genetics, hydrops fetalis, craniofacial malformations, cardiology, neonatal-perinatal 

medicine, fetal medicine, informatics, placental pathology, and prenatal imaging.
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Some phenotypic features are only observable in the prenatal period. The HPO groups such 

terms under a dedicated subontology that descends from the grouping term Abnormality of 
prenatal development or birth (HP:0001197). Other features such as Preaxial polydactyly 
(HP:0100258) can be ascertained both pre- and postnatally. The HPO puts such terms 

underneath the main hierarchy (for instance, the path from Preaxial polydactyly to the 

root of the ontology is Preaxial polydactyly →Polydactyly →Abnormal digit morphology 
→Abnormal limb bone morphology → Abnormal appendicular skeleton morphology → 
Abnormal skeletal morphology → Abnormality of the skeletal system →Abnormality 
of the musculoskeletal system → Phenotypic abnormality. Specifically prenatal skeletal 

abnormalities are placed under Abnormal fetal skeletal morphology (HP:0025662), such as 

Hypoplastic nasal bone (HP:0025707). Because Hypoplastic nasal bone is a subterm (child) 

of Abnormal skeletal morphology, it is included by searches and phenotypic similarity 

algorithms such as LIRICAL under both skeletal abnormalities as well as specifically 

prenatal abnormalities.

Ongoing work is adding annotations to terms that specify the diagnostic modalities by which 

a phenotypic abnormality can be ascertained. For instance, Inferior crossed fused renal 
ectopia (HP:0034230) is annotated via the relation ‘is observable through’ to the Medical 

Action Ontology (MAxO) term prenatal renal ultrasonography (MAXO:0009009). When 

this work is finished, software will be able to use the annotations to suggest HPO terms 

and the investigations by which they can be ascertained that are most helpful given a certain 

differential diagnosis and age of the patient. Additionally, the SUOG European project 

(www.suog.org) aims to associate fetal ultrasound phenotypes with specific ultrasound 

planes (or views) and other technical elements (2D, 3D; Doppler mode) to augment 

the ultrasound examination with the support of semantically derived imaging protocols 

[Dhombres et al., 2019].

The HPO prenatal workshops added 95 terms to the Abnormality of prenatal development 
or birth (HP:0001197) sub-hierarchy (for a total of 247) and revised definitions, synonyms, 

and disease annotations for most of the 152 terms existing before the start of the workshops. 

65 terms descend from Abnormalities of placenta or umbilical cord (HP:0001194). Many 

additional terms were discussed on the GitHub tracker of the HPO project, which currently 

lists 91 issues with label prenatal/perinatal/neonatal that pertain to term requests for both 

specifically prenatal features as well as other features that can be observed pre- and 

postnatally (2022-04-14 release).

Age of onset

The HPOA disease annotations include in some cases information about the age of onset 

of a disease or of a specific phenotypic feature of the disease. These annotations are 

intended to specify the range of ages in which individuals with the disease in question 

tend to develop clinical manifestations, ranging from Antenatal onset (Onset prior to birth; 

HP:0030674), to Late onset (onset of symptoms after the age of 60 years; HP:0003584). 

As a part of the series of prenatal workshops, additional terms were added to the Antenatal 
onset subhierarchy (Figure 2). As gestational age (GA) is described in weeks from the last 

menstrual period (LMP or WG) during ultrasound examination, we decided to keep this for 
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consistency with ultrasound phenotypes: for example, 8 weeks of embryonic development 

correspond to 10 WG.

HPO-based Phenopackets for computable case reports

The Global Alliance for Genomics and Health (GA4GH) is developing a suite of 

coordinated standards for genomics for healthcare [Rehm et al., 2021]. The Phenopacket 

is a new GA4GH standard for sharing disease and phenotype information. A Phenopacket 

characterizes an individual person or biosample, linking that individual to detailed 

phenotypic descriptions, genetic information, diagnoses, and treatments. The Phenopacket 

schema enables comparison of sets of phenotypic attributes from individual patients. Such 

comparisons can aid in diagnosis and facilitate patient classification and stratification for 

identifying new diseases and treatments [Jacobsen et al., 2021].

The HPO disease annotations are computational models of disease with information about 

the full range of phenotypic abnormalities and in many cases the frequencies and typical 

ages of onset of specific phenotypic features in cohorts of individuals with the disease 

[Köhler et al., 2021]. In contrast, a Phenopacket represents an individual case report. 

Phenopackets have been used to support rare-disease diagnostics in the SOLVE-RD project 

of the European Union [Zurek et al., 2021] and can be used to support a number of 

additional applications in translational research and computational decision support. Several 

tools for phenotype-driven genomic diagnostics support the Phenopacket Schema, including 

Exomiser, LIRICAL, Phen2Gene, and CADA [Peng et al., 2021; Robinson et al., 2014, 

2020; Zhao et al., 2020] and we anticipate that more tools will offer Phenopacket support in 

the future.

Here we show how a Phenopacket might be used to encode clinical data to support 

exome or genome analysis. We have adapted a case of fetal cataract in which subsequent 

postnatal investigations revealed additional phenotypic abnormalities that led to a diagnosis 

of Warburg micro syndrome [Léonard et al., 2009]. Figure 2 provides an explanation 

and we refer to the online documentation for technical details [Phenopacket-schema 2.0 

documentation]. In this example, the Phenopacket provides additional context for the 

phenotypic abnormalities that goes beyond what could be provided by a simple list of 

HPO terms. For instance, the age of onset of each feature is provided, and the fact that 

Microphthalmia was excluded on prenatal sonography is indicated. For prenatal features, the 

precise age of onset is often difficult to determine, and the “onset” field should be used to 

report the age of first observation.

As a first application of Phenopacket schema for prenatal medicine, the HPO team is 

collaborating with the Fetal Sequencing Consortium (FSC; https://www.google.com/url?

q=https://www.obgyn.columbia.edu). The FSC includes >30 national and international sites 

involved in fetal sequencing whose members participate in bi-weekly calls to share data, 

challenges, and discuss new technologies relevant to sequencing in the perinatal period. 

The FSC has sequenced >3,000 anomalous and stillbirth probands, finding that 13–26% 

of fetuses with structural anomalies currently have a causative genotype using American 

College of Medical Genetics (ACMG) guidelines.
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This effort has expanded to the Fetal Genomics Consortium (FGC), with a mission to 

understand the genetic and phenotypic architecture of fetal anomalies and stillbirth and 

use this information to inform pre-, peri -, postnatal and maternal care. Phenotypic and 

genotypic data from across the FGC centers will be integrated, aggregated, and analyzed. 

This collaboration will leverage the Terra Platform (https://terra.bio/), a cloud-based data 

ecosystem enabling processing and analysis of genomic data. Integrating phenotype data 

into analysis in Terra is currently limited, and a goal is to build-out the ability to easily store 

and run analysis using Phenopackets and associated tools in Terra. This would, for the first 

time, enable truly integrated genotype and phenotype analyses in one cloud-based platform 

that is accessible to researchers and clinicians worldwide.

We anticipate that the phenotype-driven analysis will require tuning to particular cohorts, 

and working with the FGC will: 1) drive new systematic phenotypes in the prenatal space; 

2) allow benchmarking of phenotypic driven analysis in a single, large cohort; 3) enable 

phenotype driven analysis on an existing, widely used platform, Terra.

Discussion

We have presented the work of a group of experts in various fields of fetal medicine to 

extend the HPO to cover the prenatal phenotypic manifestations of disease. The majority of 

rare genetic diseases have good phenotypic descriptions and consequently HPOA in children 

and adults, available in gene-centric form from the HPO consortium and in disease-centric 

form from Orphanet [Maiella et al., 2018]. However, scant phenotypic data are available for 

the prenatal period. Prenatal findings of some genetic diseases have only recently begun to 

be collected in the literature [García Santiago et al., Sarac Sivrikoz et al., 2022], and these 

annotations have been transferred more slowly to the databases, limiting their computational 

management. For this reason, the HPO prenatal team has made an effort to include new 

prenatal HPO terms to support rapid inclusion in databases. Also, detailed ultrasound 

findings from the ontology developed by the SUOG consortium will continue to support 

the extension of prenatal HPO terms.

To take full advantage of ontology-based algorithms for translational research in fetal 

medicine and variant interpretation in prenatal ES/GS analysis, additional clinical data, 

computational resources, and algorithms will be required. A paucity of data is available 

about the prenatal manifestations of most Mendelian diseases, and many relevant articles 

are reports about single cases that are insufficient to understand the scope of variability and 

the natural history of diseases. Efforts such as the FGC can help distribute datasets in a 

federated fashion; the use of the GA4GH Phenopacket to code each case in an interoperable 

and computable fashion should accelerate the computational use of case-level data. Journals 

in the field are to be encouraged to have authors submit Phenopackets as supplemental 

material with case reports and articles about cohorts of patients. Innovative ways of 

encoding phenotype data as a part of the clinical encounter are imaginable. For instance, 

the fetal femur length is measured as a part of some fetal sonographic examinations. 

Knowledge of the femur length, the sex and gestational age of the fetus would allow a 

simple algorithm to determine if Short fetal femur length (HP:0011428) is present or not, 

which would allow HPO terms to be immediately generated as a part of the fetal sonography 
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evaluation. Furthermore, phenotypes may be refined with new imaging modalities, such as 

fetal MRI or fetal CT-scan. Comprehensive aggregation of prenatal phenotype and genotype 

data will permit expansion of the phenotypic spectrum of a disorder, and inform both pre- 

and postnatal diagnosis.

In humans, information on genes associated with prenatal and neonatal phenotypes is 

limited and/or not systematically captured in a comprehensive manner. As more prenatal 

data become available, algorithms for cross-species phenotype matching may become 

relevant for characterization of novel associations between genes and human diseases 

with prenatal manifestations [Robinson and Webber, 2014]. Prenatal ES studies have 

been successful in characterizing previously unrecognized prenatal phenotypes associated 

with known Mendelian disease genes, and in many cases have leveraged comparisons to 

embryonic phenotypes in mouse models [Filges et al., 2014; Fujikura et al., 2013; Vora 

et al., 2017]. Large scale efforts such as the International Mouse Phenotyping Consortium 

(IMPC) are creating genome- and phenome-wide catalogs of gene function by characterizing 

new knockout mouse strains across diverse biological systems through a broad set of 

standardized phenotyping tests [Meehan et al., 2017]. Current estimates are that gene 

inactivation leads to lethal embryonic or perinatal phenotypes in roughly 30% of gene 

knockout experiments [Adams et al., 2013]. An additional 13% (198/1751) are associated 

with subviable phenotypes in which fewer than half the expected number of homozygous 

pups survive [Dickinson et al., 2016]. Future algorithms for variant interpretation in prenatal 

genomics will be able to make use of the HPO annotations and their ready comparison to 

data from other species that is the focus of the Monarch Initiative [Shefchek et al., 2020]. 

Such analyses could include data on the time course of prenatal manifestations or death, 

and further allow discrimination between phenotypes leading to prenatal lethality. These 

early manifestations are part of a wider, postnatal phenotyping spectrum that can be used to 

improve prioritization of genes and diseases and ultimately care and family planning. Due 

to the rapidly growing importance of ES/GS for the diagnosis of monogenic disorders in 

fetal anomaly phenotypes, extension of cross-species algorithms and tools such as Exomiser 

[Smedley et al., 2015] could support analysis of prenatal phenotypes in genomic diagnostics.

The HPO consortium welcomes the continued participation of the prenatal genomics 

community in the extension and improvement of HPO resources in this area.
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Figure 1. Example attributes of the HPO Disease annotation model (HPOA).
Panel A: Schematic representation of our model of a rare disease. Associated with the 

diseases are a variety of features. Panel B: This schematic represents one HPO annotation 

for the disease Dyserythropoietic anemia, congenital, type IV. Published phenotypes include 

Anemia with Infantile onset REF; all five of the patients with the disease presented this way 

(shown as f=5/5). An annotation to a treatment (Intrauterine fetal transfusion coded by a 

MAxO term) is shown; the treatment treats Anemia, as well as Nonimmune hydrops fetalis, 

a less frequent phenotypic manifestation of the disease.
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Figure 2. Prenatal onset terms.
The HPO provides terms to denote the range of onset of diseases or phenotypic features. 

New terms were added for more granularity in the prenatal period. Prenatal ages are shown 

as gestational weeks, which are defined as the time from the last menstrual period of the 

mother. For instance, Embryonal onset refers to a disease or phenotypic feature that is first 

observed in the 8 weeks following fertilization, which corresponds to 10 weeks of gestation 

(WG). 13 WG + 6D refers to a gestational age of 13 weeks and 6 days.
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Figure 3. 
Components of a Phenopacket. (A) The subject message provides basic demographic 

information; (B) The phenotypicFeatures message consists of a list of phenotypic 

features (each of which begins with “-type” in YAML format as shown here). The patient 

was found to have Increased fetal lens echogenicity (HP:0034248) at a gestational age of 27 

weeks, at which time Microphthalmia (HP:0000568) was excluded. Postnatal examination 

at an age of 4 days (represented in iso8601 format as P4D) shows Axial hypotonia 
(HP:0008936), Low-set ears (HP:0000369), and Microphthalmia (HP:0000568). (C) The 

disease diagnosis is recorded using a term from the Mondo ontology [Shefchek et al., 

2020], Warburg micro syndrome (MONDO:0016649). (D) The metaData message records 

versions of ontologies used to create the Phenopacket together with other information. 
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Additionally, the Phenopacket schema provides resources to record measurements, 

biospecimens, and treatments, not shown here.
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