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Summary

The blood-brain barrier (BBB) is a selectively permeable barrier separating the periphery from 

the central nervous system (CNS). The BBB restricts the flow of most material into and out 

of the CNS, including many drugs that could be used as potent therapies. BBB permeability is 

modulated by several cells that are collectively called the neurovascular unit (NVU). The NVU 

consists of specialized CNS endothelial cells (ECs), pericytes, astrocytes, microglia, and neurons. 

CNS ECs maintain a complex “seal” via tight junctions, forming the BBB; breakdown of these 

tight junctions leads to BBB disruption. Pericytes control the vascular flow within capillaries and 

help maintain the basal lamina. Astrocytes control much of the flow of material that has moved 

beyond the CNS EC layer and can form a secondary barrier under inflammatory conditions. 

Microglia survey the border of the NVU for noxious material. Neuronal activity also plays a role 

in the maintenance of the BBB. Since astrocytes, pericytes, microglia, and neurons are all able to 

modulate the permeability of the BBB, understating the complex contributions of each member of 

the NVU will potentially uncover novel and effective methods for delivery of neurotherapies to the 

CNS.
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1. Introduction

The blood-brain barrier (BBB) is a complex, highly regulated system with multiple cell 

types influencing its maintenance and formation. The BBB forms a privileged environment 
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for the central nervous system (CNS), restricting entry of a wide breadth of potential 

hazards, including pathogens, immune cells, antibodies, and pharmaceuticals. This tight 

regulation protects the brain from external insults, but simultaneously prevents access of 

many therapeutics meant to treat neuroinflammatory and neurodegenerative disorders. As a 

result, multiple clinical trials have failed despite promise in preclinical studies, underscoring 

the need for a more complete understanding of the BBB and its modulatory mechanisms. 

In this review, we discuss the composition of the neurovascular unit (NVU), known 

mechanisms of BBB modulation, and potential therapeutic targets for neuroinflammatory 

disorders.

The existence of a selectively permeable BBB was first postulated at the turn of the 

20th century when it was noted that water-soluble dyes injected into the periphery did 

not permeate the CNS1,2, and dyes injected into the CNS parenchyma did not exit to 

the periphery2,3. Further complexity of the BBB was demonstrated by seminal evidence 

indicating immune privilege, wherein immune cells are excluded and unable to surveille the 

CNS, over 100 years ago by Shirai4 and later confirmed by Murphy and Sturm5. However, 

even now, the permeability, complexity, and dynamics of the BBB are incompletely 

understood6,7.

The BBB acts as a robust biological gateway, responsible for the flow of nearly all 

molecules and cells passing into and out of the CNS6,8,9. This selective permeability is 

critical in sparing the CNS from many circulating toxins and pathogens and allowing for 

availability of necessary nutrients to the CNS2,10,11. Instead of passing through fenestrations 

in endothelial cells (ECs) as it does in the peripheral vasculature, material is transported and 

scrutinized by one or more cells closely associated with the BBB11,12. However, it is this 

very system, designed to protect the CNS, that also hinders therapeutic development to treat 

CNS disorders including multiple sclerosis (MS), Alzheimer’s disease (AD), Parkinson’s 

disease, traumatic brain injuries, brain cancers, and others10,11,13. Several researchers have 

even employed artificial intelligence to determine the likelihood of small molecules to 

penetrate the BBB13,14.

This review will examine some of the NVU cell-specific effects on BBB permeability 

as well as the intercellular communication that is critical for proper function of the 

NVU. While other complex CNS barriers, including the blood-retinal barrier, the blood-

cerebrospinal fluid barrier, and the arachnoid layer15, are also important to consider in 

therapeutic availability to the CNS, we will only focus on the BBB for the purposes of this 

review.

2. Structure and Organization of the NVU

The NVU is the fundamental multicellular unit supporting the BBB and consists of ECs, 

pericytes, astrocytes, microglia, and neurons (Fig. 1)6,7. The capillary lumen is the primary 

area of contact between the NVU and the periphery, and interfacing factors vary from 

cytokines and hormones to immune cells that have the potential to extravasate16,17. Forming 

the vessel lumen are specialized CNS ECs, which are semipermeable under homeostatic 

conditions due to the presence of tight junctions6,16,18–20. Perivascular mural cells, or 
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pericytes, have recently been shown to be more complex and varied than initially assumed. 

Pericytes are functionally heterogeneous21,22 and further understanding of their diverse roles 

in the CNS is an active area of research. Pericytes were classically described to help govern 

vasoconstriction and dilation of capillaries23,24, which is highly regulated in the NVU, to 

limit BBB permeability. Recent studies are beginning to uncover pericyte coordination with 

other members of the NVU, particularly ECs and astrocytes21,24. Astrocytes are vital to 

the NVU and while the other members of the NVU have critical roles, it is largely the 

astrocytes that set the NVU apart from other capillary layers in the body25,26. Understanding 

the specific mechanisms by which astrocytes regulate tight junctions in CNS ECs could 

prove incredibly beneficial to optimizing BBB permeability for drug delivery. Astrocytes 

are relatively large and abundant CNS trophic cells27 and their endfeet form an additional 

barrier around CNS capillaries6,25. The perivascular, or Virchow-Robin, space refers to 

the area between ECs and astrocytes and is a key checkpoint prior to entering the CNS 

parenchyma6,28. Microglia are a recent addition to our understanding of the NVU. Although 

astrocytes cover the majority of the perivascular space, there are some gaps in coverage. 

Recently, Kisler et al. used two-photon in vivo imaging to observe microglial processes 

covering many of these gaps29. How involved microglia are in the structure of the NVU 

is still being investigated. By area, neurons have a relatively minor role in the structure 

of the NVU, but can modulate BBB permeability via neuronal activity30,31. Due to the 

complex nature of the NVU, it has proven difficult to study. In vitro models have been 

useful; however, the heterogeneity between species, individuals, and even CNS regions have 

added to this investigational barrier32,33. Here, we will discuss the components of the NVU 

and how each cell type may impact BBB permeability.

3. Endothelial Cells

ECs are found throughout the body and make up the walls of arteries, veins, and capillaries. 

They form a tube-like structure to allow passage of various blood cells and proteins34. ECs 

secrete and maintain the basal lamina - the extracellular matrix on which they reside35,36. 

The CNS ECs differ in several ways from peripheral ECs. Most notably, they lack the 

fenestrations found in peripheral vessels and instead create a continuous cellular barrier 

with significantly reduced permeability along the capillary lumen37. Instead, CNS ECs form 

tight junctions which prevent hydrophobic molecules from penetrating the endothelial layer 

unless transported through the cell. These tight junctions are responsible for much of the 

impermeability of the BBB. Tight junctions are composed primarily of claudin-5, occludin, 

and other junctional adhesion molecules38 and bind to the actin cytoskeleton via ZO-1, 

ZO-2, or ZO-339. Tight junctions are highly complex and can vary depending on the proteins 

coupled40,41. Transport of nutrients, waste, and signaling molecules between the CNS and 

the periphery is necessary under physiological conditions and is typically achieved by a 

myriad of EC transporters6,42. In fact, these transporters make up 10–15% of the total 

protein in CNS ECs and allow specific molecules, peptides, and even cells to cross into the 

perivascular space, bypassing tight junctions33,43.
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3.1. ECs and Immunity

Classically, it was thought that immune cells could not access the CNS parenchyma18,44. 

While mostly impermeable during homeostatic conditions, CD4+ and CD8+ T cells are 

allowed passage for immune surveillance of the CNS, facilitated by a highly regulated, 

multistep process through a tricellular junction45. This process involves endothelial 

ligands vascular cell adhesion molecule (VCAM)-1 and intercellular adhesion molecule 

(ICAM)-1 which recognize lymphocyte function-associated antigen 1 (LFA-1) and very 

late antigen-4 (VLA-4) on T cells. These interactions arrest T cells on the endothelium 

and allow migration against the flow of blood to these tricellular junctions and ultimately 

extravasation45,46. These tricellular junctions contain the proteins tricellulin and angulin-1 

which direct and aid T cell diapedesis45. While CNS ECs express VCAM-1 and ICAM-1 

under normal conditions, the expression is sparse, limiting the number of leukocytes that can 

traverse tricellular junctions45,47.

In response to infection, autoimmunity, or injury, the permeability of the BBB is 

significantly enhanced and can lead to severe inflammation48. This is partially due to an 

increase in the expression of adhesion molecules on the EC surface, primarily ICAM-1 

and VCAM-1, which can arrest a greater number of immune cells for extravasation49. 

Inflammation can lead to break down of the tight junctions, allowing leukocytes to invade 

the perivascular space48. Many secreted inflammatory factors, cell damage signals, and 

pathogen components can alter tight junction integrity including CCL2 and transforming 

growth factor (TGF)-β, which is known to alter expression of claudin-5, occludin, 

and ZO-150–52. Likewise, tumor necrosis factor (TNF)-α, lipopolysaccharide (LPS), and 

mitochondrial damage can induce BBB permeability via actin filament rearrangement53–56. 

Prolonged dysfunction of the BBB, as in chronic inflammatory CNS diseases like MS 

or AD, can lead to permanent CNS tissue damage and neuroaxonal loss57–59. However, 

although overt and/or chronic inflammation can lead to loss of BBB integrity and extensive 

damage to the CNS, low to moderate amounts of inflammation can partially restore the BBB 

and limit peripheral immune cell infiltration into the CNS parenchyma, mitigating injury 

or infection57,60–62. Taking advantage of this immunological state and exploiting molecular 

signals used in the formation of tricellular junctions may be a novel avenue for therapeutic 

development.

3.2. Targeting ECs

It is possible to permeate the BBB to treat neurological disorders, but the potential bystander 

effects of leaky BBB during diseases like glioblastoma, MS, AD, and others imposes 

significant risk. The BBB is disrupted in many neurodegenerative and psychological 

disorders. Additional access of immune cells, toxins, or other inflammatory mediators 

could enhance inflammation-mediated damage to the CNS. Additionally, BBB dysregulation 

disrupts homeostatic transport across the barrier, which provides trophic factors and controls 

osmotic regulation during physiological conditions63. Bypassing the ECs of the BBB is a 

difficult challenge; however, there are several other members of the NVU that introduce 

potentially novel avenues for drug targeting.
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4. Pericytes

Proportionally, there is a higher density of pericytes in the CNS relative to peripheral 

organs24, suggesting they have a critical role in the CNS. As vascular mural cells, pericytes 

play a large role in the dilation of capillaries in the NVU. Of note, pericytes are found in 

the capillary bed and not surrounding arteries or veins, which house similar, but distinct, 

vascular mural cells, vascular smooth muscle cells64. In addition to vasodilation and 

vasoconstriction, pericytes also help form and maintain the basal lamina65,66. Control of 

vascular flow by pericytes can indirectly impact the BBB as changes in blood flow can 

allow for more or less cellular contact in the capillary lumen. Increases in cellular interaction 

can stretch and stress CNS ECs67–69, causing pericyte dysfunction, which is associated 

with aberrant immune cell trafficking70. Further, in mouse models deficient in functional 

pericytes, there is a loss of vascular control, dysfunctional tight junction regulation, and 

aberrant angiogenic sprouting, highlighting the importance of pericytes in maintaining a 

healthy BBB70–74.

New roles for pericytes continue to be uncovered, including their ability to maintain 

and produce elements of the basal lamina75–78 and intricate regulation of tight junctions. 

Contrary to ECs, TGF-β and angiopoietin-1 (Ang-1) signaling in pericytes enhances the 

expression of occludin on CNS ECs, reducing the permeability of the BBB. TGF-β from 

pericytes also activates Smad4 signaling to upregulate bone morphogenic proteins (BMPs). 

BMPs can then ensure tight adherence of pericytes to ECs via N-cadherins, which is 

upregulated by vascular endothelial growth factor (VEGF), reinforcing the communication 

and physical interaction between pericytes and CNS ECs79–81. While basal levels of VEGF 

signaling can reduce BBB permeability, excessive VEGF signaling to pericytes can lead to 

downregulation of claudin-5 on ECs and dysregulate BBB tight junctions (Fig. 2)82–85.

4.1. Heterogeneity of Pericytes

Similar to ECs, pericytes respond robustly to various signaling molecules. Inflammatory and 

non-inflammatory pericytes have been described and subdivided into Type-1 pericytes (PC1) 

and Type-2 pericytes (PC2). PC1s are non-inflammatory and tend to be the resting state of 

pericytes without injury or infection. PC2s tend to increase in frequency with and are highly 

responsive to inflammation74,86. It is likely, as is the case with astrocytes and microglia, 

that there is a spectrum of activation states, but as the study of pericytes is still in its 

infancy, this has not yet been fully elucidated. In young healthy patients, nearly all pericytes 

exhibit a non-inflammatory morphology72,86,87. However, aging results in an increase in 

the population of inflammatory pericytes, which is consistent with enhanced inflammation 

and BBB permeability associated with age86. Both pericyte subtypes contribute to the 

basal lamina, but PC2s tend to produce a more irregular basal lamina, impacting both ECs 

and astrocytes21,86. Additionally, PC2s produce less laminin-111 and laminin-211, which 

leads to cell hypertrophy and BBB disruption88,89. Exposing pericytes to inflammatory 

cytokines, LPS, or reactive oxygen species induces immunoreactivity in pericytes, altering 

their morphology, as well as inducing their separation from the basal lamina88–90. The 

dynamic morphology of pericytes suggests they have a critical role in the integrity and 

function of the BBB, which is altered in pathological states and in aging.
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4.2. Targeting Pericytes

Examining the targetability of pericytes and its potential influence on the BBB is difficult, 

but may prove promising. Affecting pericytes may be a subtler approach to drug penetrance 

rather than reducing the integrity of the EC layer itself. A deeper understanding of 

how pericytes communicate with CNS ECs and astrocytes could reveal potential nuanced 

approaches to bypass the BBB. While pericytes may be a promising target to leverage BBB 

permeability, much about pericyte mechanisms of BBB control remains unknown.

5. Astrocytes

Astrocytes are large stellate cells with extensive processes that extend throughout the 

CNS27,91. However, unlike CNS ECs and pericytes, astrocytes are unique in that only 

the ends of their processes are considered part of the NVU (Fig. 1). These endfeet 

cover roughly 90–95% of the area surrounding the BBB and have properties that 

are unique from the rest of the astrocyte92–94. Endfeet contain aquaporin-4 and the 

potassium channel Kir4.1 to modulate water and ion balance and, lacking tight junctions, 

astrocytic endfeet permit immune cell extravasation93,95,96. Although endfeet lack the 

barrier that tight junctions provide, ablation of astrocytes leads to rapid and extensive 

BBB deterioration25,94. And interestingly, early studies transplanting astrocytes outside 

of the CNS demonstrated that transplanted astrocytes develop a BBB-like morphology 

surrounding the peripheral vasculature97,98. In addition to the physical barrier that astrocytes 

provide, during homeostasis astrocytes are responsible for the transport of material from the 

perivascular space into the parenchyma6,25. This function makes them excellent and critical 

supportive cells in the maintenance of the BBB.

Astrocytes form gap junctions between endfeet forming a much “looser” network of 

connections compared to that of CNS ECs99. Gap junctions are formed by a hexamer 

of proteins called connexins. The material that is transported by a given gap junction is 

largely dependent on the specific combination of connexins that make up the junction100,101. 

Notable gap junctions in astrocytes are formed by connexin 30 and connexin 43, which 

help mediate glucose and lactate transport to distal neurons102. Astrocytes use these gap 

junctions to communicate with other cells of the NVU including neurons, microglia, and 

other astrocytes using ion gradients, electrical signals, and signaling molecules103.

5.1. Tight Junction Modulation

Astrocytes release a variety of trophic factors that help maintain a functional NVU104–106. 

Many of the factors released under physiologic conditions increase the amount and 

order of tight junction proteins between BBB ECs107,108. For instance, astrocytes secrete 

sonic hedgehog (Shh), which increases tight junctions in CNS ECs by inducing Patch1 

signaling108. Other astrocytic factors that can enhance tight junctions in ECs include 

Wnt signaling, TGFβ, and apolipoprotein E (ApoE)105,107,109–111. ApoE and TGFβ 
may work indirectly through pericytes to impact EC tight junctions112,113. Additionally, 

astrocytes produce Ang-1, which signals to EC Tie2 to further upregulate tight junction 

proteins and reduce adhesion molecules, reducing the likelihood of leukocyte entry114,115. 

Further, astrocytes are incredibly responsive to inflammatory stimuli116,117, and during 
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inflammation, it has been shown that BBB ECs down-regulate claudin-5, while astrocytes 

upregulate tight junction proteins claudin-1, claudin-4, and JAM-A118,119. This suggests 

that astrocyte endfeet form a secondary barrier to prevent excessive immune cell entry past 

the perivascular space, regulating access to the CNS parenchyma118. This accumulation of 

peripheral immune cells in the perivascular space is often referred to as perivascular cuffing 

and is commonly seen in MS lesions118,120.

However, although astrocytes provide an impressive physical barrier, activated astrocytes 

can also secrete trophic factors, chemokines, and cytokines that dysregulate EC tight 

junctions and recruit peripheral immune cells (Fig. 2)25,39,120,121. These factors can include 

VEGF, nitric oxide, MMPs, endothelins, and glutamate; all of which can downregulate 

endothelial tight junction proteins39,122,123. Importantly, astrocytes also promote a return to 

homeostasis following an inflammatory event, secreting several beneficial trophic factors 

including Shh, astrocyte-derived Ang-1, glial-derived neurotrophic factor (GDNF), insulin-

like growth factor-1, ApoE, and retinoic acid. These factors not only prevent EC apoptosis, 

but also stimulate tight junction formation and a return to a homeostatic state117,122. Taken 

together, astrocytes orchestrate a complex modulation of the BBB and may represent an 

amenable cell type for drug manipulation.

5.2. Astrocytes as an Immunologic Barrier

Since astrocytes are highly responsive to immune stimuli, they have the ability to upregulate 

a wide array of chemokines and adhesion molecules that can serve as an immunologic 

barrier to prevent excessive influx of inflammatory cells during a CNS insult (Fig. 

2)121,124. Interestingly, in the event immune cells breach the BBB, enter the perivascular 

space, and cross astrocyte endfeet into the parenchyma, astrocytes can express immune 

checkpoint molecules, or inhibitory receptors, which can induce exhaustion and death of 

leukocytes125,126, providing the CNS multiple layers of immunologic protection. As an 

example, astrocytes are known to upregulate the immune checkpoint protein programmed 

death ligand 1 (PD-L1) in response to inflammatory cytokines, primarily interferons127. 

PD-L1 typically signals to cells via programmed death 1 (PD-1) to reduce activation and 

induce apoptosis128,129. While many CNS cells, including microglia and even neurons, 

express PD-1, it is highly enriched on immune cells, making them particularly susceptible 

to exhaustion127–130. In summary, astrocytes act not only as a physical barrier, but also a 

trophic and immunologic barrier to limit and control the activation state of immune cells that 

enter the CNS during neuroinflammation.

5.3. Targeting Astrocytes

Astrocytes have great potential as a therapeutic target for BBB maintenance. Their ability 

to weaken EC tight junctions while maintaining a barrier could prove beneficial in the 

development of drugs to bypass traditional CNS barriers. There are many examples 

of astrocytes guiding various cell types and molecules across the BBB. This principle

—if better understood—could be leveraged to advance CNS drug permeability. Similar 

to pericytes, astrocytes have great influence on the maintenance of EC tight junctions. 

Elucidating the molecular control that astrocytes have over BBB permeability will inevitably 

lead to more avenues of drug delivery.
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6. Microglia

Microglia are the resident immune cells of the CNS. As such, their functions are 

multifaceted. While they share many similarities with peripheral macrophages, they have 

many distinct characteristics, including their origins. Macrophages are generated in the bone 

marrow and circulate in the blood, while microglia migrate from the embryonic yolk sac131. 

In general, microglia are responsible for initial responses to injury and infection, clearance 

of waste, synaptic pruning and maintenance, as well as providing several trophic factors to 

other cells of the NVU131. Although it has been long appreciated that microglia are vital to 

the health of the CNS, surveying along the BBB and responding quickly to breaches, they 

are a relatively recent addition to the NVU and provide coverage of BBB areas not wrapped 

by astrocytes29,132. In addition, microglia are known to signal to other members of the NVU 

and communicate with peripheral immune cells6, attracting and/or activating them within 

the CNS parenchyma during injury and infection as sentinels of the CNS133–136. Activated 

microglia and peripheral immune cells can secrete a number of factors that modulate BBB 

integrity (Fig. 2). This is discussed in a number of reviews, but as an example, TNFα and 

TGF-β can be secreted from reactive microglia under certain conditions which can either 

increase or decreases BBB integrity, respectively124,137,138. While ablation or depletion of 

microglia did not result in overt BBB breakdown139, recently, microglia were described 

to intricately associate with CNS capillaries and contribute to blood flow regulation and 

vasodilation140–142. Additionally, microglia are incredibly motile and migrate quickly in 

response to injury, BBB leakage, and/or inflammation143. Finally, similar to astrocytes, 

microglia can upregulate PD-L1 in response to neuroinflammation144,145, providing multiple 

mechanisms of potential control of the BBB by microglia, although there is still much to 

learn about the intricacies of microglia and their impact on BBB permeability.

Given their emerging role in the NVU, the mechanisms underlying microglial regulation 

of the BBB remain incompletely described. Targeting microglia may modify CNS capillary 

permeability or other NVU cells to temporarily allow access to the CNS, but there is still 

much to learn about this exciting new potential target.

7. Neurons

Neurons are the functional unit of the CNS and most other cells in the CNS support them, 

either directly or indirectly27. Despite their indispensable role in the CNS, as a member 

of the NVU, they do not directly provide a physical barrier, but instead release a number 

of factors that modulate other NVU cells27,146 using primarily their axons and dendrites6. 

Interestingly, like astrocytes, neurons can induce a BBB-like barrier in neighboring ECs97,98, 

suggesting neurons influence the formation and maintenance of the BBB in vivo147,148. 

Astrocytes and neurons are highly communicative149,150, providing a potential route of BBB 

control. Additionally, neural activity can influence the integrity of the BBB151–153, although 

it is unclear if neural activity directly impacts ECs or if neuronal signals are propagated 

through astrocytes154.

Neuroinflammation can alter the activity of neurons, which in turn can lead to alterations 

in the BBB151,155. As mentioned above, neurons express PD-1, to which astrocytes and 
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microglia can signal via PD-L1 expression128–130. Neuronal PD-1 signaling does not induce 

apoptosis, but instead hyperpolarizes the neuronal membrane to inhibit action potential 

frequency130. This in turn could lead to a reduction in activity-dependent transport across 

the BBB156. Neurons also produce Wnt ligands which reduce BBB permeability by 

increasing tight junction proteins in ECs157. While neurons partially modulate the BBB 

via activity, they largely rely on communication with other NVU members (Fig. 2). While 

more information is necessary to determine how neurons might control the BBB, neurons 

represent an unlikely target for BBB permeability modulation given their moderate impact 

on the BBB and other essential functions.

8. Future Directions

Each cellular component of the NVU has both unique and overlapping roles in maintaining 

BBB permeability. ECs are the initial barrier to the periphery, reinforced with tight 

junctions, specialized to transport material between the periphery and the CNS. Pericytes, 

and to some extent, microglia, regulate vascular flow and, while they may also have a 

structural role, pericytes provide critical trophic support to ECs. Astrocytes, and potentially 

neurons, are critical to the formation of the BBB, aiding in tight junction formation. 

Microglia and neurons also potentially modulate BBB permeability through complex 

signaling networks, although this is an emerging field. The intricate dynamics of BBB 

formation, function, and maintenance has created a literal and figurative barrier when 

it comes to therapy development for the treatment of chronic neurologic diseases such 

as glioblastoma, MS, and AD. While it is possible to increase the permeability of the 

BBB, this typically results in detrimental off target effects. The BBB is disrupted in 

many neurological diseases, thus additional interventional disruption would likely prove 

deleterious as unwanted CNS “intruders” including immune cells and large molecules 

are able to enter the CNS without proper scrutiny, leading to a cascade of osmotic, 

trophic, and inflammatory dysregulation. Thus, optimizing targeted and temporary entry 

of therapeutics into the CNS with minimal BBB dysregulation is the holy grail of next-

generation neurotherapeutics. Promising modalities include encapsulating drugs of interest 

in a form that allows them to be transported through the BBB and astrocyte endfeet or 

creating a transient passage that is quickly repaired. Both of these methods are active areas 

of research using nanoparticles and ultrasonic disruption of the BBB, respectively12,158,159. 

Ultimately, a deeper understanding of how each of the NVU components modulate CNS 

drug accessibility may shed new light on actionable therapeutic modalities.
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Figure 1. The cellular components of the neurovascular unit.
The NVU is composed of a complex network of cells that are functionally diverse. ECs form 

the walls of blood vessels and capillaries and contribute to the formation and maintenance 

of the basal lamina and extracellular matrix. In addition, tight junctions formed between ECs 

and expression of adhesion molecules regulate BBB permeability. Pericytes reside in the 

capillary bed and, with regard to BBB integrity, are primarily responsible for modulation of 

vascular flow as well as structural changes in tight junctions and the extracellular matrix. 

Astrocyte endfeet cover 90–95% of the area surrounding the BBB and contribute to a 

variety of processes that include, but are not limited to, osmotic homeostasis, trophic factor 

concentration, molecular transport into and out of the perivascular space, and formation of 

gap junctions under neuroinflammatory conditions. Microglia have been found to cover 

the remaining space around BBB ECs, respond to injury and infection, and regulate 

tight junction formation between ECs. Neurons predominantly communicate with astrocyte 

endfeet and aid in regulation of tight junctions and molecular transport.
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Figure 2: The NVU interaction network.
Cells within the NVU interact through intricate signaling mechanisms that allow for proper 

functioning of the BBB. ECs receive a variety of protective signals from other NVU 

cells that upregulate tight junction formation thus enhancing BBB integrity. These factors 

include, but are not limited to, TGFβ, Ang-1, APOE, Shh, Wnts, glial-derived neurotrophic 

factor, insulin-like growth factor (IGF)-1, and retinoic acid. Contrastingly, ECs may also 

receive signals that downregulate tight junction proteins, particularly during inflammatory 

events, such as TNFα, NO, MMPs, endothelins, and glutamate that lead to increased BBB 

permeability. Importantly, ECs also maintain the ability to signal to pericytes through VEGF 

and N-cadherin, which are necessary for BBB maintenance. Immune checkpoint proteins, 

such as the PD-1/PD-L1 complex, regulate the cellular activity of microglia and neurons 

to modulate BBB integrity as well as dampen the inflammatory activity of infiltrating 

peripheral immune cells, which increases BBB permeability. Finally, neuronal activity is a 

critical modulator of cellular and molecular transport across the BBB.
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