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Background.—Machine-learning algorithms are becoming popular techniques to predict 

ambient air PM2.5 concentrations at high spatial resolutions (1×1 km) using satellite-based aerosol 

optical depth (AOD). Most machine-learning models have aimed to predict 24h-averaged PM2.5 

concentrations (mean PM2.5) in high-income regions. Over Mexico, none have been developed to 

predict subdaily peak levels, such as the maximum daily one-hour concentration (max PM2.5).

Objective.—Our goal was to develop a machine-learning model to predict mean PM2.5 and max 

PM2.5 concentrations in the Mexico City Metropolitan Area from 2004 through 2019.

Methods.—We present a new modeling approach based on extreme gradient boosting (XGBoost) 

and inverse-distance weighting that uses AOD, meteorology, and land-use variables. We also 

investigated applications of our mean PM2.5 predictions that can aid local authorities in air-quality 

management and public-health surveillance, such as the co-occurrence of high PM2.5 and heat, 

compliance with local air-quality standards, and the relationship of PM2.5 exposure with social 

marginalization.

Results.—Our models for mean and max PM2.5 exhibited good performance, with overall 

cross-validated mean absolute errors (MAE) of 3.68 and 9.20 μg/m3, respectively, compared 

to mean absolute deviations from the median (MAD) of 8.55 and 15.64 μg/m3. In 2010, 

everybody in the study region was exposed to unhealthy levels of PM2.5. Hotter days had 

greater PM2.5 concentrations. Finally, we found similar exposure to PM2.5 across levels of social 

marginalization.

Keywords

machine-learning model; environmental modeling; particulate matter; remote sensing; air quality 
management; air pollution

1. Introduction

Fine particulate matter with aerodynamic diameter ≤ 2.5 microns (PM2.5) affects more 

people than any other pollutant, and has been consistently associated with mortality 

and morbidity from cardiovascular and respiratory causes (1). Over the last decade, 

epidemiological evidence has related PM2.5 to many other health outcomes, such as cardio-

metabolic diseases (including diabetes, hypertension, metabolic syndrome), neurological 

disorders (stroke, dementia, Alzheimer’s disease, autism, Parkinson’s disease), and perinatal 

outcomes (premature birth and low birth weight) (2). At the same time, exposure scientists 

have developed new modeling approaches for air-pollution epidemiology, moving away 

from the use of data from ground monitors alone. Interest has grown in models using 

remote-sensing products, particularly aerosol optical depth (AOD) for the prediction of 

ground level PM2.5 concentrations at high spatial resolutions, such as 1 x 1 km. AOD 

is a measure of the amount of light absorbed and scattered throughout the atmospheric 

vertical column by the collection of suspended particles (e.g., urban haze, smoke, desert 

dust, sea salt) in the atmosphere. AOD is related to PM2.5 concentrations as measured by 

ground monitors, but the relationship is complex and depends on a number of other factors 

(3). Popular approaches to predicting ground-level PM2.5 concentration using AOD include 

chemical-transport models, mixed-effect models, geographically weighted regression, and 

land-use regression, which use additional PM2.5 predictors and modifiers of the PM2.5–AOD 
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relation such as weather and land use (3, 4). Among the most comprehensive efforts to 

reconstruct ground concentrations of PM2.5 is NASA’s Global Modeling Initiative (GMI) 

chemistry transport model integrated with Modern-Era Retrospective analysis for Research 

and Applications, Version 2 (MERRA-2 GMI), which estimates the global distribution 

of PM2.5 mass concentrations with a spatial resolution of 0.5° × 0.625°, and temporal 

resolution as fine as 1 hour (5, 6).

Predicting ground-based PM2.5 from satellite AOD retrievals is difficult. AOD is strongly 

influenced by particles above the surface layer, which have different characteristics from 

ground-level particles. Also, AOD retrieval algorithms assume consistent particle size 

distributions within large regions, such as Mexico and Central America (7). Furthermore, 

AOD often has gaps in spatial coverage due to clouds, snow, or ice. Thus, researchers 

must often impute missing AOD (8), and the complex relationship between AOD and 

PM2.5, along with the use of additional PM2.5 predictors, has motivated machine-learning 

approaches such as neural networks, random forests, and gradient boosting (4, 9–12). 

Given the challenges to develop a single model that fits large heterogeneous regions (e.g. 

national models), ensemble models combining the outputs from different machine learning 

algorithms have been used in recent studies (9).

AOD-based PM2.5 (AOD-PM2.5) models and predictions have allowed epidemiologists to 

move away from exposure-assessment methods that rely on proximity to sparse ground 

monitors. With sufficient spatiotemporal resolution, AOD-PM2.5 models may further 

improve exposure assessment in epidemiologic research by picking up the effects of 

microenvironments. Few AOD-PM2.5 models exist for middle-income countries. Our group 

developed one of the first AOD-PM2.5 models using daily Multi-Angle Implementation of 

Atmospheric Correction (MAIAC) spectral AOD derived from the Moderate Resolution 

Imaging Spectroradiometer (MODIS) instrument on NASA’s Aqua satellite at a 1x1 km 

spatial resolution, along with data from ground monitors, land use, and meteorological 

features (7). Our previous model for the Mexico City region provides daily PM2.5 

predictions from 2004–2014, and those predictions have been used in several epidemiologic 

studies in this region (13). However, model improvements are needed to better characterize 

the spatiotemporal distribution of PM2.5, particularly since the Mexico City Metropolitan 

Area has undergone considerable urban sprawl. PM2.5 in large metropolitan areas affects not 

only people in the city center but also people in its suburban and rural outskirts (14). People 

in the outskirts, where air-quality information is scarce, may face disproportionate health 

risks due to lower socioeconomic status and less access to healthcare. This environmental 

injustice can be even more pronounced in low- and middle-income regions (15).

AOD-PM2.5 models covering large urban areas have great value for epidemiology, but 

also for public-health surveillance (e.g. quantifying mortality and morbidity attributable 

to PM2.5) (16), environmental regulation (e.g. assessment of compliance with air 

quality standards) (17), and risk communication (e.g. designing air-quality indices) (18). 

Furthermore, AOD-PM2.5 models can help air-quality administrators to see trends in the 

spatiotemporal distribution of PM2.5, map hotspots in regions with few monitors, identify 

emissions sources to consider for abatement actions, as well as forecast and surveillance of 
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air pollution contingencies and wildfires (19). Overall, AOD-PM2.5 models can be powerful 

aids for decision-making.

Most of the satellite-based PM2.5 models yield predictions of 24-hour mean concentrations, 

perhaps driven by traditional approaches in epidemiology that have focused on this exposure 

metric, which in turn support standards for daily PM2.5 levels. There is growing interest 

in identification of specific sub-daily PM2.5 exposures (e.g., peak concentrations) that may 

trigger the onset of adverse health outcomes and harm vulnerable people. To our knowledge, 

this is the first model reconstructing sub-daily PM2.5 concentrations in Mexico.

In this study, we present a new model based on extreme gradient boosting (XGBoost) and 

inverse-distance weighting (IDW) that uses satellite and land-use variables to predict daily 

mean and max PM2.5 concentrations in Central Mexico. We use predictions from our models 

for novel and policy-relevant analyses of the determinants and distribution of population 

exposures.

2. Methods

We constructed and evaluated two models: one for daily mean PM2.5, spanning 2004 

through 2019, and one for daily max PM2.5 (i.e. the greatest hourly concentration of PM2.5 

observed each day), spanning 2011 through 2019. We restricted our max PM2.5 predictions 

to 2011 onwards because of greater coverage of ground monitoring stations. Days were 

defined according to UTC–6, which coincides with the local time of the study region 

(Mexico’s Zona Centro) when daylight-saving time is not in effect (namely, before the first 

Sunday of April and after the last Sunday of October).

2.1. Study region

We modeled an irregularly shaped area of 6,650 km2, 127 km in diameter, around Mexico 

City. The model used a grid of 7,745 square cells, 927 m on a side, in a global sinusoidal 

projection (the same one used for NASA’s MODIS products). This study area and its grid 

was a subset of that considered in our ambient temperature model for Central Mexico (20). 

We built the subset by finding the largest connected set of cells in the Valley of Mexico with 

all cells ≤ 3 km above sea level (Figure 1). The Valley of Mexico is a plateau with a mean 

elevation of 2,250 m above sea level, and is surrounded on three sides by mountain ranges, 

preventing the dispersion of air pollutants (21).

2.2. Data

We used PM2.5 data from ground monitoring stations organized by the Instituto 

Nacional de Ecología y Cambio Climático de México (INECC) including records from 

the Automated Atmospheric Monitoring Network (RAMA) from the Mexico City’s 

Atmospheric Monitoring System (SIMAT, website http://www.aire.cdmx.gob.mx/). We 

downloaded observations from INECC’s website (http://scica.inecc.gob.mx). For each 

station in the study area and day of PM2.5 observations, we computed the mean and max 

PM2.5 among the hourly observations, so long as there were at least 18 hours of observations 

in the day. Other station-days were discarded. The result was a total of 60,365 station-days 

from 25 stations for mean PM2.5 and 40,819 station-days from the same 25 stations for max 
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PM2.5. The number of days of observations contributed per station ranged from 266 to 5,198 

(median 2,030) for mean PM2.5, and from 50 to 2,901 (median 1,753) for max PM2.5.

Our models used the following 14 predictors:

* Longitude and latitude in degrees

* The date, as an integer count of days

* The IDW mean (exponent 2) of all observations of the same dependent variable (i.e., mean 

PM2.5 or max PM2.5) on the given day

* MAIAC AOD from NASA’s Terra and Aqua satellites (22), with 1 km spatial resolution, 

whose local overpass times range from 10:40 to 15:15 and 13:10 to 15:05, respectively. We 

used the primary MCD19A2 product of AOD at 470 nm.

* PM2.5 (μg/m3) as predicted by MERRA-2 GMI at the surface level, with ~50 km spatial 

resolution (6), either the mean of the day’s 24 hourly values (for modeling mean PM2.5) or 

the value at 10:00 UTC–6 (for max PM2.5)

* Temperature (K), precipitation (mm), and vapor pressure (Pa) from Daymet (23) with 

1 km spatial resolution, and the temperature being computed as the mean of Daymet’s 

maximum and minimum temperature

* The height of the planetary boundary layer (m) and meridional and zonal wind speeds 

(m/s) from the 5th generation reanalysis of the global climate dataset (ERA5) of the 

European Centre for Medium-Range Weather Forecasts (ECMWF), was downloaded from 

the Copernicus Climate Change Service (C3S) Climate Data Store (24), using the mean of 

the day’s 24 hourly values (for mean PM2.5) or the value at 10:00 UTC–6 (for max PM2.5), 

with ~30 km spatial resolution

* The density of roads (m/km2) from OpenStreetMap (25), considering only primary, 

secondary, residential, and tertiary roads

We selected the midmorning time of day 10:00 UTC–6 in constructing some of the 

predictors for the max PM2.5 model because it was the most frequent hour of greatest daily 

per-station PM2.5 concentration in our sample.

2.3. Model evaluation

We evaluated models with leave-one-station-out cross-validation (CV). There are 25 

stations, so for each dependent variable, we fit the model 25 times, leaving out one station 

from training and then testing the model’s predictions on the left-out station. We evaluated 

models with absolute loss rather than squared loss so as not to overweight the importance 

of a minority of very high observed concentrations of PM2.5. Absolute loss leads to mean 

absolute error (MAE) as a natural measure of predictive accuracy (in place of root mean 

square error, RMSE, for squared loss), and mean absolute deviation from the median (MAD) 

as a measure of baseline variation in place of the standard deviation (SD) for squared loss. 

Note that R2, which is often used for model assessment, is defined as a squared-loss metric. 
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For our study, we compute R2 as 1 minus the MSE divided by the variance, and we show R2, 

RMSE, and SD in tables for completeness, although the models are more properly judged in 

terms of absolute loss.

When computing the IDW predictor during CV, we excluded the held-out station to avoid 

data leakage.

2.4. Models

We predicted PM2.5 with XGBoost (26), a scheme for fast boosted decision trees. We used a 

log-cosh objective function to approximate absolute loss. Instead of providing PM2.5 as the 

dependent variable to XGBoost directly, we provided PM2.5 minus the IDW interpolation 

and added the IDW back to XGBoost’s predictions. This method partly smooths out the 

otherwise discrete predictions produced by decision trees. We tuned XGBoost with twofold 

station-wise CV; during the larger CV discussed above, this CV was nested within each fold. 

Tuning adjusted four hyperparameters:

* The number of trees, which could be 10, 25, 50, or 100

* The maximum tree depth, which could be 3, 6, or 9

* The learning rate η, which could range from 0.01 to 0.5

* A ridge penalty λ, which could range from 2−10 to 210

We preselected a set of 25 random vectors from this space with a maximin Latin-hypercube 

sample using the function ‘maximinLHS‘ from the R library ‘lhs‘, version 1.1.3 (27).

Once the outer CV was done, to make new predictions, we trained the two models (one for 

mean PM2.5 and one for max PM2.5) on all the data, with one more tuning CV apiece. These 

final models had the following hyperparameters, obtained from the aforementioned tuning 

procedure: for mean PM2.5, 10 trees, max depth 3, η = 0.047, λ = 10; for max PM2.5, 25 

trees, max depth 9, η = 0.073, λ = 260.

2.5. Applications

We present three applications of our PM2.5 predictions for the Mexico City Metropolitan 

Area. We examined co-occurring exposures to high PM2.5 concentrations and high 

temperatures from our published spatiotemporal model (20). Person-time estimates of 

exposure relied on population density estimates for 2010. We estimated the population 

density within each of our grid cells using the R package exactextractr (28) to calculate 

the area-weighted mean of the population density in the intersecting Gridded Population of 

the World (GPWv4) ~1-km raster cells (29). The GPWv4 used data from the 2010 census 

in Mexico at the level of Área Geoestadística Básica (AGEBs; the Mexican equivalent of 

US Census tracts). When comparing exposures to permissible annual limits, we computed 

“yearly” means as the means of four 3-month means, per the Mexican standard (30). Finally, 

we examined how AGEB-level PM2.5 exposure varied with social marginalization within the 

study region (31). Every AGEB was assigned the mean PM2.5 prediction of all 1x1 km grid 

cells whose centroids fell within the AGEB polygon.
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We used R 4.2.0 (32) with package xgboost 1.4.1.1 (33) for analysis.

3. Results

Overall, the observed PM2.5 that we trained and tested on had a median of 23 μg/m3 (MAD 

= 8.55, IQR = 14.08) for mean PM2.5, and a median of 44 μg/m3 (MAD = 15.64, IQR = 

25.00) for max PM2.5.

The model for mean PM2.5 achieved a MAE of 3.68 μg/m3 (compared to a MAD of 8.55 

μg/m3), and the model for max PM2.5 achieved a MAE of 9.20 μg/m3 (compared to a MAD 

of 15.64 μg/m3). These differences indicate a substantial improvement in accuracy compared 

to assigning the median exposure to all places and times throughout the study domain. The 

much greater MAE for max PM2.5 than mean PM2.5 is to be expected, because maxima are 

inherently more difficult to predict than means. Tables 1 and 2 show the performance of 

these models stratified by year.

We also compared model performance by season: cold dry (spanning November through 

February), warm dry (March to May), and rainy (June to October) (34). Supplementary 

Table 1 shows that the largest improvement in prediction accuracy (MAD minus MAE) was 

observed during the cold dry season for both mean and max PM2.5 models, although this 

season still had the largest MAE.

Supplementary Table 2 shows the Pearson correlations among observed and predicted PM2.5 

for both models. As would be expected, all four variables are positively related. Predictions 

are more associated with the kind of observation they are meant to predict than the other 

kind, but there are also strong correlations between mean and max PM2.5.

After making predictions for every grid cell and day with both models, we mapped the 

per-cell mean PM2.5 and max PM2.5 averaged over 2019 (Figure 2). Discontinuities in 

the prediction surfaces evident in our maps are the result of model-based splits selected 

in the longitude and latitude predictors. Although we also include an IDW interpolation 

that adds some smoothness, XGBoost selects for the most predictively accurate model. 

Smoothing our predictions more aggressively could make for more intuitive maps, but 

would not necessarily improve predictive accuracy. As expected, the highest concentrations 

(shown in dark purple) are in the center-north and center-east subregions of the Mexico City 

Metropolitan Area (north and east of Mexico City, respectively), with the highest population 

density and industrial land use. This pattern is also visible in the max PM2.5 map, but is most 

pronounced in the center-north. The lowest PM2.5 concentrations (shown in light purple and 

yellow) are in the southwest, corresponding to the least populated and the most vegetated 

subregion.

We examined the per-day ratio (collapsing across all cells) of mean and max PM2.5. 

Supplementary Figure 1 shows this ratio for each day in 2019. Generally, the max is about 

twice the mean, but the ratio decreases in the first half of the year and increases in the 

second. During the rainy season (June to October), we examined how the ratio differed 

between days with and without a mean per-cell precipitation of at least 1 mm, and found 

little difference: the mean ratio was 2.03 on dry days and 2.13 on rainy days.
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With our temperature model (20), we examined the relationship between mean daily PM2.5 

and mean daily temperature. The Kendall correlation between the two over the whole study 

period was 0.05, indicating a very weak positive relationship overall. Figure 3 breaks this 

relationship down by season. It can be observed that the PM2.5 concentrations are more 

stable and remain high during the cold dry season, which has been related to the stable 

atmospheric conditions and frequent thermal inversions in the study region. For the warm 

dry season and rainy season, there is a clearer tendency for higher PM2.5 concentrations on 

hotter days.

Considering the 88,399 cell-days in which mean PM2.5 exceeded Mexico’s permissible daily 

limit of 41 μg/m3 (30), the median temperature was 19.2 °C, somewhat warmer than the 

median in all other cell-days, 15.9 °C. Considering the 173,170 cell-days with a mean 

temperature of at least 20 °C, we found substantially higher median PM2.5, 30.2 μg/m3, than 

in all other cell-days, 19.7 μg/m3.

We used population density from GPWv4 in every prediction cell of the study area to 

estimate person-days of PM2.5 exposure in 2010, referring to Mexico’s standards for annual 

and daily ambient concentrations of PM2.5 (30). We compared the exposure estimated 

by our XGBoost-with-IDW model to that estimated by IDW alone, a PM2.5 interpolation 

technique that has been used for a health-impact assessment in this region (35). The study 

area contained 20,279,491 people in 2010. According to both our model and the IDW-only 

model, every single person in the Mexico City Metropolitan Area experienced a yearly mean 

PM2.5 worse than the permissible limit of 10 μg/m3. The large majority of people (97%, or 

more than 99% according to IDW) experienced a yearly mean more than twice the limit. 

Similarly, all people experienced at least one day with a mean PM2.5 worse than the daily 

permissible limit of 41 μg/m3. People experienced a mean of 21.6 (23.7 according to IDW) 

days exceeding the limit. The total number of exceeded person-days was 439 million (481 

million according to IDW). Overall, we find widespread exposure to worse-than-permissible 

air pollution, although our full model suggests slightly less exposure than an IDW-only 

model. To show population exposure distributions over time, we also calculated the annual 

average concentration for each populated grid cell for each year, using more than 45 million 

model predictions. Figure 4 shows the empirical cumulative distribution functions for these 

annual concentrations calculated with 2010 census population densities. As observed in 

Figure 4, there has been an overall reduction in the annual exposure to PM2.5 since the 

earliest years (2004 and 2005); however, there is considerable variability in the estimated 

annual exposures, with less clear recent trends.

We used an index of social marginalization developed by the Consejo Nacional de Población 

(CONAPO), which considers access to education and health, housing characteristics, and 

possession of goods (31), to compare urban marginalization in 2010 to mean PM2.5. There 

were 2,065 AGEBs with available marginalization scores (AGEBs’ median area was 0.46 

km2, range 0.014 to 7.4 km2), with one score per AGEB and year, so we summarized 

mean PM2.5 in 2010 by AGEB. Overall, marginalization and PM2.5 were Kendall-correlated 

0.024, which is a relationship in the expected direction (i.e., AGEBs with more marginalized 

populations being exposed to more air pollution), but very weak. Breaking the AGEBs into 

0.5-unit groups of marginalization (with one group for marginalization −2 to −1.5, one for 
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−1.5 to −1, etc.), we find a small range of mean per-group PM2.5, from 21.78 to 22.56 

μg/m3.

4. Discussion

We constructed and validated models to predict mean and max PM2.5 in the Mexico 

City Metropolitan Area, and examined potential applications in air-pollution epidemiology 

and air-quality management. Our machine-learning-based model is the first of its kind in 

Mexico, although previously, our team used mixed-effects models with AOD to predict 

mean PM2.5 in this region (13). Also new is our consideration of max PM2.5, an exposure 

metric that is becoming relevant to address subdaily health effects from peak exposures to 

PM2.5 (36). Overall, our models exhibited good performance, with prediction errors that 

decreased over time, as the number of ground monitoring stations increased. Our per-year R2 

for mean PM2.5 ranged from 0.64 to 0.86, similar to the R2 values for our team’s XGBoost 

model in the Northeastern US, which ranged from 0.64 to 0.80 (11). Our new modeling 

approach could be extended to other regions with low or intermediate density of ground 

monitoring stations.

Recently the ensemble model framework has become a popular approach to combine 

PM2.5 estimates from different machine-learning models, mostly in data-rich regions where 

ensemble models have utilized tens to over 100 predictors (9). The implementation of 

ensemble models in sparsely monitored regions like the Mexico City Metropolitan Area 

would be challenging because it typically requires withholding more data in order to 

construct model weights. Despite their potential benefits, the incremental performance 

from ensemble models compared to single machine-learning algorithms has been reported 

as small, especially when the base learners perform well (e.g. R2 > 0.7), and the same 

predictors are involved (9). Overall, the performance of our XGBoost model to predict 

mean PM2.5 was good, and similar to the performance of other tree-based models using 

a single learner (10), or ensembles using XGBoost (37) or not (9) as one of their 

learners. Boosted trees (fitting trees sequentially to the residual error of the prior ensemble) 

typically outperform the independent trees in random forests. XGBoost’s multiple forms 

of regularization help to avoid overfitting and achieve high accuracy and it is often a 

best-in-class predictive algorithm with smaller datasets (26, 38).

PM2.5 predictions from AOD-PM2.5 models have been used in epidemiology to reduce 

exposure measurement error, but may also be useful for applications such as air-quality 

management, particularly in sparsely monitored regions (19). Figure 2 shows wide variation 

in both PM2.5 metrics across the Mexico City Metropolitan Area. More PM2.5 has 

historically been observed in the center-north and center-east (in the densely populated 

limits between Mexico City and the State of Mexico), where there are substantial emissions 

from industry and traffic (39). Our PM2.5 predictions allowed us to assess exposure to 

PM2.5 in the entire Mexico City Metropolitan Area, unlike previous studies that could only 

partly cover this region with data from ground monitoring stations alone (35). The estimated 

annual mean concentrations from our model exceeded the current annual PM2.5 Mexican 

permissible limits across the entire study region, supporting previous results pointing out 

that despite significant improvements in the air quality of Mexico City for PM10 and ozone 
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since the 1990s, there remain substantial obstacles to reducing emissions of PM2.5 and its 

precursors (40). The use of our spatiotemporally resolved PM2.5 predictions should improve 

future health impact assessments and support targeted exposure reduction strategies in this 

region (41).

Seasonally, there is a well-defined pattern of higher PM2.5 concentrations during the two dry 

seasons (Nov-May), due to frequent thermal inversions and stable atmospheric conditions, 

which favors the accumulation of PM2.5. The lowest PM2.5 concentrations occur during the 

rainy season (June-Oct), due to wet deposition (42). We hypothesized that the observed 

pattern in the daily ratios of mean and max PM2.5 (Supplementary Figure 1) reflects the 

influence of seasonal meteorological conditions. We checked whether higher ratios observed 

during the rainy season could be explained by precipitation, since late-afternoon showers can 

reduce PM2.5 (42). However, we found that days with at least 1 mm of daily precipitation 

had only a 5% greater ratio than other days. Evidence from cities at high elevations 

(>2000 m above sea level) has shown that relative humidity interacts with precipitation 

and PM2.5 emission sources to increase or decrease PM2.5 concentrations (43). Increasing 

relative humidity can raise PM2.5 concentration depending on the PM2.5 composition and 

hygroscopic growth ability, especially in traffic-heavy residential areas where only strong 

rain events (e.g. precipitation >9 mm) are effective in removing PM2.5 from the atmosphere. 

In industrial areas, high relative humidity conditions are more important to decrease PM2.5 

concentrations, regardless of rain events. Weak rain episodes (e.g. precipitation <1 mm), 

can also increase PM2.5 concentrations by worsening traffic in rush hours and reducing 

combustion efficiency (43). It is possible that the ratios of mean and max PM2.5 observed 

in Supplementary Figure 1 are produced by the interaction of precipitation, humidity, and 

PM2.5 sources in the study region.

In the context of climate change, it is important to characterize the increasingly common 

joint occurrence of extreme air pollution and extreme temperatures (44). We found that 

while PM2.5 and temperature are only weakly related overall, higher PM2.5 concentrations 

tended to occur on warmer days, particularly in the rainy season (Figure 3), and conversely, 

days with mean temperatures of at least 20° C had a substantially worse median PM2.5 

concentration than cooler days. It has been reported that co-occurring extreme PM2.5 and 

extreme temperatures may increase the acute risk of illness (45), and that the influence 

of PM2.5 on mortality rates may be stronger in warmer cities (46). Previous studies in 

the Mexico City Metropolitan Area have suggested stronger associations with mortality 

on days with high PM2.5 and extreme temperatures (47), but they may have estimated 

effects imprecisely, given their citywide approach for estimating exposure. Our PM2.5 

predictions can improve exposure assessment and air-pollution epidemiology, including 

studies addressing the interactive effects of PM2.5 with temperature.

To put into perspective the human cost of PM2.5 exposure, we found that in 2010, every 

person in the study region was exposed to unhealthy air quality according to the Mexican 

standards for annual (10 μg/m3) and daily (41 μg/m3) concentrations, which are several 

times the recently enacted World Health Organization Guidelines of 5 and 15 μg/m3, 

respectively (48). Overall, in 2010 the population of the study region experienced a 

mean of nearly three weeks of PM2.5 above the current daily Mexican permissible limit. 
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For epidemiologic research, the distribution of continuous exposures is more relevant for 

health studies than the dichotomous assessment or duration of compliance with a particular 

standard. The annual empirical cumulative distributions for all inhabited areas in the study 

region in Figure 4 are a summary of the population distribution of our exposure estimates 

that is suitable for assessment of long-term ambient PM2.5 exposures and related chronic 

health effects.

Concentrations of PM2.5 measured in a single monitoring station are used to represent the 

pollution conditions over large spatial domains (up to tens of kilometers) for a specific 

amount of time, such as one day or one year. However, PM2.5 levels can be rapidly 

influenced by local sources, increasing not only concentrations between monitoring sites, 

but also the risks of acute health effects. A distinguishing feature of our model is that we 

also generated a sub-daily metric of PM2.5 concentrations, namely, max PM2.5 at a 1-km 

resolution. There are not yet any air-quality standards for sub-daily PM2.5 concentrations, 

but new research into the health impacts from such exposures could eventually support new 

standards (49, 50). The US Environmental Protection Agency states that “Because a focus 

on annual average and 24-hour average PM2.5 concentrations could mask sub-daily patterns, 

and because some health studies examine PM exposure durations shorter than 24-hours, 

it is useful to understand the broader distribution of sub-daily PM2.5 concentrations” (36). 

Because it’s more difficult to reconstruct extrema (e.g., max PM2.5) than measures of 

central tendency (e.g., mean PM2.5), future work on estimating health impacts from max 

PM2.5 could particularly benefit from estimating and propagating prediction uncertainty into 

downstream analyses (51).

Our comparison of PM2.5 exposure across levels of social marginalization did not suggest 

meaningful differences between groups. However, the 2010 Mexican index of social 

marginalization was only available for urban AGEBs: those with a total population of more 

than 2,500. Without data for rural AGEBs or irregular settlements, it is naturally more 

difficult to assess the influence of socioeconomic status. Since the methods employed in 

the construction of the Mexican index of social marginalization have changed over time, 

it would be difficult to analyze multiple years and make sense of the differences between 

them. One study found that in Mexico City in 2015, per-AGEB deprivation was positively 

associated with PM10, but negatively associated with ozone (14). In this region, PM10 

concentrations are highly influenced by local emissions from point and area sources (mainly 

unpaved roads), which may explain why PM10 was associated with deprivation. However, 

PM2.5 is strongly influenced by mobile sources, and most of the PM2.5 concentrations are 

secondary aerosols that can travel far from their emission sources, leading to homogeneous 

PM2.5 concentrations (39). AGEBs are the smallest geographic units with information on 

marginalization scores, and homogeneous socioeconomic characteristics are expected within 

AGEBs. Nonetheless, it is also possible that socioeconomic variation exists within AGEBs 

given the large variability in their size, which might affect correct classification of unequally 

exposed groups.

Despite the good performance of our models throughout the study period, we observed 

seasonal differences in their performance, which have also been reported in other studies 

(9, 10, 12). This suggests that seasonal differences are less a property of our model than a 
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property of the data. The implications of these seasonal differences on the accuracy of PM2.5 

predictions for exposure assessment in epidemiologic research should be addressed in future 

studies. Also, as in any other PM2.5 prediction strategy, our models depend on the location 

of ground monitors, which may be not representative of the entire study area; therefore, error 

in PM2.5 prediction can arise especially in remote locations.

A particular limitation of our max PM2.5 model arises from the limited temporal resolution 

in the AOD data. Each satellite passes over the Central Mexico region only once during 

each period of daylight, possibly missing sudden episodes of intense PM2.5. However, 

the overpass time of the Terra satellite is similar to the daily peak of PM2.5 according 

to ground monitoring stations, so in general, Terra AOD should be representative of max 

PM2.5. Future work will utilize AOD data from the Advanced Baseline Imager (ABI) 

aboard NOAA’s Geostationary Operational Environmental Satellite - R Series (GOES-16 

and GOES-17) with temporal resolution as high as 5 minutes over Mexico City. Synergistic 

AOD products developed from the ABI and upcoming NASA geostationary Tropospheric 

Emissions: Monitoring of Pollution (TEMPO) mission, planned for launch in 2023, will 

further enhance capabilities to predict and monitor PM2.5 concentrations in the region. 

TEMPO will advance exposure science in North America, particularly by providing hourly 

observations of aerosols and gaseous pollutants for supporting air-pollution models (52, 53).
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Significance.

Machine learning algorithms can be used to predict highly spatiotemporally resolved 

PM2.5 concentrations even in regions with sparse monitoring.
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Impact.

Our PM2.5 predictions can aid local authorities in air-quality management and public-

health surveillance, and they can advance epidemiological research in Central Mexico 

with state-of-the-art exposure assessment methods.
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Figure 1. 
Map of study area in Central Mexico. The study area used for our PM2.5 models in the 

Mexico City Metropolitan Area (MCMA).

Gutiérrez-Avila et al. Page 18

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2023 March 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Maps of the averaged annual daily mean and daily max PM2.5 concentrations for 2019 

in the Mexico City Metropolitan Area. Solid and dotted lines indicate the Mexico City 

Metropolitan Area and Mexican states boundaries, respectively. Black dots indicate ground 

monitors.
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Figure 3. 
Heatmaps of mean temperature and mean PM2.5, counting all grid cells and days equally. 

Darker areas indicate more grid cells, more days, or both. Temperature and PM2.5 

predictions are already rounded to the nearest tenth, so no further grouping is needed for 

a heatmap. For legibility, the temperature scale only shows the middle 95% of the data for 

each season, and the PM2.5 scale only goes up to the 98th percentile for all seasons. Blue 

lines show the quartiles of PM2.5 conditional on temperature.
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Figure 4. 
Population estimated annual average exposures. The figure shows an empirical cumulative 

distribution curve for each year from 2004 to 2019, generated from our daily mean model 

and using the 2010 census population density. Specific quantiles are labeled for the year 

2019, where only 10% of the population in the study region had an annual average exposure 

below 20.6 μg/m3.
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Table 2.

Assessment of cross-validated predictions from the daily one-hour maximum PM2.5 model by year

Year Number of stations Observations R2 SD RMSE MAD MAE

2011 12 3,019 0.47 24.26 17.63 16.65 10.36

2012 13 4,025 0.46 21.80 16.09 15.18 10.17

2013 13 4,362 0.58 23.78 15.49 17.28 10.27

2014 14 4,203 0.52 19.54 13.58 14.46 9.76

2015 19 5,194 0.63 25.30 15.34 16.37 9.97

2016 17 5,307 0.62 25.33 15.59 16.48 8.68

2017 17 4,901 0.56 23.86 15.75 15.85 8.48

2018 17 4,633 0.63 19.68 11.96 13.74 7.83

2019 20 5,175 0.66 21.39 12.50 14.08 8.04

Standard deviation (SD), Root mean squared error (RMSE), Mean absolute deviation (MAD), and Mean Absolute Error (MAE)
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