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Abstract

The human proteome contains a vast network of interacting kinases and substrates. Even 

though some kinases have proven to be immensely useful as therapeutic targets, a majority are 

still understudied. In this work, we present a novel knowledge graph representation learning 

approach to predict novel interaction partners for understudied kinases. Our approach uses 

a phosphoproteomic knowledge graph constructed by integrating data from iPTMnet, Protein 

Ontology, Gene Ontology and BioKG. The representations of kinases and substrates in this 

knowledge graph are learned by performing directed random walks on triples coupled with a 

modified SkipGram or CBOW model. These representations are then used as an input to a 

supervised classification model to predict novel interactions for understudied kinases. We also 

present a post-predictive analysis of the predicted interactions and an ablation study of the 

phosphoproteomic knowledge graph to gain an insight into the biology of the understudied 

kinases.

1 Introduction

Proteins are a fundamental building block of the complex molecular machinery employed by 

all living organisms. The collection of all the possible proteins that can be synthesized by 

an organism is known as the proteome1. Proteins interact with each other through distinct 

biochemical events to actuate the desired biological functions. Protein post-translational 

modification (PTM) is one such biochemical event that has played a major role in almost all 

the biological functions2.

Fundamentally, any given PTM event is made up of two members - an enzyme and a 

substrate. An enzyme is a protein responsible for facilitating the PTM event and the 

substrate is the protein undergoing the post-translational modification. Among all the types 

of PTM events, phosphorylation is the most common and well-studied and is implicated in 
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a majority of cellular functions [3]. Phosphorylation is carried out by a class of enzymes 

known as kinases. Previously it was believed that the kinase-substrate interaction networks 

are fairly linear, and perturbation of a kinase would primarily affect its immediate substrate. 

But recent studies have shown that these interaction networks are highly interconnected and 

perturbation of a particular kinase or a substrate has the potential to affect large parts of the 

network [4].

With the advent of techniques such as mass spectrometry based high throughput proteomics, 

many new phosphorylation sites have been identified [5] but identifying kinases that 

phosphorylate these sites remains a challenging problem. Experimental studies on kinase-

substrate interactions are time-consuming and expensive and most research has been focused 

on a small subset of the 550 protein kinases found in humans. Computational approaches 

that can accurately predict novel kinase-substrate interactions have the potential to increase 

our understanding of the human proteome. This increased understanding will in turn help 

accelerate identification of new therapeutic targets and the development of accompanying 

drugs to modulate these targets.

To this date, many tools have been developed to predict kinase-substrate interactions. Tools 

such as Scansite [6], NetPhospK [7], PPSP [8], GPS [9, 10] and PredPhosph [11] rely on 

the properties of protein sequences around the phosphorylation site also known as sequence 

motifs, to predict kinases most likely to be associated with the given phosphorylation 

site. But kinase-substrate interactions involve much more than sequence motifs and hence 

it is necessary to include contextual factors when making these predictions. Thus tools 

such as NetworKIN [12], PhosphoPICK [13], PhosphoPredict [14] and HeteSim [15] were 

developed that combine sequence and contextual information to make better predictions. But 

many of the above tools have significant limitations in terms of kinome coverage. This is 

partly due to the fact that these tools primarily rely on properties that can only be directly 

mapped to the kinases or substrates. Understudied kinases by their very nature have limited 

information and hence are not annotated with these properties making it difficult to use these 

tools.

Inspired by recent advancement in deep learning a new generation of tools are being 

developed to address these shortcomings. DeepKinZero [16] is a tool that takes inspiration 

from deep learning techniques in computer vision and employs a zero shot learning 

approach to transfer knowledge from well known kinases to understudied kinases. But 

similar to the first generation tools, it relies primarily on sequence information. LinkPhinder 

[17] takes a significantly different approach and formulates the task of predicting 

kinase-substrate interactions as a link-prediction task. It considers kinases, substrates 

and phosphorylation sites to be constituting a knowledge graph and uses knowledge 

graph completion algorithms to predict possible kinase-substrate interactions. A significant 

limitation of all the above tools is that they do not take advantage of the long range 

dependencies between kinases and substrates that are encoded in existing kinase-substrate 

interaction networks. In addition to this, they also fail to model the deeper biological 

connections that are only evident by looking at the vast body of biomedical knowledge being 

collected and organized in semantic databases such as Gene Ontology and Protein Ontology.
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In recent years, there has been a significant increase in the amount of biological data. 

This has made it increasingly difficult to organize and derive knowledge from this data. 

Subsequently, semantic technologies that define a set of standards for organizing and linking 

data were adopted. Using such linked (semantic) data can provide us with knowledge that 

cannot be derived purely from protein sequences. They can help us craft algorithms that can 

truly capture the biological roles of kinases and substrates. In this work we present a novel 

approach of learning from semantic data. Since the goal of this work was to investigate 

if knowledge graph/semantic data can be useful in predicting kinase-substrate interactions 

we simplified the task by only predicting interactions at the kinase/substrate level instead 

of the kinase/phosphorylation site level. Nevertheless, we think that the kinase/substrate 

representations learned by our approach can be combined with tools working at sequence 

level such as DeepKinZero to obtain better predictions at finer resolutions.

2 Methods

2.1 Data

We construct the knowledge graph by including data from iPTMnet3, Protein Ontology 

(PRO)4, Gene Ontology (GO)5 and BioKG6. To begin with, we use human PTM data 

[Taxon code - 9606] from iPTMnet to construct a kinase-substrate interaction network. The 

iPTMnet data contains 26411 phosphorylation PTM events. Any given kinase-substrate pair 

can have multiple PTM events. We normalize these events to triples in the form of kinase → 
phosphorylates → substrate.

PRO defines protein classes and represents the hierarchical relationships among proteins, 

protein forms (proteoforms) and protein complexes within and across species7. The PRO 

data is arranged in the form of an acylic directed graph. Thus using PRO data we construct 

triples in the form of kinase/substrate → is_a → pro_entity and inverse triples in the form of 

pro_entity → has_a → kinase/substrate extending all the way to the root of the PRO tree to 

capture evolutionary relationships among the proteins encoded by the PRO ontology.

Gene Ontology organizes biological knowledge by specifying a controlled vocabulary to 

precisely describe the biological processes, molecular functions and subcellular localizations 

associated with gene products. Using GO we create triples in the form of kinase/substrate 
→ annotated_with → go_term. Since GO terms themselves are arranged in the form of 

a directed acyclic graph (DAG), we create new triples in the form go_term_a → is_a → 
go_term_b extending uptil the root of the GO tree to capture the knowledge defined by the 

relational heirarchy of GO.

Similar to the above-mentioned data sources, there are many more data sources that can be 

integrated in our knowledge graph. Rather than performing this integration ourselves, we 

decided to take advantage of the BioKG database6. The authors of BioKG database provide 

a framework to automatically integrate data from numerous biomedical databases. Since 

BioKG framework is geared towards drug discovery analysis we integrated only a subset 

of the biomedical databases. Specifically we include data from UniPROT8, Reactome9, 

KEGG10 and STRINGS-DB11. This resulted in addition of new triples with following 

relations - protein-pathway associations, protein-disease associations, protein-genetic 
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disorder associations, disease-genetic disorder associations, disease-pathway associations, 
protein-complex assocations and complex-pathway associations to our knowledge graph.

Once the above knowledge graph was built, we used it as a data source to train a machine 

learning model to predict interactions for understudied kinases.

2.2 Data preparation

As mentioned in the previous section, we start with a kinase-substrate interaction network 

constructed using PTM data and then enrich it with auxillary data to construct our 

knowledge graph. When training a machine learning model it is neccessary to ensure proper 

seperation of training, validation and testing data to prevent information leakage. Thus, 

even before we enrich the vanilla kinase-substrate network with auxillary data, we split 

the network into three subnetworks - training, validation and testing. The training network 

contains “kinase → phosphorylates → substrate” triples in addtion to the triples from 

auxillary data. Validation and testing networks contain only the kinase-substrate interaction 

triples in the form kinase → phosphorylates → substrate.

2.3 Knowledge graph learning approach

In recent years, many approaches to learn from knowledge graphs have been proposed. 

These approaches can be broadly grouped into four categories - 1) Tensor decomposition, 2) 

Geometric distance, 3) Deep learning and 4) Random Walk12. Tensor decomposition based 

approaches represent the entities and the relations as a giant 3D adjacency matrix (Tensor). 

This matrix is then decomposed into low dimensional vectors while still retaining the 

latent information about the graph structure and connectivity13,14. Geometric distance based 

approaches learn an embedding of the knowledge graph by representing the relation between 

the head and tail as a geometric transformation in the latent space15. Deep learning based 

approaches represent the entities and relations using a low dimensional embedding vector. 

Instead of deriving these embeddings using tensor decomposition or geometric factorization, 

these models use a neural network to optimize the embeddings to predict the probability 

of a triple in the knowledge graph being true or false16. Random walk based approaches 

take inspiration from advancements in natural language processing. They involve sampling 

a series of nodes (entities) from the knowledge graph. These series of nodes can be thought 

of as sentences in a language with every node representing a word in the sentence. These 

sentences are then used as an input corpus for a language model such as word2vec17 to learn 

a dense embedding for every node in the graph18.

A glaring short-coming of the random walk based approaches is that they do not take into 

account the triple structure of the knowledge graph. Specifically, existing methods such 

as DeepWalk18 and Node2Vec19 do not consider the directionality and the heterogeneity 

encoded by a triple when performing the random walk. They treat the relations in a 

knowledge graph as any other node in the graph. Hence, they cannot adequately capture 

the semantic meaning of the entities in the knowledge graph. To alay these shortcomings, 

alternative approaches that rely on metapaths have been proposed20. But contrary to 

the simpler approaches such as DeepWalk and Node2Vec, the performance of metapath 

based approaches is highly dependent on the choice of metapath. Additionally, choosing a 
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metapath requires an in-depth knowledge of the schema of the knowledge graph under study, 

further diminishing their utility.

Hence, in this work, we propose a modified random walk based approach that takes 

inspiration from DeepWalk18, one of the simplest knowledge graph learning algorithms, to 

learn a representation of kinases and substrates in our phosphoproteomic knowledge graph. 

The fundamental assumption of any random walk based approach is that entities with similar 

meaning occur in similar contexts. But in a knowledge graph, the context is not only defined 

by the connectivity, but also by the type and the direction of the relationships. Hence, 

our approach makes a slightly different assumption. It assumes that the heterogeneous 

knowledge graph is a superimposition of three distinct graphs. The first graph contains only 

head entities, the second graph contains only relations and the third graph contains only tail 

entities. [Figure 1]. The heterogeneous knowledge graph can then be thought of as a function 

of the latent interactions between the entities from each of these three sub-graphs. To model 

this function, we modify the manner in which random walks are performed. Instead of 

sampling a series of nodes using traditional random walks, we sample a series of “triples” by 

performing a Triple Walk. This series of triples is then used as an input to a modified skip 

gram model to learn an embedding of all the entities and relations in the knowledge graph.

2.4 Deepwalk overview

Since our approach is inspired by DeepWalk approach, it is essential to understand all the 

steps that constitute the DeepWalk algorithm. On a very high level, the DeepWalk algorithm 

combines random walks on a graph with a language model such as Word2Vec17 to learn a 

vector representation of every node in the graph. Since the Word2Vec model plays a major 

role in the DeepWalk algorithm, it is essential to understand the steps involved in training a 

Word2vec model.

Word2Vec is a simple model used to learn dense vector embeddings of words21 in a given 

language. At its core it contains a single layered neural network that predicts if a particular 

word would occur in a given sentence. This task is similar to the task of filling the blanks 

in an incomplete sentence. For example, given an incomplete sentence - The quick brown 
fox _____ over the lazy dog, the word2vec model tries to predict a word that would occur 

in the blank space [Figure 2]. The word to be predicted is known as the target word and the 

words already present in the sentence are known as the context words. The target word can 

be either a positive_target or a negative_target. A positive_target is a word that is definitely 

known to “occur” in the given blank space. A negative_target is a word that is definitely 

known to “not occur” in the given blank space. The negative_target is created by randomly 

choosing a word from all the words constituting the vocabulary of the language. The length 

of the sentence is known as the window_size or the context_size of the model and the 

number of words in the entire corpus is known as the vocabulary of the language.

So to recapitulate, the inputs to a function training the Word2Vec model are the context, the 

positive_target and the negative_target [Figure 2]. This function then trains the model using 

the following three-step process.
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1. The context words are used as an input to a single layered neural network to 

predict a vector representing the positive_target. The predicted vector is then 

compared with the vector of the ground truth positive word to calculate a 

positive_score. This score is then used to calculate a positive_loss.

2. The same context words, coupled with the same neural network are then used 

to predict a vector representing the negative_target. Then similar to step 1, the 

predicted vector is compared with the ground truth to calculate a negative_score. 

This score is then used to calculate a negative_loss.

3. The positive_loss and negative_loss are then combined using the mean function 

to calculate the final_loss. This final_loss is then used to backpropogate the 

errors and adjust the weights and biases of the neural network as well the 

embedding vectors of the context words.

The above process is repeated for every word in each sentence of the entire corpus. As the 

training progresses, the model learns which target words occur in which context. Once the 

model training is complete, the embeddings vectors of context words are retrieved to be used 

as a part of further downstream analysis.

Word2Vec model has two variants, CBOW (Continuous Bag of Words) and SkipGram. The 

model described above is the CBOW variant of the Word2Vec model. SkipGram variant 

is the exact inverse of the CBOW variant. In the SkipGram variant, instead of predicting 

a target_word, the model predicts a target_context. So the inputs to the training function 

of the SkipGram variant are the target_word, the positive_context and the negative_context 
[Figure 3]. The positive_context contains the words that are definitely known to “occur” 

around the target_word and negative_context contains the words that are definitely known to 

“not occur” around the target_word. The negative_context is created by randomly sampling 

words from the vocabulary of the language. The remaining steps in the training function 

are similar to the CBOW variant except for the inputs to the single layered neural network. 

Contrary to the CBOW variant, the input to the neural network is a target_word and the 

output is a tensor representing the context. This tensor is then compared with the tensor of 

the ground truth positive and negative contexts to obtain a positive and negative score. These 

scores are then used to calculate the respective losses, which are combined to get the final 

loss.

The authors of the DeepWalk algorithm hypothesized that the language models work by 

sampling from a hidden unobservable language graph18. This means that every graph can be 

thought of as encoding the semantics of a hidden unobservable language. So, the first step of 

the DeepWalk algorithm is to perform short random walks on the graph to sample a series 

of nodes. The random walks performed in DeepWalk are a classical Markovian process22 

i.e., the probability of selecting the next node in the walk is only dependent on the currently 

selected node. Now, these series of nodes can also be thought of as a series of words adding 

up to form a complete sentence. Thus performing N random walks on the graph can be 

thought of as sampling a set of N sentences from a graph. These sentences i.e., series of 

words are now used as an input to a language model such as the Word2Vec model to learn a 

dense vector representation of every node in the graph [Figure 4].
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2.5 TripleWalk approach

As described earlier, a unit of information in a knowledge graph is encoded by a triple in the 

form of head → relation → tail. Thus, to learn an effective representation of a knowledge 

graph it is essential to consider this triple structure. The TripleWalk algorithm modifies the 

DeepWalk algorithm to effectively exploit this triple structure. It does so by modifying the 

process of performing the random walks and also the process of using these random walks to 

train the Word2Vec model.

In the DeepWalk approach of performing random walks, the directionality of the edges is 

not considered. At any point of time when the walker is on a head or a tail node, it has a 

choice of either selecting one of the tail nodes that come after a head node or one of the 

head nodes that come before the tail node. Since the walker does not take into account the 

directionality of the edges, it has an equal probability of choosing a head node or a tail node. 

If it samples a head node then it inadvertently ends up breaking the semantic organization of 

the underlying knowledge graph.

Contrary to the DeepWalk approach, the TripleWalk approach does not sample one node at 

a time, but samples one triple at a time. Thus, the probability of choosing the next triple in 

the walk is dependent only on the currently selected triple. Further, the TripleWalk approach 

also considers the directionality of the relation between triples. At any point of time, given 

a triple sequence T1 →T2 →T3 →T4 →T5, a triple walker at position T3 will only sample 

T4 and not T2. Thus, by sampling one triple at a time and by considering the directionality of 

the triple relations, the TripleWalk approach is able to preserve the semantic structure of the 

underlying graph when sampling a sequence to be used in the Word2Vec model.

Once these triple are sampled, the next step is to learn an embedding of entities that make 

up these triples. For this we lean on our assumption mentioned earlier, that considers a 

knowledge graph as a combination of three distinct graphs - head_graph, relation_graph and 

tail_graph that hold the heads, relations and tails respectively [1]. To model this assumption, 

the sampled triple sequence S = {(h1, r1, t1), (h2, r2, t2), (h3, r3, t3), (h4, r4, t4)} is split into 

three independent sequences holding heads (H = {(h1, h2, h3, h4)}), relations (R = {(r1, r2, 
r3, r4)}) and tails (T = {(t1, t2, t3, t4)}) respectively. These three independent sequences are 

then used to train a modified Word2vec model [5].

As described in section 2.4, the input to the function used to train Word2Vec model are the 

context, the positive_target and the negative_target. Thus, for every independent sequence, 

a context, a positive_target and a negative_target is created. This gives us a set of three 

contexts - head_context (Hc), relation_context (Rc) and tail_context (Tc), a set of three 

positive targets - head_pos_target (Hp), rel_pos_target (Rp) and tail_pos_target (Tp) and a 

set of three negative targets - head_neg_target (Hn), rel_neg_target (Rn) and tail_neg_target 
(Tn). All the above contexts and targets are then used as an input to a function used to train 

the Word2Vec model [Figure 6].

The function used to train the Word2Vec model is similar to the one used in DeepWalk 

model. As described earlier, the DeepWalk training function optimizes the embedding 

vectors of the context nodes using a single layered neural network. Similar to the DeepWalk 
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training function, the TripleWalk training function also contains a single layered neural 

network, but instead of optimizing a single context embedding, it jointly optimizes the three 

independent sets of context embeddings corresponding to the head, relation and tail contexts. 

To do so, it follows a four-step process

1. The head_context (Hc) along with the head_pos_target (Hp) and head_neg_target 
(Hn) are used to calculate a head_loss.

2. The relation_context (Rc) along with the rel_pos_target and rel_neg_target (Rn) 

are used to calculate a realtion_loss.

3. The tail_context (Tc) along with the tail_pos_target (Tp) and tail_neg_target 
(Tn)are used to calculate a tail_loss.

4. All these losses are then combined using the mean function to obtain a final_loss. 

This final_loss is then used to backpropogate the errors and adjust the weights 

and biases of the neural network as well the embedding vectors of all the three 

contexts.

The above process is repeated for every triple sequence sampled by the TripleWalk 

algorithm to minimize the final_loss. Once the training process is complete, the embedding 

vectors of the head context, relation context or the tail context are retrieved to perform 

further downstream analysis.

2.6 Supervised learning

The task of identifying new interactions in the kinase-substrate interaction network can 

be generalized to a binary classification task of predicting if a given interaction is true or 

false. For this, we use a classical supervised machine learning algorithm - Random Forest23. 

The input to the model is an embedding vector representing the target interaction and the 

output is a binary value representing the plausibility of the interaction being true or false. To 

construct an embedding vector denoting this interaction, we retrieved a list of all the kinase 
→ phosphorylates → substrate triples from the knowledge graph. Then, in a given triple 

we retrieve the embedding vector for kinase entity from the head_context embeddings and 

for the substrate entity from the tail_context embeddings. Then according to the approach 

described by the authors of Node2Vec algorithm19, we combine these embeddings using the 

hadamard (⨀) operator to obtain the final interaction embedding vector (I ).

2.7 Negative sampling

Since the supervised model is a binary classification model, we also need to have negative 

samples to represent the interactions that have a lower likelihood of being true. But adequate 

ground truth data about negative interactions is not available. There are existing databases 

such as negatome24 that provide a catalog of manually curated negative interactions, but 

we found that their coverage of negative interactions is not adequate. Hence, it is important 

to adopt a well-thought-out approach to generating negative samples to augement existing 

negative interaction data. Since knowledge graphs contain only positive samples, some 

approaches to generating negative samples have been proposed25. The most simple approach 

being corrupting a triple by randomly changing the head, relation or tail.
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In this case, we were only interested in negative samples involving kinase-substrate 

interaction triples. Initially, we trained the supervised classification model using the naive 

negative sampling approach of corrupting the tails. The resulting model did not perform 

sufficiently (AU-ROC = 0.57). We hypothesized that the drop in performance was due to the 

fact that randomly corrupting the tails of triples did not yield samples that truly represented 

the underlying biology of a kinase-substrate interaction. Also, since the number of unknown 

kinase-substrate interactions is very high, there is an increased likelihood of true positive 

samples being labelled as negative samples. Hence, we decided to develop a better approach 

to generating negative samples. We assumed that if a kinase and a substrate were physically 

apart by being located in two distinct cellular components then the probability of them 

interacting is lower than if they were located in the same cellular component. To model this 

assumption, we generated negative samples using the following four-step process:

1. Create a filtered knowledge graph containing only kinase-substrate interaction 

triples and triples from the cellular component subtree of the GO ontology.

2. Generate an embedding of every kinase and substrate in terms of its subcellular 

location by performing graph representation learning on this knowledge graph.

3. Using this embedding, for every kinase sample N substrates that are as far away 

as possible in the embedding space by use cosine similarity to calculate the 

distance between a kinase and a substrate.

4. To balance out the possibility of the model being biased towards the subcellular 

location, combine the above sampled list with ground truth negative samples 

from negatome - a database containing manually curated negative samples24.

5. Finally, sample from the above list to create a definitive list of negative 

interactions.

After generating the negative samples using the above approach, we needed to verify if 

the generated negative samples contained substrates in cellular compartments that where 

distinct from kinases. Hence, we created a list of kinases that where located in the nucleus 

of the cell. Then we retrieved the negative interaction partners (substrates) for these kinases. 

We then visualized the embedding vectors of these kinases and substrates using a tSNE 

plot [Figure 7]. It can be observed that the nuclear kinases and the corresponding sampled 

negative substrates are fairly well seperated in the tSNE space.

2.8 Model training and evaluation

Our model training pipeline starts with a simple kinase-substrate interaction network 

containing only one type of triple : kinase → phosphorylates → substrate. We split 

this network into three subnetworks - training (60%), validation (20%) and testing 

(20%). We then augement the training network with auxillary triples to construct the 

full phosphoproteomic knowledge graph. This knowledge graph is then used to train 

the unsupervised component (Triple Walk model). The unsupervised component learns 

embeddings for every kinase and substrate in the phosphoproteomic knowledge graph. 

These entity embeddings are then passed to the supervised component (Random Forest 

model).
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The input to the supervised component is a vector constructed by concatentating the 

embedding of a kinase and a substrate. This vector represents an interaction event between 

a kinase and a substrate. The output from the supervised component is a probability 

of the given kinase-substrate interaction being true. The validation network is used 

for hyperparameter tuning and the testing network is used to evaluate the final model 

performance [Figure 8]. We evaluate the model using Area Under Receiver Operating 

Characteristic Curve (AU-ROC), Precision and Recall [Table 3].

2.9 Evaluation of unsupervised learning component

In addition to evaluating the final model, we also compare the unsupervised learning 

component (TripleWalk algorithm) with existing unsupervised knowledge graph learning 

methods. We compare our approach with two of the most commonly used random walk 

based approaches - DeepWalk18 and Node2vec19, one tensor decomposition based approach 

- DistMult26 and one distance based approach - TransE15. In addition to comparison with 

above methods, we also compare the SkipGram and the Continuous Bag of Words (CBOW) 

variants17 of all the random walk based methods. Finally, in addition to evaluating the 

interaction prediction performance, we also evaluate the embeddings on following tasks.

1. Kinase - Substrate classification : We formulate a binary classification task 

to classify kinases and substrates based on the learned embeddings. The 

classification task is a balanced classification task where we sample one substrate 

for each of the 408 human kinases. We then use the embeddings obtained by 

unsupervised learning to train a classifier to classify the entities as either a 

kinases or substrates.

2. Enzyme classification : All kinases can be generalized as enzymes. Enzymes 

are classified into six broad categories and numerous sub-categories based on 

the chemical reactions they catalyze. These enzyme categories are represented 

by an Enzyme Classification (EC) number. we use these EC numbers to 

create three sub-categories for kinases present in our kinase-substrate interaction 

network. We then use the embeddings of the kinases to formulate a one vs rest 

classification task to classify kinases into their respective categories.

3 Results

3.1 Model hyperparameters and performance

We optimize the parameters for the unsupervised component by using the Adaptive 

Asynchronous Halving Algorithm (ASHA)27 and for the supervised component using 

Random Grid Search algorithm. The best performing hyperparameters for the TripleWalk 

model are provided in table 1.

The results from training all the models using the best hyperparameters are shown in table 

2. To generate the results we split the kinase-substrate interaction network into K folds 

where K=10. This gave us 10 sets of training, validation and testing networks. Then for 

every fold we augemented the training network with auxillary triples and performed a 

complete training and evaluation run as shown in Figure 8. This gives us 10 scores where 
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every score is slightly different from each other. The final score is the mean of all the 10 

scores. The error measures indicate the standard deviation of the 10 scores. The data for 

training, validation and testing data for every fold is available in supplementary file 1 and 

the raw scores for evey fold are available in supplementary file 2. It can be observed that 

for our primary task of predicting a kinase-substrate interaction, the TripleWalk algorithm 

coupled with the SkipGram model outperforms all other types of algorithms. For the kinase 

classification task the TripleWalk algorithm coupled with CBOW model outperforms all 

other algorithms and for the enzyme classification task DeepWalk model coupled with the 

CBOW model gives the best results. It is worth noting that CBOW model has a much more 

consistent performance compared to the SkipGram model irrespective of the type of random 

walks. This might be due to the fact that in the CBOW model contrary to the SkipGram 

model, we predict the target word given the context words. This might have a regularising 

effect on the model, preventing it from learning the noise in the data and thus leading to 

a much more stable performance. It is also interesting to observe that Distmult, a tensor 

decomposition based approach shows competitive performance with random walk based 

methods, despite being a much simpler algorithm. The final predictions from our model are 

available in supplementary file 3.

After comparing our model with existing Random Walk based methods, we also compared 

our model with other kinase-substrate prediction models. Since many of the existing models 

do not publish their training, testing datasets and hyperparameters, it is difficult to perform 

a fair comparision among all the models. Hence for the purpose of this study, we used 

the predictions datasets published by authors of the LinkPhinder28 study. One thing to 

note is that compared to existing models, our model can only make predictions at the 

kinase-substrate level instead of the kinase-substrate-site level. The predictions from our 

model are in the form of a three column vector containing - [kinase, substrate, probability] 
and the predictions from existing models are in the form of a four column vector containing 

- [kinase, substrate, site, probability]. This means that for a given [kinase-substrate] pair our 

model will have only probability, but other models will have N probabilities corresponding 

to N sites. Hence, to make this comparision possible we reshaped the predictions data 

from other models to match our predictions data. To do so, we just selected the probability 

assigned to the top scoring site and used it as the probability of the given [kinase-substrate] 
pair interacting with each other.

The results from our comparision are shown in table 3 and the predictions used to generate 

the results are available in supplementary file 2. It can be observed that the knowledge graph 

based models such as TripleWalk and LinkPhinder show a significantly better performance 

compared to the sequence based models such as NetPhospK29 and Scansite30. Further, it 

can be observed that the TripleWalk model shows competitive performance compared to the 

LinkPhinder model despite not including sequence based features in the knowledge graph. 

This might be indicative of the fact that it would be beneficial to combine the knowledge 

graph construction approach proposed by LinkPhinder with the knowledge graph learning 

algorithm proposed by TripleWalk to further improve the performance.
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3.2 Ablation Study

After building our models, we wanted to understand the factors that contribute to the 

improved predicitve performance. Model interpretability can be achieved by either building 

simpler models that are intrinsicly explainable or by post predictive analysis of the trained 

models. Since our framework consists of multiple models working together, the simplest 

approach to achieving interpretability in our system would be to quantify the change in 

predictive performance on changing the input data. For this we follow a two-part approach. 

In the first part we remove only a particular set of triples while keeping all other triples in 

knowledge graph. We then train the model using the hyperparameters shown in Table 1. In 

the second part, we keep triples related to only a particular subset of knowledge graph while 

removing all other triples.

Table 4 and Table 5 show the relative performance of models trained on specific subsets of 

the knowledge graph. It can be observed that on removing triples related to BIOKG while 

keeping triples related GO and PRO ontologies leads to a modest drop in performance. 

On the other hand training models with only the BIOKG triples without any ontology 

information leads to a pretty significant drop in performance. Further, training models with 

only GO or only PRO ontologies leads to a pretty significant increase in performance.

These results though interesting, are not entirely suprising. When we integrated the GO and 

PRO ontology information into our knowledge, we included the triples denoting relations all 

the way up to the root node of the ontology. This allowed our model to learn a much better 

representation of kinases and substrates in terms of their shared evolutionary, molecular and 

functional ancestory. BIOKG on the other hand includes triples that denote relationships 

only at the leaf node without following them up the ontology tree. Thus, even though it 

brings a lot of information, it is only useful in conjunction with a more complete picture 

provided by the ontologies.

3.3 Functional enrichment analysis

After validating our frameworks predictive performance, we studied the highest confidence 

predictions for kinases with the least amount of information. We retrieved the list of 

understudied kinases from Illuminating the Druggable Genome project (IDG)31. This gave 

us a list of 144 potenitally understudied kinases. We further filtered these kinases to only 

include the kinases that have at-most two recorded interactions in the iPTMnet database. 

This gave us a list of 68 kinases that are potentially understudied with respect to both IDG 

and iPTMnet. We then used the PredKinKG framework to predict novel interactions for 

these kinases. We filtered the predictions to only include high confidence predictions by 

setting the probability score cutoff at 0.95. Below we present the functional enrichment 

analysis of Q02779 (MAP3K10) using its 188 novel predicted substrates.

Since the target kinase is understudied and its biological functions is poorly understood, 

we hypothesized that studying the functions of the predicted substrates may provide us 

with clues about its biological roles. For this we perform a GO enrichment analysis using 

STRING DB11. Table 6 provides an overview of the top five GO terms (according to 

strength and FDR) enriched for every GO sub-ontology.
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GO enrichment analysis of the interaction network of Q02779 (MAP3K10) suggests that 

it might play an important role in the maintainence and upkeep of the cellular DNA and 

regulation of DNA transcription. We can observe that the GO term - GO:0090240 (Positive 
regulation of histone h4 acetylation) has the highest enrichment strength. Histone-H4 is a 

part of the nucleosome complex which is one of the fundamental structures related to DNA 

organization in eukaryotes. Acetylation of Histone-H4 is associated with a relaxation of the 

nuclear chromatin leading to an increased transcription factor binding32 and recruitement 

of protein complexes for repair of double-stranded breaks in the DNA33. In addition to 

histone acetylation, we can also observe that several GO terms related to DNA damage 

and repair are enriched: GO:0090400 (DNA ligation involved in DNA repair), GO:0006978 
(DNA damage response, signal trans- duction by p53), GO:0042771 (Intrinsic apoptotic 
signaling pathway in response to dna damage by p53 class mediator). Analayzing the GO 

terms related to cellular component, it is evident that the interaction partners of Q02779 

(MAP3K10) are mostly located in the nucleus near the chromosomes thus further cementing 

its role in DNA repair and transcription.

4 Discussion and Future work

In this work we have presented our framework for learning from a heterogenous knowledge 

graph to predict substrates for understudied kinases. We build a kinase-substrate knowledge 

graph by integrating data from ontologies such as GO and PRO and existing knowledge 

graph such as BIOKG. We then developed a novel knowledge-graph representation learning 

approach to learn better representations of kinases and substrates in this knowledge graph. 

Unlike many existing approaches, our framework can take advantage of semantic data from 

existing databases to exploit the knowledge of well studied kinases to make predictions for 

understudied kinases. We also perform an ablation study to quantify the relative importance 

of various components of our knowledge graph. We found that the heirarchical information 

from ontologies in combination with the factual information from existing knowledge graphs 

contributes significantly to learning a better representation of kinases and substrates.

A significant advantage of our methods over existing methods is the simplicity of the 

data representation and the simplicity of learning from this data representation. Existing 

machine learning systems require complex preprocessing and data transformation before 

the data is used for model training. These data transformations take a lot of manual effort 

and also have the potential to influence the model performance if done incorrectly. In 

our work, we present an alternative approach. We arrange the data in a very simple form 

containing only a list of triples. Each triple represent a discrete fact about the real world. 

We then propose a very simple random walk based algorithm to learn from this data. 

Since random walk based methods do not require the user to have any knowledge about 

the semantics or the structure of the underlying graph, our approach allows the user to 

scale their analysis without spending a lot of manual effort on studying the semantics of 

the underlying data. This property also means that our approach can be easily repurposed 

to target alternative domains. For example, the user could change the kinase-substrate 

knowledge graph to include only mouse data and thus repurpose the system to predict 

kinase-substrate interactions in mouse models. The user can also use our triple walk 

algorithm to learn a representation of knowledge graphs in a completely different domains 
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such as social-networks, citation-networks or computer networks by using our publicly 

available python package34.

A significant shortcoming of our approach is that it can make predictions only at kinase/

substrate level and not at the kinase/phosphorylation site level. Thus, as a next step of our 

study we plan to extend our model to make predictions at the phosphorylation site level by 

integrating with the approach proposed by Deznabi et al. in their DeepKinZero model. In 

addition to extending to model to site level, we also plan to integrate attention mechanism in 

our unsupervised knowledge graph learning component to get a better insight into the factors 

that contribute to learning a good representation of kinases and substrates.

Since the goal of this work was to develop a system to utilize semantic data (knowledge 

graphs) for the purpose of predicting kinase-substrate interactions, we did not perform an 

in depth comparision with existing kinase-substrate interaction prediction tools but only 

a superficial comparision as shown in Table 3. Alternatively, since we proposed a new 

knowledge graph learning algorithm that exploits the triple structure of the graph, we 

performed an in-depth comparision with existing knowledge graph learning algorithms 

[Table 2]. A direct comparison between our tool and the existing tools is not possible due 

to the differences in the data used for training the algorithms used in these tools. The data 

for positive samples is readily available from established databases, but data about negative 

samples is not readily available. Thus, every tool uses its own method to generate negative 

samples which complicates the comparision. A comprehensive evaluation will require a 

more focused approach that uses a standardized dataset with properly specified training, 

testing splits and negative samples. Since developing such a dataset is a non-trivial task, we 

plan to perform this comparision as its own independent study.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Knowledge graph represented as an overlapping graph of heads, relations and tails.
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Fig. 2. 
Word2vec model (CBOW) that predicts the target word given the context.
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Fig. 3. 
Word2vec model (SkipGram) that predicts the context given the target word.
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Fig. 4. 
DeepWalk model
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Fig. 5. 
TripleWalk model
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Fig. 6. 
Modified Word2Vec model
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Fig. 7. 
tSNE plot to visualize the embeddings of kinases and their analogous sampled substrates 

using the negative sampling technique described in section 2.7
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Fig. 8. 
TripleWalk model training and hyperparameter optimization
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Table 1

Best performing hyperparameters for the TripleWalk (SkipGram) model.

Unsupervised (TripleWalk and SGNS)

Parameter Value

Batch Size 128

Learning Rate 0.0004

Embedding Dimension 256

Random walk length 17

Random walks per node 6

Early stopping delta (loss) 0.1

Early stopping patience (epochs) 5

Number of negative samples per positive sample 2.0

Supervised (Random Forest)

Parameter Value

Number of Estimators 420

Max depth 176

Split Criterion Entropy

Max features 128

Min samples for split 5

Min samples at leaf 4
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Table 3

Comparision of TripleWalk with existing kinase-substrate interaction prediction models.

Model AU-ROC Precision Recall

TripleWalk 0.76 0.62 0.88

LinkPhinder 0.75 0.60 0.76

NetPhospK 0.52 0.61 0.17

Scansite 0.53 0.60 0.17

NetworKIN 0.55 0.59 0.36
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Table 4

(Part A) Abalation study showing relative importance when a set of triples are removed from KG

Data Interaction Prediction

BIOKG complex (removed) 0.75 (±0.01)

BIOKG pathways (removed) 0.77 (±0.01)

BIOKG diseases (removed) 0.78 (±0.01)

PRO (removed) 0.79 (±0.01)

GO biological process (removed) 0.79 (±0.03)

GO molecular function (removed) 0.79 (±0.01)

COMPLETE KG 0.79 (±0.01)
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Table 5

(Part B) Abalation study showing relative importance when including only one set of triples in KG.

Data Interaction Prediction

BIOKG complex (only) 0.60 (±0.02)

BIOKG Pathways (only) 0.61 (±0.02)

BIOKG Diseases (only) 0.63 (±0.02)

GO Biological Process (only) 0.84 (±0.01)

GO Molecular Function (only) 0.83 (±0.01)

PRO (only) 0.82 (±0.01)

COMPLETE KG 0.79 (±0.01)
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Table 6

Enriched GO terms for Q02779 (MAP3K10) interaction partners

Biological Process

GO:ID DESCRIPTION STRENGTH FDR

GO:0090240 Positive regulation of histone h4 acetylation 1.65 0.005

GO:0070601 Centromeric sister chromatid cohesion 1.65 0.005

GO:0090400 DNA ligation involved in DNA repair 1.60 0.00091

GO:0006978 DNA damage response, signal transduction by p53 class mediator resulting in transcription of 
p21 class mediator

1.45 0.0019

GO:0042771 Intrinsic apoptotic signaling pathway in response to dna damage by p53 class mediator 1.24 0.0014

Molecular Function

GO:ID DESCRIPTION STRENGTH FDR

GO:0031490 Chromatin dna binding 1.03 0.0003

GO:0070491 Repressing transcription factor binding 1.00 0.0014

GO:0019901 Protein kinase binding 0.78 9.3E-15

GO:0051721 DNA-binding transcription factor binding 0.78 6.02E-08

GO:0061629 RNA polymerase II-specific DNA-binding transcription factor binding 0.75 4.32E-05

Cellular Component

GO:ID DESCRIPTION STRENGTH FDR

GO:0005719 Lateral element 1.48 0.0013

GO:0005721 Pericentric heterochromatin 1.40 0.0003

GO:0000778 Condensed nuclear chromosome kinetochore 1.37 0.0029

GO:0000780 Condensed nuclear chromosome, centromeric region 1.24 0.0012

GO:0051233 Spindle midzone 1.16 0.0025
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