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Abstract

Serial passage of SIVmac239 allows for greater understanding of the genetic changes necessary 

for cross-species transmission of primate lentiviruses into humans. Using humanized mice, we 

show that adaptive mutations continue to accumulate in SIVmac239 during four serial passages, 

with persistent CD4+ T cell decline and increases in plasma viral loads.
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INTRODUCTION

SIVmac and its derivatives are widely used as models for HIV infection due to their ability 

to mimic AIDS-like pathogenesis in rhesus macaques.1–4 Previously, we showed successful 

infection and serial passaging of SIVmac239 as well as other SIVs in the humanized mouse 

model, which harbors a fully functional human immune system.2–15 Here we characterized 
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SIVmac239 following four serial passages in humanized mice and identified the genetic 

adaptations that arose following in vivo adaptation to the human immune cell environment. 

Viral pathogenesis was determined by monitoring plasma viral loads weekly using qRT-PCR 

and CD4+ T cell decline biweekly using flow cytometry. The resulting virus was subjected 

to Illumina-based deep sequencing to identify mutations that arose at increasing frequencies 

within the viral population.

MATERIALS AND METHODS

Generation of hu-HSC mice, infection with SIVmac239 and serial passaging

All animal studies have been approved and reviewed by the Colorado State University 

Institutional Animal Center and Use Committee (Protocol #1202), and animals were 

maintained by the CSU Painter Animal Center. The preparation of hu-HSC mice was 

performed according to the previously described procedures.5,10,11,14–17 A total of 8 mice (3 

female; 5 male) were used for these experiments.

A human-cell adapted SIVmac239 strain that was serially passaged three times in 

humanized mice was used to infect hu-HSC mice as previously described.5 Briefly, 

mice displaying high plasma viral loads 24 weeks post-inoculation were euthanized and 

cells were collected to propagate and passage the virus for future serial passages of hu-

mice.5,10,11

Assessment of Viral Pathogenesis

Pathogenesis of the virus was determined through plasma viral load detection and 

assessment of CD4+ T cell decline as described previously.5 Briefly, the E.Z.N.A. Viral 

RNA kit (Omega bio-tek, Norcross, CA) was used to extract viral RNA from plasma isolated 

weekly from peripheral blood. Quantification of viral loads was performed using qRT-PCR 

and SYBR Green with the iScript One-Step RT-PCR kit (BioRad, Hercules, CA) based on 

the manufacturer’s instructions.5

CD4+ T cell levels were assessed as a fraction of CD45+/CD3+ cells following staining 

of whole blood using mouse anti-human antibodies CD45-APC (eBioscience), CD3-FITC 

(eBioscience), and CD4-PE (BD Pharmingen, San Jose, CA) and the BD Accuri C6 

cytometer as previously described.5,6 CD4+ T cell decline was assessed relative to 

uninfected controls using a two-tailed Student’s t-test in GraphPad Prism 8.1.0 (p<0.0001). 

CD4+ T cell decline and Plasma viral loads were displayed as mean ± SD.

Illumina-based deep sequencing

Overlapping amplicon pools were generated from viral RNA collected from two separate 

infected mice at 3-, 11-, 19- and 25-weeks post-inoculation using Primal Scheme designed 

primers as described previously.5,18 Amplicons were prepared for sequencing using the 

TruSeq Nano DNA Library Preparation Kit and run on the MiSeq Illumina desktop 

sequencer (Invitrogen, Carlsbad, CA).

Sequence read processing and variant identification was performed using Geneious Prime 

v2022.1.1. Paired end reads were merged using BBMerge version 38.84 and read ends were 
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trimmed with a 0.05 error probability rate.19 Reads were mapped against our previously 

sequenced SIVmac239 reference consensus sequence using Bowtie2 v2.3.0.5,20 SNPs were 

identified based on a minimum variant frequency of 0.5 and minimum depth of coverage of 

100 reads. R and ggplot2 (ISBN: 0387981403) scripts were used to create the genome plot 

and can be found at https://github.com/stenglein-lab/viral_variant_explorer. Raw sequencing 

data was deposited to the Sequence Read Archive and are publicly available (Accession 

Numbers: SRR17194610; SRR20736401-SRR2073606; SRR20736413-SRR2073614)

RESULTS

The hu-mouse adapted SIVmac239 fourth passage virus was able to cause viremia with a 

rapid increase in viral loads reaching a titer of over 1×106 RNA copies/mL within 35 days 

before peaking around 84 days post-inoculation and gradually declining (Figure 1A). CD4+ 

T cell decline was observed within two weeks of infection, with a significant, but gradual 

decline continuing throughout the rest of the viremic phase relative to the uninfected control 

(*p < 0.0001; Figure 1B). In addition to mutations identified in previous serial passages, we 

found that the frequency of nonsynonymous SNPs producing M252T, K446R and A545V 

in env and L31P in nef had increased to >50% of the viral population by the end of the 

fourth serial passage (Figure 2).5 Additionally, we determined using Geno2pheno that the 

adapted virus is still primarily a CCR5-tropic virus and has not yet shifted to either an X4 or 

dual-tropic phenotype by the end of the fourth generation of serial passaging.21

DISCUSSION

The fourth serial passage of SIVmac239 contrasts the earlier passages in both pathogenesis 

and genetic changes.5 The first three passages showed moderate increases in viral loads, 

while the fourth passage starting viral loads were greater than 1×103 RNA copies/mL, and 

continued to rise over 3 logs relatively quickly. This suggests that the fourth serial passage 

virus is more adapted to human cells than earlier passages.5 Additionally, while CD4+ T 

cell decline was significant relative to the uninfected controls, there was not as large of 

a difference between the previous passages and the fourth serial passage relative to the 

differences in viral loads.5 This indicates that genetic changes that arise in this passage had a 

greater impact on plasma viral loads than on CD4+ T cell decline.

While the majority of the previously identified mutations were maintained at high 

frequencies within the viral population, several mutations in env and nef rose above 50% 

frequency that were not previously seen.5 Furthermore, the retention of previously identified 

high frequency mutations indicates importance for countering increased fitness for viral 

replication in the human. Future functional studies on these mutations are likely to shed 

more light on their specific roles in human host adaptation.
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Figure 1. SIVmac239 Plasma Viral Loads and CD4+ T cell decline after four serial passages.
(A) SIVmac239 fourth passage plasma viral loads. Plasma viral loads peaked around 84 

days post-inoculation. (B) SIVmac239 fourth passage CD4+ T cell decline. Both data sets 

are represented as mean ± SD. CD4+ depletion was significant by the end of the serial 

passage (two-tailed Student’s t-test, p<0.0001).
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Figure 2. Nonsynonymous mutations occurring at >50% frequency following four serial passages 
of SIVmac239.
SNPs identified had a minimum variant frequency of ≥50% and required ≥100 read depth of 

coverage.
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