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Abstract

Microscaled proteogenomics was deployed to probe the molecular basis for differential response 

to neoadjuvant carboplatin and docetaxel combination chemotherapy for triple-negative breast 

cancer (TNBC). Proteomic analyses of pre-treatment patient biopsies uniquely revealed metabolic 

pathways, including oxidative phosphorylation, adipogenesis and fatty acid metabolism, that were 

resistance-associated. Both proteomics and transcriptomics revealed sensitivity was marked by 

elevation of DNA repair, E2F targets, G2M checkpoint, interferon-gamma signaling and immune 

checkpoint components. Proteogenomic analyses of somatic copy number aberrations identified 

a resistance-associated 19q13.31–33 deletion where LIG1, POLD1 and XRCC1 are located. In 

orthogonal datasets, LIG1 (DNA ligase I) gene deletion and/or low mRNA expression levels were 

associated with lack of pathological complete response, higher chromosomal instability (CIN) and 

poor prognosis in TNBC, as well as carboplatin-selective resistance in TNBC pre-clinical models. 

Hemizygous loss of LIG1 was also associated with higher CIN and poor prognosis in other cancer 

types, demonstrating broader clinical implications.

Introduction

Ten to 15% of breast cancers are designated triple negative (TNBC) because of low 

expression of HER2, the estrogen receptor (ER) and the progesterone receptor. TNBC 

exhibits high mortality and frequent chemotherapy resistance (1). A minority of TNBC cases 

are linked to hereditary homologous recombination defects (HRD), most commonly in the 

BRCA1 gene, and are treatable with poly ADP ribose polymerase (PARP) inhibitors (2). 

However, the majority of TNBC cases do not have an obvious hereditary explanation, and 

therefore the underlying DNA repair defects are more obscure (3). Cytotoxic chemotherapy 

is standard of care but is only partially effective; hence, lack of pathological complete 

response (pCR) after neoadjuvant chemotherapy is frequent and associated with poor 

survival (4). Post non-pCR, salvage therapy with adjuvant capecitabine has modest efficacy 

(5). The programmed cell death receptor (PD1)-targeting antibody pembrolizumab is also 

approved for neoadjuvant TNBC treatment based the results of the KEYNOTE-522 trial 

(6). In combination with neoadjuvant chemotherapy, pembrolizumab significantly prolongs 

event-free survival versus neoadjuvant chemotherapy alone (7). In contrast to metastatic 

TNBC, however, outcome improvements are not predicted by PD-L1 immunohistochemistry 

(IHC) (8). Carboplatin also has efficacy in TNBC. The BrighTNess trial enrolled patients 

with stage II or III operable TNBC and randomized patient treatment to one of three 

arms prior to doxorubicin and cyclophosphamide: paclitaxel/carboplatin/veliparib (Arm A), 

paclitaxel/carboplatin (Arm B), or paclitaxel alone (Arm C). Carboplatin-containing arms 

A and B showed significantly improved pCR compared with paclitaxel alone (53% and 
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58%, respectively, vs 31%) (9). The efficacy of carboplatin addition is supported by two 

other randomized neoadjuvant trials CALGB 40603 (Alliance) (10) and GeparSixto (11). 

Thus, in the absence of predictive markers for individual components of each regimen, the 

neoadjuvant treatment for TNBC involves up to seven different drugs.

Herein we describe the first study to deploy microscaled proteogenomics (12) to discover 

neoadjuvant chemotherapy response biomarkers in TNBC. Snap-frozen, optimal cutting 

temperature compound (OCT)-embedded core needle biopsies were accrued from patients 

enrolled into two clinical trials that investigated a simplified carboplatin and docetaxel 

regimen designed to be less toxic by omitting doxorubicin and cyclophosphamide 

(NCT02547987 and NCT02124902) (13). This discovery dataset included germline-matched 

tumor whole exome DNA sequencing (WES), RNA-seq, and tandem mass tag (TMT)-based 

proteomics and phosphoproteomics. Analyses focused on the identification of biomarker 

associations with pCR, with the goal of identifying patients who would be better served with 

investigational drugs at diagnosis rather than suffer an ineffective standard of care. Multiple 

independent data sets were used to validate findings in the discovery analysis, including 

mRNA profiles of other TNBC clinical trials, immunohistochemistry (IHC), preclinical 

therapeutic studies in patient-derived TNBC xenografts (PDX) and pan-cancer analysis 

using data from The Cancer Genome Atlas (TCGA).

Results:

Overview of the Proteogenomic analysis approach

OCT-embedded snap-frozen core needle biopsies were accrued from consented patients 

with clinical stage 2 or 3 TNBC (70% Caucasian, 27% African American, and 3% 

other racial categories). Patients were subsequently treated with six cycles of neoadjuvant 

carboplatin and docetaxel combination chemotherapy (NCT02547987 and NCT02124902). 

Pre-treatment samples from 59 patients had >25% tumor content and were ultimately 

analyzed. For 16 patients, an additional sample was obtained 48 to 72 hours after 

initiating chemotherapy. A REMARK (Reporting Recommendations for Tumor Marker 

Prognostic Studies) diagram demonstrates sample flow into different analytical pipelines 

(Fig 1A). Using previously described BioTEXT sample processing and microscaled 

proteogenomics methods (12), frozen core biopsies were processed on a cryotome to 

produce 50um sections for analyte extraction interspersed with 5um sections to document 

tumor content. Alternating 50um sections were distributed into three different analyte 

preparation approaches to ensure even representation of analytes from different layers in the 

biopsy. Multianalyte extraction allowed for paired normal/tumor DNA exome sequencing 

(100X), RNA sequencing and quantitative, multiplexed (TMT) mass spectrometry (MS)-

based proteomics and phosphoproteomics (12) (Fig 1B, Supplementary Table S1-3).

Sample-level mRNA to protein correlations deteriorated in seven samples with an average 

tumor content (TC) below 45% (Supplementary Fig S1A). Based on this cutoff, a total 

of nine samples with proteomics data (including 1 sample that lacked RNA and 1 sample 

that lacked both RNA and protein) were therefore excluded from further bioinformatic 

analyses. TMT11 multiplexes were linked using a pooled sample common reference to 

serve as a denominator for calculating peptide and phosphosite ratios (12). The common 
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reference samples showed very strong correlations across multiplexes, indicating consistent 

data quality (Supplementary Fig S1B). For each qualified sample, DNA, RNA and 

protein level information was available for an average of 10,500 genes (Fig 1C) and 

phosphoproteomic analysis quantified ~27,000 phosphorylation sites in ~5,000 distinct 

phosphoproteins (Fig 1C). Comparable to previous CPTAC proteogenomic analyses, median 

per gene mRNA to protein correlation was 0.37 (14) (Supplementary Fig S1C). Genes 

with significant positive RNA-protein correlations were enriched for KEGG pathways 

involved in cellular respiration, and amino acid and lipid metabolism. Genes with lower 

correlations were enriched in pathways containing large protein complexes serving the 

spliceosome, replication, transcription, and pyrimidine metabolism (Supplementary Fig 

S1C). Consistent with previous observations, protein data significantly outperformed RNA 

data for co-expression-based gene function predictions (Supplementary Fig S1D) (12,15–

17).

A pairwise analysis was also conducted using 14 cases with baseline high tumor content (out 

of 16 pairs) matched to a second high tumor content specimen collected 48–72 hours after 

treatment (only 13 pairs had RNA data, Fig1B). Whereas immune-related pathways were 

downregulated upon treatment at both the RNA and protein level, cell cycle and metabolic 

pathways (except glycolysis) were significantly upregulated specifically at the protein level 

(Fig. 1D, Supplementary Table S4). Induction of DNA replication and repair pathways 

linked to the cell cycle was observed, likely in response to genotoxic stress triggered by 

chemotherapy exposure (18). This observation was also present in the phosphorylation site 

data (Supplementary Fig S1E). Sets of phosphosites induced by treatment had correlation 

with those established to be induced by nocodazole and ionizing radiation treatment, which 

is logical in the setting of taxotere and carboplatin exposure. Increases in phosphorylation 

were also detected for targets of the cell cycle and DNA damage kinases CDK1, CDK2, and 

ATM (Supplementary Fig S1E).

Exploration of proteogenomic pathway signatures and response to chemotherapy.

Primary study endpoints were pCR and residual cancer burden (RCB) in the surgical 

specimen where 0 indicates pCR and I-III indicate increasing levels of residual disease 

(19). PAM50 intrinsic subtype (20), TNBCtype (21), and racial categories lacked association 

with pCR, as did other cohort-specific clinical metadata (Supplementary Fig S1F). Expected 

associations for pCR with germline mutations in the homologous recombination (HR) 

genes BRCA1/2 or PALB2 (22) or with HR deficiency-associated COSMIC signature 

3 were also not observed (23,24). These negative findings emphasize the limitations of 

our study in terms of sample size. However, an elevated COSMIC Signature 6 score, 

indicating a mismatch repair defect, (23,24) was associated with high RCB (II or III) 

(p=0.03, Supplementary Fig S1G). Gene set enrichment analysis of proteogenomic features 

(Supplementary Table S5) that differed by pCR status indicated upregulation of MSigDB 

Hallmark metabolic pathways including oxidative phosphorylation, fatty-acid metabolism, 

and adipogenesis in samples without pCR. These associations were observed in the 

proteomic data but not at the mRNA level (Fig 1E, Supplementary Table S6). In contrast, 

immune signaling (interferon alpha and gamma response) and cell cycle (G2M checkpoint 

and E2F and MYC target) pathways were elevated in pCR cases in both the proteomic 
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and transcriptomic datasets (Fig 1E). Enrichment analysis of differential phosphorylation 

sites (PTM-SEA) (25) logically demonstrated elevated phosphoproteome-driven signatures 

in samples from pCR cases for treatment with inhibitors that generate DNA damage 

(etoposide, hydroxyurea and ionizing radiation) (Fig 1F). Elevated MARK2 target sites 

were enriched in non-pCR tumors (Fig 1F), corroborating prior evidence for higher MARK2 

levels in cisplatin resistance in other cancer types (26,27). Consistent with significantly 

elevated cell cycle pathways observed in pCR samples in the RNA and protein data, CDK1, 

2, and 7 and CDC7 target phosphosites were also significantly higher in pCR samples 

(Fig 1F). Further sample-wise investigation of cell-cycle proteogenomic features revealed 

that multi-gene proliferation scores (MGPS), single-sample Gene Set Enrichment Analysis 

(ssGSEA) and PTM-SEA scores for cell cycle-related pathways and cyclin dependent 

kinases were higher in pCR but were variable in non-pCR (Fig. S2A). Of note, a subset 

of non-pCR samples had elevated CDK4 activity and Rb phosphorylation (highlighted in 

box in Fig. S2A), and Rb phosphorylation was marginally higher in non-pCR tumors (Fig. 

S2B). To study the therapeutic significance of these findings, TNBC cell lines from the 

DepMap resource were explored (www.depmap.org). In this database higher Rb protein 

was associated with reduced carboplatin response but enhanced CDK4/6 inhibitor response 

(Supplementary Fig S2C).

Immune pathways and response to chemotherapy.

Since interferon alpha and gamma response signatures were elevated in samples from 

pCR cases, signals from the immune microenvironment were further explored (Fig 2A). 

Protein-derived immune stimulatory scores, previously found to be well-correlated with 

immune infiltration (14), as well as PD-L1 RNA, protein, and phosphorylation levels, were 

significantly higher in pCR-associated samples (Fig. 2B). Non-synonymous mutation load 

was associated with neither pCR (Wilcoxon rank sum p=0.57, median for pCR=77, median 

for non-pCR=78) nor immune scores (Spearman rho=−0.17, p=0.25), suggesting increased 

mutation burden was not a strong determinant of immune infiltration in this TNBC data set. 

Rather, immune scores were significantly anti-correlated with chromosomal instability score 

(CIN) (Spearman Rho=−0.61, p=6.2e-6; Fig 2C). Both PD-L1 protein and phosphoprotein 

levels significantly correlated with PD-L1 IHC (Fig. 2D-E). Similar correlations were also 

observed between PD-L1 RNA and IHC (Supplementary Fig S2D). Representative IHC 

images for high and low PD-L1 staining are shown in Supplementary Fig S2E and F, 

respectively.

Metabolic pathway analysis and response to chemotherapy.

As noted above, (Fig 1D) metabolic pathway enrichment appeared specific to proteomic 

data (with false discovery correction). Both GSEA (Fig 1E) and ssGSEA analyses showed 

differential metabolic pathways including oxidative phosphorylation, adipogenesis, fatty 

acid metabolism, as well as glycolysis were significantly higher in pre-treatment tumors 

without subsequent pCR (Fig 3A). Further analyses at the individual protein level identified 

many chemotherapy-resistance associated metabolic proteins, such as those directly involved 

in the tricarboxylic acid (TCA) cycle (ACO2, FH, MDH2, SUCLG1, SUCLG2, PDP1, 

DLAT), the electron transport chain (SDHC, UQCR10), fatty acid metabolism (CRAT, 

ACADS, ACAT1, DECR1, ECHS1, HADHB), and amino acid catabolism (ALDH6A1, 
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HMGCL, DBT, BCKDHB) (Fig 3B). While pCR-associated metabolic pathway scores 

were more robust at the proteomic data than transcriptomic data, this did not equate 

to lack of mRNA and protein correlation for all metabolism gene products associated 

with non-pCR. A subset (29 out of 43) from the relevant Hallmark metabolic pathways 

showed sufficient protein/mRNA correlation to allow independent validation of metabolic 

gene expression associations with pCR at the mRNA level (Fig 3B) in the BrighTNess 

trial dataset (9). In this study, patients on arms A and B received combination treatment 

with carboplatin and paclitaxel plus/minus veliparib (addition of which did not affect 

outcomes), as well as subsequent treatment with doxorubicin and cyclophosphamide (9). 

Baseline RNA expression data for the subset of metabolism-associated resistance genes with 

high mRNA-protein corrrelation were for association with pCR status on these two arms 

combined. Geometric mean metabolic scores were significantly higher for non-pCR cases 

as compared to pCR cases (Wilcoxon rank sum test, p=0.003; N=359 Supplementary Fig 

S3). Additionally, increasing metabolic scores were observed as the RCB category increased 

(Kruskal-Wallis test, p= 0.0024; Fig 3C).

Proteogenomic analyses of copy number alteration reveals novel chemotherapy response 
biomarkers.

The somatic landscape of TNBC is dominated by recurrent copy number alterations 

(CNA) (28), however the significance of many recurrent CNA events remains unclear, 

because typically many genes are involved in larger scale chromosomal deletions and 

rearrangements (29). A typical pattern of CNA for TNBC was observed in the discovery 

data (Supplementary Fig S4A). To explore whether chemotherapy response correlates with 

the expression of genes within specific chromosomal locations involved in recurrent can 

gains or losses, GSEA was utilized to statistically evaluate relationships between cytoband 

location and upregulated or downregulated gene expression at the mRNA or protein level 

(Fig 4A). Individual gene expression ranks was derived from the non-pCR versus pCR 

dichotomy using a signed -log 10 p-value derived from the Wilcoxon test were used as the 

input for this analysis. This unbiased prioritization demonstrated that expression of gene 

products from the 8q21.3 (amplified) and 19q13.31–33 (deleted) cytobands were elevated 

and suppressed, respectively, in non-pCR versus pCR tumors (Fig 4B). Four genes located 

at 8q21.3, RMDN1, CPNE3, DECR1, and OTUD6B, showed higher mRNA and protein 

expression in non-pCR tumors (Supplementary Fig S4B). In addition, RIPK2, which may 

mediate metastasis in advanced breast cancer (28), also located on 8q21.3, was significantly 

higher in non-pCR tumors, but only at the protein level. Similarly, four genes located 

on 19q13.31–33, LIG1, PPP5C, BCL3, and NOSIP, showed lower mRNA and protein 

expression in non-pCR tumors (Fig 4C). Both mRNA and protein level expression from 

these coordinately downregulated genes were confirmed to be suppressed in association with 

single copy LIG1 loss (GISTIC = −1) status in a subset of non-pCR-associated samples 

(Supplementary Fig S4C). Hallmark pathway GSEA analysis of the genes on cytoband 

19q13.31–33 showed enrichment in the DNA damage repair (DDR) pathway with LIG1, 

XRCC1, POLD1 and ERCC1 comprising the leading-edge genes (Fig 4D). LIG1 showed the 

strongest association with treatment response at the protein level, followed by POLD1 (Fig 

4D).
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To determine whether these observations were reproducible in other data sets, the 

association of LIG1, XRCC1, POLD1 and ERCC1 with pCR and RCB was evaluated at the 

mRNA level in the BrighTNess trial. For this analysis the two carboplatin- and paclitaxel-

containing arms were combined to parallel the docetaxel and carboplatin treatment in the 

discovery data set (9). LIG1 and POLD1 were confirmed to be significantly downregulated 

in baseline tumor samples from patients who experienced residual disease (Fig 4E). Similar 

differences were not observed in the paclitaxel-only arm, although the sample size was 

smaller (treatment arm C, p>0.05) (Supplementary Fig S4D). Low RNA expression levels 

for LIG1 and XRCC1 were also significantly associated with poor metastasis-free survival in 

the TNBC subset of another neoadjuvant chemotherapy-treated patient cohort (30) (Fig 4F 

and S4E). Finally, a trial where a modest number of patients were treated with single-agent 

cisplatin neoadjuvant therapy was interrogated (31). Consistent with the other data sets, 

LIG1 mRNA levels were significantly lower in samples associated with stable or progressive 

disease (SD+PD) as opposed to samples associated with a complete or partial response 

(CR+PR) (Supplementary Fig S4F). Of the four DDR genes located within 19q13.31–33, 

LIG1 expression was the most consistently associated with chemotherapy resistance and 

poor metastasis-free survival across datasets (Fig 4E, F, S4E-F).

Molecular features of TNBCs harboring LIG1 deletion

The associations between LIG1 deletion and/or reduced expression with tumor 

pathophysiological features were further investigated in the discovery set. Low LIG1 copy 

number level (GISTIC = −1) were observed in eight of the thirty-one (~26%) tumors without 

pCR (Fig 5). LIG1 copy number log ratios were strongly and positively correlated with the 

level of both LIG1 mRNA (Pearson, R = 0.67, p = 2.8e−06) and LIG1 protein (R = 0.55, p 

= 8.2e−05) (Supplementary Fig S5A-B). At the genomic level, COSMIC HRD Signature 3 

was lower in tumors with LIG1 loss (T test, p=0.01) (Fig 5). In contrast, tumors harboring 

LIG1 loss exhibited significantly higher chromosomal instability (CIN) scores (T test, 

p=0.0003, Fig 5). While no significant differences were observed in immune stimulatory 

scores when LIG1 loss tumors were compared other tumors, tumors with LIG1 loss had 

lower immune stimulatory (IM) scores when compared to tumors that were associated with 

pCR (p=0.01) (Supplementary Fig S5C). At the level of phosphosite expression-based PTM-

SEA (25) analysis, the IL33 pathway was significantly down-regulated in LIG1 loss tumors 

(Supplementary Fig S5D-E). Tumors with LIG1 loss also had significantly higher protein-

based proliferation scores (p-MGPS), Wilcoxon p=0.004, Fig 5) as well as upregulation 

of CDK1/2 activity (Supplementary Fig S5D) in PTM-SEA analysis of differential 

phosphosites (25), supporting increased cell cycle activity (FDR p<0.05). Collectively these 

results suggest that loss of LIG1 is associated with a constellation of poor prognosis features 

including higher proliferation rates, a less active immune microenvironment and higher copy 

number instability. Furthermore, when the phosphoproteomic data was examined, signatures 

of EGFR (gefitinib) and PI3K (wortmannin) perturbations were significantly enriched in 

LIG1 loss tumors but in a negative direction (Supplementary Fig S5D-E). Since LIG1 loss 

tumors have suppressed EGFR and PI3K signaling they may be less responsive to EGFR, 

PI3K or AKT inhibition.
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LIG1 and chemotherapy response in model systems.

When chemotherapy resistance biomarkers are identified, the question arises as to whether 

the biomarker relationship is drug selective. Model systems can be useful in this regard 

because patients almost always receive multiple drugs. Another concern is whether a 

biomarker is associated with intrinsic resistance, acquired resistance or both. Patient data 

suggested higher frequency of LIG1 copy loss in metastatic disease (Supplementary Fig 

S6A). Patterns of 19q13.31–33 loss during malignant progression were therefore explored 

using three orthotopic PDX models generated from a single patient on discovery trial 

NCT02544987. WHIM68 grew from the pretreated breast primary, WHIM74 from a surgical 

sample accrued after five months of neoadjuvant carboplatin and docetaxel, and WHIM75 

from a liver metastasis that appeared one year after treatment initiation. Proteogenomic 

analysis revealed progressive loss of LIG1 at the copy number, mRNA, and protein levels 

as the tumor progressed to a chemotherapy resistant state (Fig 6A). Progressive loss of 

LIG1 protein was confirmed by western blotting (Fig 6A and Supplementary Fig S6B) 

along with similar reductions of POLD1 and XRCC1 protein expression. Consistent with 

the progressive loss of chemotherapy sensitivity observed clinically, WHIM68, which 

expressed the highest LIG1 level, was sensitive to carboplatin, while WHIM74 and 75 were 

progressively and remarkably less sensitive (Fig 6B, Supplementary Table S7). Interestingly, 

this relationship was not as marked with docetaxel treatment (Supplementary Fig S6C, 

Supplementary Table S7). Of note, a BRCA2 loss of function somatic mutation was present 

in the baseline PDX (WHIM68) but was undetectable in the two PDX derived from after 

treatment biopsy, suggesting treatment-induced clonal selection, i.e., as the patient was 

treated, the BRCA2 mutant clone regressed, and a LIG1-deleted clone expanded. To further 

assess the potential association between LIG1 loss and selective carboplatin insensitivity, a 

large TNBC PDX cohort from the NCI PDXnet program was examined (32). LIG1 mRNA 

levels were significantly lower in PDX that failed to demonstrate a complete response 

to carboplatin (Fig 6C), and this relationship was not significant for docetaxel treatment 

(Supplementary Fig S6D). A second independent TNBC PDX samples with short-term 

in vitro treatment with multiple different oncology drugs was also examined (33, BCaPE 

database). This dataset demonstrated that LIG1 copy number loss was uniquely correlated 

with carboplatin resistance among over 100 drugs tested (Fig 6D).

LIG1 copy number loss is associated with poor progression-free survival and CIN across 
multiple cancer types

Gene copy number analysis of tumors characterized by TCGA demonstrated that LIG1 
single copy loss is present in other cancer types. In the TCGA “pan-cancer” data set, 

LIG1 heterozygous loss was associated with poor progression-free survival (PFS) (Fig 

7A, p<0.0001), significantly higher CIN (Fraction genome altered, Fig 7B), and lower 

signature 3 scores (suggesting proficient homologous recombination, Fig 7C). Cancer types 

driving these relationships include endometrial carcinoma (HR=2.23, p=0.02), head & 

neck squamous cell carcinoma (HR=1.46, p=0.03), prostate adenocarcinoma (HR=2.07, 

p=0.02), colon adenocarcinoma (HR=1.75, p=0.03) and most convincingly renal papillary 

cell carcinoma (HR=4, p= 0.0001) (Fig 7D). Despite a marginal association between 

PFS and LIG1 loss in testicular germ cell tumors (TGCT), the seminoma subtype, 

which demonstrates exquisite sensitivity to carboplatin (34), displayed no cases of LIG1 
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loss (Supplementary Fig S7A). Higher CIN (fraction genome altered) was observed 

in association with LIG1 loss in several other cancers (Fig 7E (TCGA cohorts) and 

Supplementary Fig S7B (CPTAC cohorts)).

Discussion

The absence of a baseline pCR predictor is a persistent unmet need for the precision 

treatment of breast cancer. Patients without pCR suffer prolonged exposures to toxic 

and ineffective treatment and therefore do not receive alternative treatment soon enough. 

Additionally, PD-L1 IHC assays have failed to predict the benefit of immune checkpoint 

blockade in TNBC (35). Thus, alternative biomarkers for antitumor immunity are required. 

The data presented suggest that integrated proteogenomic characterization provides more 

extensive information on the immune microenvironment that could be used to complement 

PDL1 IHC. While a TMT-based proteomic assay for PD-L1 would not be practical, 

targeted proteomic assays optimized for quantitative measurement using heavy isotope 

labelled peptides for multiple immune response components is an efficient and low-cost 

approach that could complement IHC (36). We also observed a novel association for 

baseline oxidative phosphorylation and fatty acid metabolism gene products with chemo-

resistance in TNBC. These findings are supported by functional studies in TNBC model 

systems demonstrating a role for oxidative phosphorylation and fatty acid metabolism as 

drivers of TNBC chemo-resistance (37,38). In fact, fatty acid synthase inhibition using 

the proton pump inhibitor omeprazole in combination with neoadjuvant chemotherapy 

in TNBC patients is currently being evaluated in a phase II trial (NCT02595372). pCR 

prediction models could be therefore strengthened by the inclusion of protein level analysis 

of these pathways. The cellular origin of these resistance-associated metabolic signals is 

unresolved. An additional possibility is immunosuppressive tumor associated macrophages 

with high lipid content (39). A third class of potential pCR predictors are G2M checkpoint 

components, E2F regulators and MYC target pathways. For example, TNBC tumors with 

high/intact Rb protein and phosphorylation levels have lower pCR rates and lower levels 

of proliferation and E2F target gene expression than tumors with loss of Rb protein 

(14). CDK4/6 or CDK2 inhibitors could therefore be an alternative treatment for RB 

intact TNBC. Finally, proteomic analysis clearly assists in the prioritization of genomic 

chromosomal alterations associated with pCR status, exemplified herein by the identification 

of LIG1 as a TNBC chemotherapy resistance and multi-cancer type poor prognosis 

marker. The finding from preclinical models that LIG1 loss is a selective biomarker for 

carboplatin resistance is provocative. The use of carboplatin adds toxicity to an already toxic 

anthracycline-based regimen and could potentially be avoided in LIG1-depleted tumors.

Regarding LIG1 loss as a potential pathogenetic event in TNBC, there are already 

mechanistic studies of LIG1 loss that support this hypothesis. LIG1 encodes an ATP-

dependent DNA ligase that seals DNA nicks during replication, recombination, and a variety 

of DNA damage responses (40). Of the three DNA ligases in the human genome (LIG1, 

3 and 4), LIG1 is the main enzyme responsible for ligating Okazaki fragments during 

lagging-strand synthesis at the replication fork during S-phase (41–43). LIG1 also ligates 

single-stranded or double-stranded DNA breaks in various DNA damage repair pathways 

including long-patch base-excision repair, nucleotide-excision repair, and alternative non-
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homologous end-joining repair (44,45). A phenotype for LIG1 deficiency in humans was 

first identified in an immunodeficient patient with homozygous germline hypomorphic LIG1 

alleles causing impaired Okazaki fragment ligation (46). Insufficient LIG1 activity results in 

the accumulation of replication intermediates that cause single-stranded and double-stranded 

breaks (DSB) (47,48), ultimately leading to reduced genome integrity. In transgenic mice 

hypomorphic LIG1 alleles were associated with high susceptibility to cancer formation 

(49). However, the relevance of these observations can be challenged in the setting of 

TNBC, because single copy LIG1 loss observed in our studies may not produce sufficient 

functional deficiency to generate a phenotype. However, co-deletion of LIG1, POLD1 and 

XRCC1 on 19q13.31–33 may produce a hemizygous compound deficiency phenotype since 

all three genes serve lagging strand synthesis. XRCC1 is particularly noteworthy because 

LIG3/XRCC1 provides a backup pathway for LIG1 mediated DNA ligation during DNA 

repair and lagging strand DNA synthesis (50).

The presence of LIG1 loss was found to be orthogonal to the HRD mutational signature 

3. Consequently, LIG1 cells may be required to be proficient in DSB repair, i.e. HRD and 

LIG1 loss are orthogonal routes to TNBC pathogenesis and this potentially could explain 

the correlation with carboplatin insensitivity. The PDX study (Fig 6) hints at this, as the 

model derived from the pretreatment sample (WHIM68) had a BRCA2 frameshift mutation 

and no LIG1 loss and the subsequent carboplatin resistant lines (WHIM74 and 75) had 

lost the BRCA2 mutation and gained a LIG1 hemizygous deletion. It remains unclear why 

LIG1 loss is so strongly associated with chromosomal instability across cancer types and 

mechanistic studies connecting these events are an important next step. However, cells that 

enter mitosis with unrepaired lagging strands are at risk for chromosomal breakage, illicit 

chromosomal fusion events and aneuploidy.

In conclusion, our findings emphasize the potential of microscaled proteogenomic 

approaches for the investigation of cancer treatment resistance. Follow-up mechanistic 

studies are clearly warranted, not just for LIG1-related biology but also, for example, 

the role of lipid-related metabolic signatures in chemotherapy resistance. However, lack 

of complete mechanistic insight does not diminish the clinical importance of novel 

chemotherapy drug-selective predictive biomarkers in a setting where a genomic approach or 

transcriptomic analyses have yet to produce actionable models.

Methods

Clinical sample collection:

Eligible patients for the two clinical trials (NCT02547987 and NCT02124902) included pre 

or post-menopausal women at least 18 years old with clinical stages II/III ER negative and 

HER2 negative (0 or 1 + by IHC or FISH negative) invasive breast cancer. The study was 

approved by the IRB at both participating sites, WashU and BCM, and written informed 

consent from the patients was obtained. The studies were conducted in accordance with 

recognized ethical guidelines and followed the Declaration of Helsinki and Good Clinical 

Practice guidelines. All patients were uniformly treated (without randomization or blinding) 

with neoadjuvant intravenous docetaxel 75 mg/m2 and carboplatin every 21 days for 6 

cycles with granulocyte colony-stimulating factor support (13). Research tumor biopsies for 

Anurag et al. Page 10

Cancer Discov. Author manuscript; available in PMC 2023 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://clinicaltrials.gov/ct2/show/NCT02547987
https://clinicaltrials.gov/ct2/show/NCT02124902


correlative studies were obtained at baseline prior to chemotherapy and on cycle 1 day 3 

(C1D3). On-treatment biopsy on C1D3 and biopsy at time of relapse were optional. Details 

of the clinical cohort have been recently published (13). Treatment response information 

was provided by clinical teams associated with these trials and residual cancer burden 

was calculated using RCB calculator (http://www3.mdanderson.org/app/medcalc/index.cfm?

pagename=jsconvert3).

Immunohistochemistry:

For immunohistochemistry (IHC), cut tissue sections (5mm) on charged glass slides were 

baked for 10–12 hours at 58oC in a dry slide incubator, deparaffinized in xylene and 

rehydrated via an ethanol step gradient. The IHC slides were stained for CD3 and PDL1. 

Pathology slide scoring was performed using established professional guidelines for TNBC, 

when appropriate. All immunohistochemistry results were evaluated against positive and 

negative tissue controls. See Supplementary Data and Methods for more details.

Genomic analysis:

Whole exome sequencing (WES): Tumor DNA was extracted from fresh-frozen 

biopsies and matched leukocyte germline DNA from blood samples. WES data was 

generated for 59 unique baseline DNA samples using the Illumina platform. For this, 

paired-end libraries were constructed as described previously(51) with the modifications 

described in Supplementary Data and Methods Whole exome sequencing (WES) section.

RNA-Seq data: Transcriptome data was generated for 60 samples in this study. For this, 

strand-specific, poly-A+ RNA-seq libraries for sequencing on the Illumina platform were 

prepared as previously described (52). See Supplementary Data and Methods RNA-Seq data 

section for additional details. Between 59.96 and 112.62M total reads were generated for 

these 60 samples. The average strand-specificity and rRNA rate was 97.04% and 1.79%, 

respectively. The transcripts for 22868 to 27856 genes were detected in these samples.

The paired-end reads were mapped to the human genome version GRCh38.d1.vd1 (From 

GDC) using STAR-2.7.1a. Gene expression estimation was performed using RSEM-1.3.1, 

and RSEM and FPKM values were upper-quartile normalized. Unless otherwise noted, gene 

median-centered log2-transformed RSEM values were used for the analyses presented here.

Somatic and copy number variant calling: Somatic variants were called using 

paired tumor and blood normal from WES data. Tools used for somatic variant calling 

were Strelka2, Mutect2, CARNAC, and Pindel (v 0.2.5b9). Filtering steps are described 

in Supplementary Data and Methods Somatic and copy number variant calling section. 

Similarly, germline mutations were called by comparing normal WES against the 

reference genome. Hg19.UCSC.add_miR.140312.refgene was used to map the copy number 

information to genes. COSMIC mutational signature scores for every sample were estimated 

using deconstructSigs (53).

For somatic copy number alteration analysis, bam files were processed by the CopywriteR 

package (54) to derive log2 tumor-to-normal copy number ratios, and the circular binary 
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segmentation (CBS) algorithm (55) implemented in the CopywriteR package was used for 

the copy number segmentation, with the default parameters.

Chromosomal instability for each chromosome in each sample was inferred from the 

segmentation data using a weighted-sum approach in which the absolute values of the 

log2 ratios of all segments within a chromosome were weighted by the segment length and 

summed up (16). The genome-wide chromosome instability index (CIN) was derived by 

adding up the instability scores for all 22 autosomes in each sample. MSIsensor (56) was 

used to calculate somatic MSI counts.

GISTIC2 (57) was used to retrieve gene-level copy number values and call significant copy 

number alterations in the cohort. A threshold of +/−0.3 was applied to log2 copy number 

ratio to identify gene-wise gain or loss of copy number, respectively. Each gene of every 

sample was assigned a thresholded copy number level that reflects the magnitude of its 

deletion or amplification. These are integer values ranging from −2 to 2, where 0 means 

no amplification or deletion of magnitude greater than the threshold parameters described 

above. Amplifications are represented by positive numbers: 1 means amplification above 

the amplification threshold; 2 means amplification larger than the arm level amplifications 

observed in the sample. Deletions are represented by negative numbers: −1 means deletion 

beyond the threshold; −2 means deletions greater than the minimum arm-level copy number 

observed in the sample.

For the pancancer analysis, GISTIC value +/− 2 exceed the high-level thresholds for 

amplifications/deep deletions, and those with +/− 1 exceed the low-level thresholds but not 

the high-level thresholds. The low-level thresholds are just the ‘ampthresh’ and ‘delthresh’ 

noise threshold input values to GISTIC (typically 0.1 or 0.3) and are the same for every 

threshold.

Proteomics data generation and analysis:

Proteomic sample preparation: Samples were prepared for proteomic analysis as 

described in a previous microscaled proteogenomic study (12) with minimal alterations. 

The details are described in Supplementary Data and Methods proteomic sample preparation 

section. TMT labeling: A total of 30 ug peptides in 100 uL 50 mM HEPES, pH 8.5, were 

labeled with 240 ug TMT reagent for an 8:1 TMT:peptide ratio and incubated at 25C for 

1 hour. Excess TMT reagent was quenched by incubating with 5 uL 5% hydroxylamine 

(Sigma) for 15 min. Samples within each plex were combined according to the ratios 

determined to achieve sample representation within +/− 15% error margin to all other 

samples. The combined peptides were desalted on a 100 mg tC18 Sep-Pak (Waters), eluted 

with 50% acetonitrile/0.1% FA, and dried in a vacuum centrifuge.

Experimental design for proteomics and phospho-proteomics: Samples were 

analyzed in a TMT11 format as described above. To measure relative protein and 

phosphosite expression, common references were constructed. The first core common 

reference consisted of peptide material from all clinical core samples, such that an even 

proportion was contributed for each of the 60 patients. The second common reference 

(“prospective BRCA CR”) was from a previous large cohort breast cancer proteomics study 
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(14). Protein and phosphosite expression were reported as the TMT intensity ratio between 

each sample and the core common references within each plex. For analysis of clinical 

core samples, eight TMT 11-plexes each contained peptides from 9 core needle biopsies 

in the first 9 channels. If available, paired pre- and post-treatment tumor samples from a 

patient were grouped within the same 11-plex. As a quality control measure, we obtained 

protein and phosphopeptide ratios between prospective BRCA common reference and the 

core common reference, and the results are shown in Supplementary Fig S1C

Basic reverse phase fractionation and phosphoenrichment—For basic reverse 

phase fractionation, ~330 ug of peptides were dissolved in 500 uL of 5 mM ammonium 

formate and 5% acetonitrile using an offline Agilent 1260 LC with a 30 cm long, 2.1 

mm inner diameter C18 column, running at 200 uL per minute in a total of 72 fractions, 

and further concatenated into 18 fractions for proteome analysis and 6 fractions for Fe3+ 

immobilized metal affinity chromatography (IMAC) based phosphoproteomics analysis. The 

details of this method are described (12) and Supplementary Data and Methods Basic 

reverse phase fractionation and phospho-enrichment section.

Proteomic data acquisition and processing—Proteome and phosphoproteome 

data acquisition was performed with a Proxeon nLC-1200 coupled to Thermo Lumos 

instrumentation with parameters described in Supplementary Data and Methods Proteomic 

data acquisition and processing section.

Raw files were searched against the human (clinical cores) 

or humanRefSeq protein databases complemented with 553 small-

open reading frames (smORFs) and common contaminants (Human: 

RefSeq.20171003_Human_ucsc_hg38_cpdb_mito_259contamsnr_553smORFS.fasta), using 

Spectrum Mill (Broad Institute) using parameters described in Supplementary Data and 

Methods Proteomic data acquisition and processing section.

Quantification, normalization and filtering of proteomics data—Before 

calculation of protein and phosphopeptide ratios, reporter ion signals were corrected for 

isotopic impurities. Relative abundances of proteins and phosphosites were selected as 

the median of TMT reporter ion intensity ratios from all PSMs matching to the protein 

or phosphosite. PSMs were excluded if they lacked a TMT label, had a precursor ion 

purity < 50%, or had a negative delta forward-reverse score. To normalize across 11-plex 

experiments, TMT intensities were divided by the common reference for each protein and 

phosphosite. Log2 TMT ratios were further normalized by median centering and median 

absolute deviation scaling. Proteins and phosphosites quantified in fewer than 30% of 

samples (i.e., missing in > 70% of samples) were removed from the respective datasets.

PDX proteomics data generation and analysis—For the PDX experiment, 

cryopulverized PDX tumor tissues were lysed and digested as described above. 50ug 

peptides were dissolved in 200ul 50 mM HEPES, pH 8.5 and labeled with 400ug of 

TMT reagent. TMT sample generation, basic reverse fractionation and proteomic analysis 

was performed identical to that of clinical core biopsies. Raw files were searched against 

the human and mouse (PDX samples) UniProt protein databases complemented with 553 

Anurag et al. Page 13

Cancer Discov. Author manuscript; available in PMC 2023 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



small-open reading frames (smORFs) and common contaminants (Human and mouse: 

UniProt.human.mouse.20171228.RIsnrNF.553smORFs.264contams.fasta) using Spectrum 

Mill subgroup-specific (SGS) option described in Supplementary Data and Methods PDX 

proteomics data generation and analysis section.

Data QC and differential expression and pathway enrichment analysis—
Samples with estimated tumor content below 45% were entirely removed from the dataset 

due to lack of RNA to protein correlation in these samples (Supplementary Fig S1B). The 

Wilcoxon rank sum test in R was used to identify genes (RNA), proteins, phosphosites, and 

phosphoproteins (mean of all sites on a given protein) that were differential between samples 

from pCR and non-pCR cases (Supplementary Table S5) and between samples with LIG1 

loss (GISTIC = −1) and those without loss (LIG1 WT/Gain, GISTIC >= 0). WebGestaltR 

(58) and PTM-SEA(25) were used to identify MSigDB Hallmark pathways (gene level data) 

and PTM signature sets (phosphosite level data), respectively, that show enrichment in pCR 

or non-pCR tumors by applying the GSEA/PTM-SEA algorithms to signed (by direction 

of change) log10 p-values from the differential expression analysis (Supplementary Table 

S6). Additionally, the ssGSEA R package (59,60) was applied to data from three “omes”, 

and scores for Hallmark pathways were obtained for individual samples (Supplementary 

Table S6). Normalized enrichment scores (NES) were utilized for visualization purposes. 

The Wilcoxon signed rank test in R was used for paired differential analysis of on-treatment 

to baseline measurements for RNA, protein, phosphosite, and phosphoprotein data for 14 

patients with matched on-treatment and baseline biopsies (only 13 had matched RNA data). 

GSEA using WebGestaltR and PTM-SEA were applied to signed log10 transformed p=s 

from this analysis. PTM-SEA was also applied to phosphosite log2 TMT ratios for each 

baseline sample to obtain single sample kinase activity scores (normalized enrichment 

scores for kinase target PTM sets).

Functional prediction based on gene co-expression—Co-expression network 

construction using mRNA and protein expression data and network-based gene function 

prediction for KEGG pathways were performed as previously described in Wang et al, 2017 

(15) using OmicsEV (https://github.com/bzhanglab/OmicsEV).

Multi-gene proliferation and immune profiling scores—RNA-based multi-gene 

proliferation scores (MGPS) were calculated as described previously (14,61) by averaging 

the gene-centered log2 RSEM data for all genes previously characterized as cycle-regulated 

(62) in each sample. Protein-based MGPS were generated for each sample by averaging log2 

TMT ratios for all proteins that showed significant correlation with the RNA-based MGPS 

(Pearson correlation, p<0.01 after Benjamini-Hochberg fdr correction). Immune profile and 

microenvironment scores were inferred from the FPKM version of the RNA-seq data using 

ESTIMATE (63), Cibersort (64) (run in absolute mode), and xCell (65). Protein-based 

immune modulator scores were calculated as described previously (14) by averaging log2 

TMT ratios for expert curated sets of immune modulators belonging to three categories: 

immune stimulatory, immune inhibitory, and human leukocyte antigen (HLA) (66).
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Immunoblotting—Fresh frozen WHIM68, WHIM74, and WHIM75 tumors were 

cryopulverized (Covaris CP02) then lysed in RIPA buffer. Lysates were blotted for 

LIG1 (cat# 18051–1-AP, ProteinTech, 1:1000), POLD1 (cat# 15656–1-AP, ProteinTeech, 

1:1000), or XRCC1 (cat# ab134056, Abcam, 1:1000). GAPDH (cat# sc-47724, Santa 

Cruz Biotechnology, 1:4000) was used as a loading control. Details described in the 

Supplementary Data and Methods Immunoblotting section)

Validation using DepMap—Global-TMT measurements for RB1 and response profiles 

to approved drugs from the Cancer Response Therapeutics Response Portal (CTRP), 

Genomics of Drug Sensitivity in Cancer (GDSC), and Profiling Relative Inhibition 

Simultaneously in Mixtures (PRISM) drug response datasets for cancer cell lines 

were retrieved from the DepMap resource (www.depmap.org). TNBC cell lines were 

selected based on ERneg_HER2neg lineage_sub_subtype for breast lineages from sample 

information provided by DepMap. For TNBC cell lines, Pearson’s correlation was calculated 

between RB1 protein abundance (log2 TMT ratio) and drug responses (AUC). P-values < 

0.05 were considered significant.

Data availability

The genomics and transcriptomics data has been deposited in the dbGAP database under the 

accession code phs002505.v1, and the proteomics data is accessible through NCI Proteomics 

Data Commons (PDC: https://pdc.cancer.gov/pdc/) with accessing identifiers PDC00040 

(TNBC biopsies proteome raw files), PDC000409 (TNBC biopsies phosphoproteome raw 

files), and PDC000410 (TNBC PDX proteome raw files). Mass Spectrometry raw files 

can also be accessed via MASSIVE (https://massive.ucsd.edu/) with accession identifier 

MSV000089758.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Statement of significance

Proteogenomic analysis of triple negative breast tumors reveal a complex landscape of 

chemotherapy response associations including a 19q13.31–33 somatic deletion encoding 

genes serving lagging-strand DNA synthesis (LIG1, POLD1 and XRCC1) that correlate 

with lack of pathological response, carboplatin-selective resistance and, in pan cancer 

studies, poor prognosis and chromosomal instability.
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Fig 1: TNBC patient sample overview.
A) REMARK diagram showing pre- and on-treatment sample accrual schema from TNBC 

patients enrolled in two clinical trials (NCT02544987 (BCM), NCT201404107 (WashU)) 

and treated with carboplatin and docetaxel in the neoadjuvant setting. * <45% samples were 

later excluded from analysis based on evidence from data QC.

B) Overview of available omics datasets from 59 patients (22 tumors with pCR and 37 

tumors without pCR). Pathogenic BRCA1/2 and PALB2 mutation status, residual cancer 

burden (RCB) and patient race are indicated via color-coded annotation tracks.

C) Venn-diagram showing overlap of gene IDs detected across multiple analytes and omics 

data profiled.

D) Hallmark metabolism pathways are induced by chemotherapy exclusively at the protein 

level. Scatter plot shows signed -log10 FDR from GSEA using the signed (by direction of 

change) -log10 p-values from paired Wilcoxon signed rank tests comparing RNA (x-axis) 
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and protein levels (y-axis) for on-treatment (cycle 1 day 3) samples to matching baseline 

samples (n = 14).

E) MSigDB Hallmark metabolism pathways are elevated in baseline non-pCR tumors at the 

protein level while immune and cell cycle pathways are elevated in baseline pCR tumors 

at both RNA and protein levels. Scatter plot shows the signed -log10 FDR values from 

Gene Set Enrichment Analysis (GSEA) using ranked lists of signed (by direction of change) 

-log10 p-values from Wilcoxon rank sum tests comparing RNA (x-axis) and protein (y-axis) 

levels in non-pCR tumors to pCR tumors.

F) Cell cycle kinase targets and PTM-SigDB phosphosites associated with genotoxic stress 

are enriched in pCR tumors relative to non-pCR tumors at baseline. Volcano plot shows 

results from Post-Translational Modification-Set Enrichment Analysis (PTM-SEA) using 

the signed -log10 p-values from Wilcoxon rank sum tests comparing phosphosite levels in 

non-pCR tumors to pCR tumors. Red and blue dots indicate significant (FDR <0.05) PTM 

signatures.
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Fig 2: Proteogenomic features associated with pCR in TNBC tumors.
A) Proteogenomic features associated with the immune microenvironment are elevated in 

pCR tumors relative to non-pCR tumors. Heatmap shows protein-based Hallmark single 

sample GSEA (ssGSEA) scores, protein-based immune modulator (IM) scores, RNA-based 

immune profiles, and proteogenomic features for immune checkpoint genes that are targets 

of FDA-approved inhibitors. Within each group (pCR and non-pCR), samples are ordered by 

increasing immune stimulatory score. Asterisks indicate p<0.05 by Wilcoxon rank sum test 

comparing non-pCR to pCR tumors.

B) The protein based immune stimulatory score is significantly higher in pCR tumors than 

non-pCR tumors (p=0.01, Wilcoxon rank sum test). Boxplots show interquartile range (IQR) 

with median marked in center. Whiskers indicate 1.5x IQR.

Anurag et al. Page 23

Cancer Discov. Author manuscript; available in PMC 2023 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



C) The immune stimulatory score is negatively correlated to chromosomal instability index 

(CIN; Spearman Rho = −0.612, p = 6.2e-6). Scatter plot shows immune stimulatory score on 

the x-axis and CIN on the y-axis.

D-E) Scatter plots showing correlation between PDL1 IHC levels with PDL1 protein (D) 

and phosphoprotein levels (E). pCR cases are shown in green and non-pCR in orange.
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Fig 3: Proteogenomic features associated with lack of pCR and that are altered upon treatment 
in TNBC tumors.
A) Heatmap showing single-sample GSEA NES for metabolic Hallmark pathways that are 

significantly higher in non-pCR cases, arranged by RCB0 (pCR) and RCBI/II/III (non-pCR). 

Shown are the 4 pathways that showed significant enrichment at either the RNA or protein 

level in Fig. 1E. Single sample pathway enrichment scores were assessed at the level of 

mRNA (yellow), protein (blue) and phospho-protein (red). The Wilcoxon rank sum test was 

used to compare scores for non-pCR vs pCR scores, * p<0.05.

B) Membership of differentially regulated proteins to pathways highlighted in A. Proteins 

(rows) belonging to a given pathway (columns) are shown in light green. The differential 

expression at protein and mRNA levels for each gene along with mRNA-protein correlation 

scores are shown as signed -log10 p-value (signedp).

C) A multi-omics metabolic gene signature derived for genes that are correlated at mRNA 

and protein level was further investigated in patients treated with carboplatin and paclitaxel 
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in the BrighTNess clinical trial (Treatment arms A and B) for which RNA-seq data was 

available. The mean mRNA expression score for this signature was significantly higher in 

higher RCB tumors.
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Fig 4: Discovery of DNA repair and replication components enriched in non-pCR TNBC tumors.
A) p=Cytobands enriched in genes differentially expressed between non-pCR and pCR 

for both mRNA and protein. To identify up or downregulated features over-represented 

in certain cytobands within the chromosome, GSEA was used to identify regions from 

chromosomal location databases enriched with differential genes (GSEA input was ranked 

expression list (signed -log10 pvalue) from Wilcoxon rank sum tests). Overrepresented 

cytobands that were either enriched or depleted using differentially expressed mRNA and 

protein are indicated in B, and the overlapping sets were used for further analysis. Genes 

downregulated in non-pCR samples correspond to cytoband 19q13.31–33 is indicated in C.

B) Plot showing significantly enriched or depleted cytobands obtained by running 

differential mRNA and protein ranked lists through GSEA.

C) Venn-diagram showing differential (non-pCR vs. pCR) mRNA and proteins located on 

cytoband 19q13.3.

Anurag et al. Page 27

Cancer Discov. Author manuscript; available in PMC 2023 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



D) Over-representation analysis (ORA) shows that differential 19q13.31–33 genes are 

enriched with Hallmark DNA repair pathway genes. Downregulation of these DNA repair 

genes at mRNA and protein level in non-pCR cases is shown in the bar chart on the right as 

signed -log10 p-values from Wilcoxon rank sum tests.

E) Boxplot showing comparing RNA expression of DNA-repair genes located on 19q13.31–

33 in the previously published BrighTNess clinical trial (Treatment Arm A and B), where 

patients were treated with carboplatin and paclitaxel. The Wilcoxon rank sum test was used 

to compare residual disease (RD) cases to pCR cases.

F) Forest plot showing hazard ratios (HR) and p-values for metastasis free survival 

associated with LIG1, POLD1, XRCC1 and ERCC2. HR is based on categorizing samples 

using median expression cutoff for each gene in the Hatzis dataset.
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Fig 5: Proteogenomic features associated with LIG1.
Heatmap showing copy number, mRNA and protein levels of LIG1, which are significantly 

(Wilcoxon rank sum test) lower (blue) in non-pCR tumors. Corresponding boxplots show 

that tumors with low level copy loss of LIG1 (GISTIC = −1, likely single copy number loss) 

display significantly higher chromosomal instability and multi-gene proliferation scores and 

significantly lower Signature 3 (COSMIC mutational signature associated with homologous 

recombination defect) than tumors that that are WT for or show gain of CNA (GISTIC >= 

0). T-tests and wilcoxon rank sum tests were used to compare LIG1 loss cases to LIG1 intact 

(WT/Gain) cases.
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Fig 6: LIG1 association with advanced TNBC disease in preclinical models.
A) Proteogenomic status of LIG1, POLD1 and XRCC1 in three PDX models derived from 

longitudinal biopsies from the same TNBC patient prior to any treatment (WHIM68), at 

the time of surgery after completing 5 months of neoadjuvant carboplatin and docetaxel 

(WHIM74), and from a liver metastasis one year after treatment initiation (WHIM75). 

Mutation and copy number data were derived from WES and RNA from RNAseq, and 

protein data was obtained from TMT proteomics generated by this current study. Bottom 

panels show representative western blots from 3 biological repeats for LIG1, POLD1 and 

XRCC1 protein levels. GAPDH is used as loading control.

B) Tumor volume was measured in three PDX models. Black and red lines indicate changes 

in tumor volume in PDXs treated with vehicle and carboplatin respectively. WHIM68, with 

highest LIG1 protein levels, was most sensitive to carboplatin while WHIM74 and 75, 

which displayed progressive LIG1 loss at the copy number, mRNA, and protein levels, were 
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insensitive to carboplatin treatment. P-values derived from a general linear model within 

each PDX were computed using estimated mean log2 fold changes in tumor volume at Day 

28 vs Day 0 for each treatment arm.

C) Boxplots showing LIG1 mRNA levels in TNBCs PDXs categorized into complete 

response (CR) and non-CR groups. After 4 weeks of carboplatin treatment, CR was defined 

as PDXs with non-palpable tumors, and non-CR was defined as PDXs with residual tumors 

with measurable dimensions. The Wilcoxon rank sum test was used to compare the two 

groups.

D) Association between LIG1 copy number loss and treatment response in patient-derived 

xenograft organoids (PDXOs) obtained from the BCaPE database. Carboplatin and 

docetaxel are highlighted in red.
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Fig 7: Pan-cancer analysis of LIG1 loss.
A) Kaplan-Meier curve showing significantly reduced (Log-rank P value) progression free 

survival (PFS) for tumors with single copy loss of LIG1 (HETLOSS, GISTIC <=−1, 

indicated in orange) in the TCGA pan-cancer cohort.

B) Boxplot showing higher fraction genome altered (FGA) in tumors with LIG1 copy 

number loss tumors (shown in teal) relative to tumors that were LIG1 wild-type or displayed 

LIG1 gain (shown in orange).

C) Violin plot showing significantly lower (Wilcoxon rank sum test) COSMIC Signature 3 

scores in LIG1 loss tumors (shown in teal).

D) Forest plot showing impact of LIG1 copy number loss on PFS by cancer type along with 

LIG1 WT/gain/loss frequency, HR and corresponding p-value.

E) Boxplot showing significantly higher (by Wilcoxon rank sum test) FGA (representing 

chromosomal instability) in tumors that had LIG1 copy number loss versus tumors with 
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either wild-type LIG1 or with LIG1 copy number gain. Shown are the only 5 cancers 

(HNSCC, UCEC, COAD, PRAD and KIRP) that displayed significant association between 

LIG1 loss and adverse prognosis
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