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Abstract

Non-genetic predisposition to colorectal cancer (CRC) continues to be difficult to measure 

precisely, hampering efforts in targeted prevention and screening. Epigenetic changes in the 

normal mucosa of CRC patients can serve as a tool in predicting CRC outcomes. We identified 

epigenetic changes affecting the normal mucosa of CRC patients. DNA methylation profiling 

on normal colon mucosa from 77 CRC patients and 68 controls identified a distinct subgroup 

of normally-appearing mucosa with markedly disrupted DNA methylation at a large number 
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of CpGs, termed as “Outlier Methylation Phenotype” (OMP) and are present in 15/77 patients 

with cancer vs. 0/68 controls (p<0.001). Similar findings were also seen in publicly available 

datasets. Comparison of normal colon mucosa transcription profiles of OMP cancer patients 

with those of non-OMP cancer patients indicates genes whose promoters are hypermethylated 

in the OMP patients are also transcriptionally down-regulated, and that many of the genes most 

affected are involved in interactions between epithelial cells, the mucus layer, and the microbiome. 

Analysis of 16S rRNA profiles suggests that normal colon mucosa of OMPs are enriched in 

bacterial genera associated with CRC risk, advanced tumor stage, chronic intestinal inflammation, 

malignant transformation, nosocomial infections and KRAS mutations. In conclusion, our study 

identifies an epigenetically distinct OMP group in the normal mucosa of patients with CRC 

that is characterized by a disrupted methylome, altered gene expression and microbial dysbiosis. 

Prospective studies are needed to determine whether OMP could serve as a biomarker for an 

elevated epigenetic risk for CRC development.

Prevention Relevance Statement:

Our study identifies an epigenetically distinct OMP group in the normal mucosa of patients 

with CRC that is characterized by a disrupted methylome, altered gene expression and microbial 

dysbiosis. Identification of OMPs in healthy controls and CRC patients will lead to prevention and 

better prognosis, respectively.
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INTRODUCTION

Despite the availability of an effective screening test, colorectal cancer (CRC) remains the 

third-leading cause of cancer deaths in men and women in the United States(1).

Over the years, scientists have discovered various molecular markers like gene mutations 

(KRAS, BRAF and APC genes); CpG island methylator phenotype (CIMP), microsatellite 

instability and so on to better understand the heterogeneous outcomes of colorectal cancer 

(2). However, it is noteworthy that all of these molecular subtypes are based on investigating 

the tumor tissues. We, on the other hand, study the normal tissues of colorectal cancer 

patients, which could harbor biomarkers to better understand CRC outcomes.

We have identified site-specific DNA methylation differences in normal colon mucosa 

that distinguish cancer patients from patients without cancer with high sensitivity and 

specificity(3). This observation, validated in both an independent population(4) and an 

animal model(5), suggests that these cancer patient “signature” methylation differences 

in normal tissues accumulate over time as a result of aging, environmental exposures 

and, perhaps, genetic influences. Our earlier observation(3) that the largest category of 

genes affected by differential methylation were those involved in carbohydrate and lipid 
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metabolism is consistent with long-standing epidemiological evidence(6) that dietary factors 

affect CRC risk.

Colorectal cancer risk is not distributed uniformly across the population but is higher in 

patients of African descent than Caucasians, Hispanics or Asians(7). African American 

(AA) CRC patients also appear less likely to develop microsatellite-instable cancers (a 

form of colorectal cancer with improved outcome) than their Caucasian counterparts(7). 

In addition, AA patients who are asymptomatic are more likely to have proximal, large, 

pre-cancerous adenomatous polyps present on colonoscopy screening(8). While there are 

likely to be socioeconomic factors involved in disparities in cancer incidence and outcomes, 

it is also possible that race-associated differences in biology contribute(9).

Our current study was designed to investigate differences in the normal colon epigenome of 

CRC patients by performing genome-wide DNA methylation profiling on 77 CRC patients 

(42 AA and 35 Caucasians) and age-, sex- and race-matched controls (34 AA and 34 

Caucasian). We also performed normal colon transcription profiling on selected cancer 

patients, as well as microbiome analysis via 16S rRNA sequencing. Our hypothesis is that 

environmental factors interact with the normal colon epigenome to engender epigenetic 

changes that predispose to cancer, and that these changes are greater and/or more frequent 

in AA than in Caucasians. We hypothesize, further, that environmental factors, principally 

diet, exert much of their effect on the normal colon epigenome through interactions with the 

microbiome.

MATERIALS AND METHODS

Samples

Normal colon tissues (fresh frozen) of 77 CRC patients were purchased from Fox Chase 

Cancer Centre biobank. These normal colon tissues adjacent (~10cm away) to tumors 

were collected from CRC patients as described previously(3,4). Similarly, normal colon 

tissues (fresh frozen) from age, sex, location and race matched healthy controls (n=70) 

were collected during routine screening colonoscopies after informed consent. Controls with 

previous colonoscopic finding of polyps were excluded.

Written informed consent from the patients were obtained and the study was conducted in 

accordance with Declaration of Helsinki ethical guidelines and the study was approved by 

Temple University’s institutional review board.

Sample processing

DNA extraction: Genomic DNA was extracted from colon tissue samples using Invitrogen 

PureLink genomic DNA kit as per the manufacturer’s protocol.

RNA extraction: RNA was extracted using Qiagen’s RNeasy Plus mini kit. Briefly, nearly 

30mg of colon tissue was homogenized followed by isolation and purification using standard 

manufacturer’s protocol.
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Quantification and Quality check: Extracted DNAs and RNAs were quantified using 

ThermoFisher’s NanoDrop. RNA integrity was checked on Agilent 2100 Bioanalyzer.

Statistical Analyses

All the statistical analyses were done using different packages in R. Plots were made using 

both R and GraphPad Prism version8.

DNA methylation

Illumina EPIC array: Extracted DNA was sent to external Genomic Facility at Penn 

State University to be run on Illumina’s EPIC array. Prior to array run, extracted DNA 

was treated with bisulfite using Zymo EZ DNA methylation kit. Bisulfite treated DNA is 

processed further to run Illumina’s EPIC array as described previously(10). The output data 

is generated in the .idat files. Two healthy samples failed to hybridize during the initial array 

processing.

Data processing: Raw data files from 77 CRC patients and 68 healthy controls 

were preprocessed using minfi’s preprocessIllumina function to mimic Genome Studio’s 

background correction and normalization steps in the R environment. Probe normalization 

was also done via the preprocessIllumina function which equally recreates Genome Studio’s 

method of normalizing variability in red/green signal using paired red/green control probes 

in a reference sample. Beta values obtained after these preprocessing steps were used for all 

the subsequent analyses.

Quality control: The quality of the samples was checked using the minfi getQC test.

Batch effect: As the samples were run in batches, batch effect was checked using 

correlation and Bland Altmann analyses for the replicate samples (both intraplate or 

interwell replicates (same samples in different wells of the same plate) as well as interplate 

replicates (same samples in different plates)).

Cell composition/purity: Epithelial cell purity between the tissues from healthy controls 

and CRC patients was estimated by leukocyte unmethylation for purity (LUMP) as 

described previously (11).

CpG selection for methylation analyses: SNP associated and cross-reactive CpGs 

(12,13) and 59 SNP CpGs were excluded from analysis. Poor performing probes (missing 

values in >=20% of the samples) were also excluded This resulted in 819,239 CpGs which 

were included for the analyses.

Cluster analysis: Unsupervised clustering using bootstrap method was performed using 

the pvclust package in R.

Principal component analysis: Principal component analysis was done by using 

prcomp function in R.
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Outlier analysis: Outliers or individuals with Outlier Methylation Phenotype (OMPs) 

were identified by following a two- step procedure(14,15). In the first step, each of the 

819,239 CpG sites was analyzed for the presence of outliers (methylation levels beyond 1.5 

times the interquartile range below the first quartile (“hypomethylated outliers”) or above 

the third quartile (“hypermethylated outliers”) of the distribution). In the second step, the 

distribution of outlier CpGs was plotted for each sample and similar outlier calculations as 

in Step 1 were done, to identify individuals with extremely large number of outlier CpGs 

compared to rest of the population. Outliers of Step 2 were considered as the individuals 

with OMP.

Differential methylation analysis: Between group comparisons were done using two-

sided t-test for methylation values. Bonferroni’s correction was used to correct for multiple 

testing. We checked the location/feature of each of the 819239 CpGs and corrected for 

108,498 features (because methylation levels are highly correlated at CpGs within the same 

feature, and are, thus, not independent) resulting in p values less than 4.6E-07 as the cut 

off for significance. A cut off (0.05) for magnitude of difference in beta values was also 

introduced. Hence, CpGs with p value less than 4.6E-07 and magnitude of difference >0.05 

were considered to be significant. Differential methylation analyses were done using two-

sided t test in R. Differential methylated regions (DMRs) were identified using “DMRcate” 

package in R.

Gene expression

RNAseq: RNAseq libraries were prepared using Illumina’s TruSeq stranded mRNA kit by 

following the standard manufacturer’s protocol. Libraries were sequenced in Illumina HiSeq 

4000 at GENEWIZ.

Data processing: Sequencing data quality was assessed by FastQC. Sequencing reads 

were trimmed using Trim Galore and aligned using mapping software STAR (16). 

Transcripts were counted using HTSeq.

Differential gene expression analysis: We used R package DESeq2, version 3.13(17) 

for differential gene expression analyses.

Gene ontology (GO) analysis: We used the R package ReportingTools (https://

bioconductor.org/packages/release/bioc/html/ReportingTools.html) to generate GO pathways 

(18).

Microbiome

16S rRNA sequencing: 16S rRNA libraries were generated using a modified Illumina 

16S protocol that increases input DNA to 62.5ng. Barcoded libraries were generated with 

Nextera XT adapters per Illumina’s 16S protocol. Purified libraries were quantified via 

Qubit and analyzed on the Agilent DNA Bioanalyzer in order to generate 10mM pooled 

libraries to be sequenced on the MiSeq platform.
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Amplicon sequence variants: We pre-processed raw 16S rRNA sequences generated 

for 70 colon tissue samples collected from African American patients using QIIME2, 

version 2019.1(19). We obtained a total of 3,845,964 quality-screened DNA sequences, 

with an average count of 54,942 sequence reads per sample. We applied the DADA2 

algorithm(20) via the q2-dada2 plugin to denoise the sequence data and generate unique 

amplicon sequence variants (ASVs). Taxonomic classification of representative ASVs was 

conducted using the classify-sklearn naïve Bayes classifier(21) against the Greengenes, 

version 13_8 99% reference database(22).

Taxonomic composition and differential abundance: We used R package phyloseq, 

version 1.24.2(23) to describe the taxonomic composition of each cohort at the phylum and 

genus level. In addition, differential abundance analysis using R package DESeq2, version 

3.13(17) was applied to identify bacterial taxa that were significantly different between 

the cohorts studied. Differential abundances in bacterial species were assessed using a 

log2foldchange value, and cohort comparisons were conducted applying the Wald test with 

the Benjamini-Hochberg correction.

Microbiome diversity: A rarefied sampling depth of 14,214 DNA reads per sample and 

R package phyloseq, version 1.24.2(23) were further used to assess microbiome diversity 

across sampling cohorts. Diversity within samples (alpha diversity) was estimated as 

observed number of ASVs and Shannon diversity index and significance of differences 

was tested using non-parametric Wilcoxon rank sum-tests. Rarified samples were also 

used to calculate Bray-Curtis beta diversity (dissimilarity between samples), and non-

metric multidimensional scaling (NMDS) was performed. Significance of differences 

in beta diversity between cohorts was assessed by permutational analysis of variance 

(PERMANOVA) and permutation tests for homogeneity in multivariate dispersion 

(PERMDISP) in R package vegan, version 2.5–6(24) with 999 permutations.

Data Availability Statement

The datasets generated during the current study are available in the GEO repository (GSE 

199057).

RESULTS

Quality control (QC) of methylation dataset

All the samples passed the QC test on minfi (Supplementary Figure 1A). No batch 

effects were observed for the processed methylation data. All the replicates (irrespective 

of intraplate or interplate) were strongly correlated (R2=0.99). Similarly, all the replicates 

(Supplementary Figures 1B–E) showed similar results on Bland Altmann analyses wherein 

nearly 45K CpGs (5%) were outside agreement boundary irrespective of whether those 

were intraplate (Supplementary Figures 1B–C) or interplate (Supplementary Figures 1D–E) 

replicates. Furthermore, there was no difference (p=0.4626) in the cell purity of normal 

tissues from healthy controls and CRC patients on LUMP analysis (Supplementary Figure 

1F).
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Identification of an outlier methylation group in normal tissues of cancer patients

We performed unsupervised hierarchical cluster analysis, using methylation data from 

819,239 CpGs to determine whether our study population could be subdivided on the 

basis of the normal colon epigenome. Interestingly, we observed a group of 14 CRC 

individuals (11 African American and 3 Caucasians) and a Caucasian CRC patient clustering 

separately (highlighted in yellow in Figure 1A) from rest of the dataset. We also performed 

principal component analysis to determine whether quantitative variation at multiple sites 

might distinguish the study groups (Figure 1B). Patients without cancer were less variable 

compared to the colon cancer groups of both races. The Caucasian healthy (CH) group 

had the least variability followed by the African American healthy group (AH) group. The 

African American cancer (AC) group had the highest variability followed by the Caucasian 

cancer group (CC). Very high variability in the cancer groups was exacerbated by the 

samples (11AC, 4CC) at the right side of the PCA plot (values >590 in PC1, samples 

within the black ellipse). It is noteworthy, that these 15 individuals are the ones that clusters 

separately in Figure 1A.

Definition of an Outlier Methylation Phenotype (OMP) group

Because both PCA and cluster analysis suggested the existence of a group with 

dramatically disrupted normal tissue methylomes, we applied the same metric we have 

used previously(14,15) to identify individuals with “Outlier Methylation Phenotype” (OMP) 

(Figure 2). Although this method (see Materials and Methods) transforms a fundamentally 

quantitative trait (methylation values) into a discrete classifier (OMP status), it simplifies 

further analysis of factors that may contribute to this phenotype. In other words, converting 

a quantitative variable to a categorical variable simplifies the downstream analysis for 

better characterization of this group (OMP). We plotted the number of CpGs in which an 

individual was hyper- (Figure 2A) or hypo-methylated (Figure 2B) at greater than 1.5-times 

the interquartile range to identify those individuals who were OMPs.

None of the CH individuals were hyper- or hypo-methylated outliers (Figure 2A, B), 

whereas two of the AH individuals were hypo-methylated outliers. Fifteen AC patients 

were hyper- or hypo-methylated outliers and 11 were bidirectional (both hyper- and 

hypo-methylated) outliers. Among CC patients, seven samples were hyper-methylated 

and five samples were hypo-methylated outliers, of which only four patients were 

bidirectional outliers. Individuals who were outliers in both hyper- and hypo-methylated 

plots were classified as Outlier Methylation Phenotype (OMP)(14,15). Further justification 

for classifying only bidirectional outliers as OMPs (11 AC and 4 CC) is that these 

individuals are the same patients who form separate groups in the cluster analyses (Figure 

1A) and are furthest from the other CRC patients in the PCA analysis (Figure 1B).

We also analyzed whether the OMP (red box) and non-OMP (blue box) clusters (Figure 

1A) were based on any particular feature (like age, sex). As shown in Supplementary Table 

1, these two clusters showed significant differences in cancer status. All other variables 

(age, sex, location) were not significantly different. Furthermore, we did see a borderline 

association (p=0.05) for race but the significance was lost after correcting for multiple (four) 

tests.
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Validation of OMP group in publicly available colorectal cancer datasets

We selected three colorectal cancer datasets from Gene Expression Omnibus (GEO) which 

had 450K methylation array data for both healthy controls and normal tissues from CRC 

patients. We performed outlier analysis in each of the datasets and identified individuals with 

OMPs (or bidirectional outliers) as described above. As shown in Supplementary Table 2A, 

all of the datasets show higher frequency of OMPs in the CRC group compared to healthy 

controls. Additionally, the largest dataset (GSE132804) had significantly higher frequency 

of OMPs in CRC patients compared to controls. Furthermore, we also analyzed if any 

cofounding variables in dataset GSE132804 influenced the OMP output. Supplementary 

Table 2B clearly indicates that the two groups (cancer and controls) were matched for age, 

sex and location, justifying that OMP is not an outcome of unbalanced co-variables. This 

validates our finding that normal tissues of CRC patients are more prone to have disrupted 

epigenome or OMP characteristic compared to healthy controls.

Effect of OMPs on Differential methylation in Normal Colon Mucosa of CRC Patients

African American and Caucasian CRC patients, combined, showed significantly different 

methylation at 85,178 CpGs (10.40%) compared with healthy controls (Figure 3A). On 

race-stratified subgroup analysis, the AC patients had 26,803 differentially methylated CpGs 

compared with the AH controls (Figure 3B), whereas the CC patients had 12,016 (Figure 

3C) differentially methylated CpGs compared with the (CH) controls. More than 60% of 

the differentially methylated CpGs (7,341 CpGs) in the Caucasian CRC patients were also 

differentially methylated in African American CRC patients (Figure 3B–C), suggesting that 

many of the cancer-associated methylation alterations were common to both AC and CC 

patients. However, African American CRC patients had a much larger number of abnormally 

methylated CpG sites compared with their healthy controls (an additional >14,000 CpG 

sites), than did their Caucasian counterparts.

We also analyzed whether any confounding effects between the control and CRC groups 

account for these differences. Table 1 shows the demographic profile of the analyzed 

samples. None of the variables were significantly different between cancer and control 

groups. Hence, all the differentially methylated probes (overall or race-specific) are 

associated with CRC.

Because we had identified a group of patients with dramatically disrupted normal colon 

methylation profiles, and the groups was composed of largely AA patients, we asked 

whether the increased number of differences between AC and AH groups compared with the 

CC and CH groups were driven by the OMPs by excluding them from the analysis. When 

this was done, the number of differentially methylated CpGs was reduced by more than 

50% in overall cancer vs healthy comparison (Figure 3D). A similar trend was observed in 

AC vs AH (Figure 3E). However, we did not observe a reduction in abnormally methylated 

CpGs between the CC vs CH groups (Figure 3F), suggesting that OMPs in the AC group 

contributed much more variance than in the CC group.

It is noteworthy that DNA methylation profiles of normal colon mucosa between the controls 

and CRC patients of African American and Caucasian races are mostly similar. We observed 
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a very small fraction of race-associated differences in site-specific CpG methylation between 

either healthy controls (0.10%, or 794 sites) or between cancer patients (0.02%, or 193 

sites) (Supplementary Figure 2). These observations suggest that racial disparities in colon 

cancer incidence and outcome are not a result of large numbers of methylation differences 

at different CpG sites, with the caveat that not all CpG sites are interrogated by the Illumina 

platform used.

Each of the above analyses (cluster, PCA, outlier, differential methylation) indicates the 

presence of a highly epigenetically disrupted group of CRC patients, of which the majority 

are African American. We examined this OMP group of patients, further, to determine what 

factors might influence this phenotype, and whether it might contribute to observed racial 

disparity in CRC incidence and outcome.

Differential expression of genes with differentially methylated promoter CpGs in African 
American OMPs

A working hypothesis on racial disparities in colon cancer developed from our analysis of 

normal tissue DNA methylation is that OMPs, although not unique to African Americans, 

are more prevalent among African Americans and OMPs may be at higher risk of cancer. 

It is noteworthy that of the 178,469 CpGs that were differentially methylated between OMP 

cancer patients and non-OMP cancer patients (Supplementary Figure 3), 40,961 CpGs were 

present in the promoter regions of 11,357 genes.

Again, because the majority (~75%) of OMPs were African American and we wished to 

characterize this group further, we compared gene expression levels between OMPs (AO) 

and non-OMPs (AC) among African American CRC patients for whom we were able to 

obtain normal colon RNA samples by bulk RNAseq (3 OMPs vs 5 non-OMPs). More 

than 17% (1,964) of the promoter differentially methylated genes also exhibited differential 

expression levels (Supplementary Figure 4). The majority (1,151 genes) of the differentially 

expressed genes were hypermethylated in the promoters of OMPs. As expected, most of 

these hypermethylated genes (1,021 or 88.7%) were downregulated in the OMPs compared 

to non OMPs (Supplementary Figure 4).

Supplementary Table 3 lists the differentially expressed genes. Multiple genes linked to 

mucins (MUC17, MUC3A, MUC12, MUC4, MUC5B, MUC20, MUC2, MUC13, MUC1); 

claudins (CLDN8, CLDN3, CLDN4, CLDN7, CLDN12, CLDN9), cadherins (CDHR2, 
CDHR5, CDH1, CDH17, CDHR1) and other transmembrane junction proteins (DSC2, 
CGN, CAPN13, CDHR2, TMPRSS2, AMN) were differentially expressed (down regulated) 

in OMPs. In addition, among those genes that were hypo-methylated (Supplementary Table 

3), the proinflammatory cytokine genes IL6 and IL11 were both up-regulated. The top 

significant biological processes (Supplementary Table 4) associated with the differentially 

expressed genes included xenobiotic processes (response to xenobiotic stimulus, xenobiotic 

metabolic process), leading us to perform an analysis of gut microbiome components.
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Differential microbiome in OMPs (AO) compared to non-OMPs (AC) in African American 
CRC patients

Similar to expression analysis, additional microbiome analysis was restricted to African 

American patients and included 35 AH, 25 AC and 10 AO patients. In total, we identified 

18,522 amplicon sequence variants (ASVs) across all samples analyzed. At the phylum 

level and across all cohorts, the microbiota was dominated by ASVs assigned to the phyla 

Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, Fusobacteria, and Verrumicrobia 

(Figure 4A). At the genus level, ASVs were assigned primarily to the genera Bacteroides, 
Oscillospira, Clostridium, Coprococcus, Previotella and Ruminococcus (Figure 4B).

Although neither alpha nor beta diversity estimates were significantly different between 

AH, AC and AO cohorts (Wilcoxon rank sum tests P>0.05, Supplementary Figure 

5A; PERMANOVA, P = 0.084, Supplementary Figure 5B), differential abundance 

analysis (Supplementary Figure 5C) revealed that significant differences among cohorts 

were detected in the phyla Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria. 

More specifically, we detected an increased abundance of the Eubacterium genus in 

AC tissues when directly compared to taxonomic profiles of the AO cohort, whereas 

the genera Fusobacterium, Phascolarctobacterium, Bacteroides, Roseburia, Dialister, 
Stenotrophomonas and Ruminococcus were more prevalent in the AO cohort (Figure 4C).

DISCUSSION

We performed genome-wide DNA methylation profiling on normal colon mucosa from 

African American and Caucasian CRC patients and age-, sex-, and race-matched controls. 

Our hypothesis was that CRC incidence and outcome were associated with underlying 

differences in the normal tissue epigenome.

Unsupervised hierarchical cluster analysis (Figure 1A) and principal component analysis 

(Figure 1B) both suggested the existence of a separate group of CRC patients with 

dramatically disrupted normal tissue methylomes. Interestingly, we were also able to 

identify this same group of epigenetically disrupted individuals by using a simple metric 

of outlier determination as used previously by our group(14,15). We have termed this group 

of CRC patients as “Outlier Methylation Phenotype” (OMP) (see also Figure 2). We also 

identified OMPs in publicly available colorectal cancer datasets. OMP frequencies varied 

from 1 to 2% in controls and 8 to 30% in the CRC patients. This clearly suggests that 

CRC patients are more prone to develop OMPs compared to controls. Furthermore, the 

varying percentage of OMPs among CRC patients (<10% in GSE48684 and GSE131013; 

and ~30% in GSE 132804) in these datasets could be explained by smaller sample size (24 

CRC patients in GSE48684) or difference in ethnicity (Spanish population in GSE131013). 

Unfortunately, these datasets do not have any African American samples, so we could not 

perform race-specific analyses.

While we identified many differences in average site-specific methylation between CRC 

patients and controls, confirming and extending our previous studies(3,4), the major 

difference we identified between African American and Caucasian CRC patients was in the 

number of patients with OMP(15). African Americans (26%) were more than twice as likely 
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to be OMPs compared to Caucasian (11%) CRC patients. Furthermore, African Americans 

CRC patients displayed higher abnormality in methylation profiles (AC vs AH) than their 

Caucasian counterparts (CC vs CH). However, methylation differences between the AC and 

AH groups were greatly reduced on excluding the OMPs, suggesting a substantial role for 

OMPs in causing epigenetic disbalances in African American CRC patients.

Because the frequency of OMPs appears higher among African Americans (Figure 2), and 

OMPs have sometimes been associated with undesirable outcomes in other diseases(14), as 

well as cancer(25,26), a greater frequency of OMPs among African American CRC patients 

could be associated with racial disparities in CRC incidence and outcome. However, too 

few OMPs have been identified to determine whether this unusual molecular phenotype is 

associated with any clinical outcome or any established molecular subtype in CRC patients. 

However, it is noteworthy, that our previous study on OMP in TCGA data showed that 

OMP is independent of CIMP (15). Another important aspect of cancer including CRC is 

the significance of epigenetic aging in tumorigenesis, and its potential use for cancer risk 

prediction (27). It would be interesting to further evaluate if OMPs have epigenetic age drift 

in normal tissues, which could be used as a predictive and prognostic tool. Nevertheless, 

determining the cause of OMP in normal tissues is of interest because of its potential to 

affect gene expression in normal colon mucosa, as well as the potential for environmental 

factors to influence this phenotype.

Our analysis of gene expression, comparing normal colon mucosa of OMP cancer patients 

with non-OMP cancer patients, indicated that the major pathways differentially affected in 

OMP patients were involved in repression of genes mediating the interaction between the 

intestinal epithelium/mucus barrier and the microbiome. For instance, a number of genes 

from the cadherin superfamily, claudins and other transmembrane junction proteins were 

downregulated in the OMP group. Cadherins and claudins are integral parts of adherens 

and tight junctions, respectively. Cadherins are important cell adhesion molecules and loss 

of cell adhesion, specifically by downregulation of E-cadherin (CDH1) has been associated 

with malignant characteristics including tumor progression, loss of differentiation, invasion 

and metastasis(28). On the other hand, claudins are transmembrane proteins that maintain 

the barrier functioning of tight junctions(29). Clearly, loss of expression of these and 

other transmembrane junction proteins leads to deregulation of normal tissue function 

and development of epithelium related diseases, including cancer(30). Furthermore, genes 

belonging to the mucin family were downregulated in OMP cancer patients. Aberrant mucin 

expression is linked to chronic inflammation and CRC, as mucus functions as a physical 

barrier and influences microbial composition by providing nutrients and attachment sites for 

the microbial community(31).

Analysis of the microbiome further showed differential abundance of several genera between 

OMPs vs non-OMP CRC patients. The genus Eubacterium was found to be in lower 

abundance in OMPs in our study. Interestingly, the abundance of Eubacterium hallii, and 

Eubacterium ventriosum were found to be significantly higher in healthy samples than 

in CRC samples(32). E. hallii utilizes glucose and the fermentation intermediates acetate 

and lactate to form butyrate and hydrogen, which are important in maintaining intestinal 

metabolic balance(33).
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Fusobacterium and Bacteroides, which are among the most prominent CRC associated 

bacteria, were highly abundant in OMPs compared to non-OMPs (34). Fusobacterium is 

also known to be associated with microsatellite instability (MSI), hypermethylation and 

malignant transformation of epithelial cells (35). On the other hand, Bacteroides fragilis 
cause a series of inflammatory reactions due to B. fragilis toxin (BFT), which leads 

to chronic intestinal inflammation and tissue injury and plays a crucial role leading to 

CRC(36).

Other genera found to be in higher abundance in OMPs, such as Phascolarctobacterium, 
Roseburia, Ruminococcus, Diallister and Stenotrophomonas have also been reported to be 

in higher abundance in CRC patients in other studies(37–40). Furthermore, Ruminococcus 
gnavus has been positively associated with KRAS mutations (a known CRC mutation)(41). 

Recent studies have also highlighted the role of Dialister pneumosintes in advanced CRC 

patients(42). Stenotrophomonas maltophilia is a nosocomial pathogen which is found in 

higher abundance in CRC patients after radio or chemotherapy(43).

A recent study (44) showed that the overall microbial composition in normal adjacent 

tissues is relatively similar to their tumor tissues, with the exceptions of some bacteria 

which show different prevalence between these two tissue types. This suggests that some 

of the microbiome changes that we observe may be affected by the presence of an adjacent 

neoplasm.

African American race is widely understudied and underrepresented in both publicly 

available datasets (like TCGA) and tissue biobanks. We were limited by the number of 

African American biospecimens available in the biobank. It is to be noted that some 

of the largest CRC biobanks and Consortiums have negligible representation of African 

Americans.

Although our sample size was insufficient to clinically characterize (like tumor grade, 

side of tumor, age, sex) the OMP group, analysis of the microbiome clearly reflected 

that normal colon mucosa of OMPs are enriched in bacterial genera associated with 

CRC risk, advanced tumor stage, chronic intestinal inflammation, malignant transformation, 

nosocomial infections and KRAS mutations. These observations suggest that OMP patients 

may have microbial dysbiosis that is distinct from that of non-OMP patients.

In conclusion, we identified a distinct group of highly abnormally methylated CRC patients, 

termed “OMPs”, and validated their existence using multiple statistical approaches and in 

multiple datasets. This epigenetically disrupted OMP group was more prevalent among 

African American CRC patients than Caucasian CRC patients. Furthermore, we showed 

that the vast majority of methylation differences between African Americans CRC patients 

and healthy controls are driven by this OMP group. We were also able to demonstrate 

downregulation of crucial genes in the OMP group, especially mucins and transmembrane 

junction genes. Finally, microbiome analysis showed higher abundance of microbial genera 

that are associated with CRC risk, malignancy and advanced tumor stage in OMP cancer 

patients compared to non-OMP cancer patients.
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Whether these differences might be a cause or effect of normal colon OMP is unclear. 

Such questions are only likely to be answered by examination of a much larger number of 

OMP patients. In this regard, a major consideration for future studies is the relative rarity 

of OMP individuals, and a major weakness of the present study is the small number of 

OMP individuals examined. If OMPs are, in fact, more prevalent among patients of African 

ancestry, examination of a much larger number of such patients might shed additional 

light on the significance of this phenotype, as well as whether it might be associated with 

observed racial disparities in colon cancer incidence and outcome.
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Figure 1: Analysis of methylation data.
(A) Unsupervised cluster analysis of study samples. Hierarchial cluster plots using 

unsupervised cluster analysis showing separate cluster for the OMPs. (B) Principal 

component analyses. Principal component analyses of study groups using 819,239 CpGs. 

AC African American Cancer; AH African American Healthy; CC Caucasian Cancer; CH 

Cancer Healthy.

Ghosh et al. Page 16

Cancer Prev Res (Phila). Author manuscript; available in PMC 2022 December 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: Identification of samples with Outlier Methylation Phenotype (OMP).
Number of CpGs in which a sample is (A) Hypermethylated outlier (B) Hypomethylated 

outlier. Dotted line indicates outlier boundary. Each symbol is a sample. Symbols above 

the dotted lines are outliers in respective plots. Colored symbols indicate samples who 

are outliers in both the plots and are termed as “OMPs”. Samples represented by colored 

symbols are OMPs. Same color and shape show the same individuals in both the plots. 

AH African American Healthy; CH Caucasian Healthy; AC African American Cancer; CC 

Caucasian Cancer.
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Figure 3: Volcano plots showing differential methylation analyses
(A-C) Colon cancer vs Healthy in (A) All samples (B) African Americans (C) Caucasians.

(D-F) non-Outlier Colon cancer vs Healthy in (D) All samples (E) African Americans 

(F) Caucasians. AH African American Healthy; CH Caucasian Healthy; AC African 

American Cancer; CC Caucasian Cancer; DMPs Differentially Methylated Positions; DMRs 

Differentially Methylated Regions.
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Figure 4: Analysis of the microbiome from African American samples.
(A)Taxonomic composition of colon tissue microbiomes at the phylum level. (B) Taxonomic 

composition of colon tissue microbiomes at the genus level. (C) Differential abundance 

analysis between microbiome samples of AC and AO cohorts. Each point represents ASV 

belonging to respective bacteria species. ASVs were considered significant if their false 

discovery rate-corrected P-value was < 0.05. Multiple points visualized under the same 

genus represent ASVs that are classified within the same genus but differ by one or more 

nucleotides. Taxa in square brackets are annotations for proposed taxonomy supplied by 

the Greengenes database. AH African American Healthy; AC African American Cancer 

non-OMPs; AO African American Cancer OMPs.
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Table 1:

Demographic profile of analyzed samples

All samples

Cancer (n=77) Control (n=68) P value*

Age (Mean± Standard deviation) 57.67± 9.68 56.81± 8.81 0.5757

Sex Males 38 33 1.0000

Females 39 35

Race Caucasian 35 34 0.6198

African American 42 34

Location Distal 42 37 1.0000

Proximal 35 31

Caucasians

Cancer (n=35) Control (n=34) P value*

Age (Mean± Standard deviation) 56.80±9.33 56.06±9.61 0.6905

Sex Males 15 15 1.0000

Females 20 19

Location Distal 19 19 1.0000

Proximal 16 15

African Americans

Cancer (n=42) Control (n=34) P value*

Age (Mean± Standard deviation) 58.40±10.02 57.56±8.00 0.7461

Sex Males 23 18 1.0000

Females 19 16

Location Distal 23 18 1.0000

Proximal 19 16

*
ttest for Age and Fisher’s exact test for other variables
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