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Abstract

TP53-mutated myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) form a 

distinct group of myeloid disorders with dismal outcomes. TP53-mutated MDS and AML have 

lower response rates to either induction chemotherapy, hypomethylating agent-based regimens, or 

venetoclax-based therapies compared with non-TP53-mutated counterparts, and poor median OS 

of 5–10 months. Recent advances have identified novel pathogenic mechanisms in TP53-mutated 

myeloid malignancies, which have the potential to improve treatment strategies in this distinct 

clinical subgroup. In this review we discuss recent insights into the biology of TP53-mutated 

MDS/AML, current treatments and emerging therapies including immunotherapeutic and non-

immune-based approaches for this entity.
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Introduction

TP53 is a tumor suppressor gene which encodes for a transcription factor p53, appropriately 

coined the “guardian of the genome”. TP53 is the most frequently mutated gene across all 

human cancers and carries an adverse prognosis with sub-optimal responses to conventional 

therapies across multiple cancer types.(1) Response to cytotoxic chemotherapy is highly 

dependent on the presence of an intact p53 to enable the induction of apoptosis.(2,3) 

Consequently, TP53-mutated cancers respond poorly to cytotoxic chemotherapy. Despite 

being one of the most studied genes since its initial discovery about 40 years ago, it 

has so far been considered ‘undruggable’. Similar to many TP53-mutated malignancies, 

TP53-mutated myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) 

remain long-standing therapeutic challenges with dismal median survival of less than 5–10 

months, irrespective of therapies employed.(4–6) In the last few years, some of the novel 

immune harnessing and p53 structure-modulating agents have demonstrated encouraging 

early clinical activity in TP53-mutated AML/MDS, and are now being advanced in phase 

II/III registration studies. In this review we summarize the key biologic implications of TP53 
mutations, their prognostic relevance to MDS and AML, outcomes with currently approved 

therapies, and discuss current and future directions for drug development for TP53-mutated 

AML/MDS.

TP53 mutation and cancer

TP53 is 20kb gene located on chromosome 17p13.1 which codes for at least 15 different 

isoforms and has two paralogs p63 and p73 with similar structure and overlapping 

but distinct functions and upstream pathways.(7) It presides over a highly connected 

intracellular hub involving multiple signal transduction pathways and consequently is 

affected by and in turn regulates numerous cellular processes. Some of the major functions 

of p53 include the regulation of genomic stability, cell cycling, proliferation, differentiation, 

apoptosis, senescence, autophagy, metabolism, and stem-cell homeostasis, throughout 

human life, highlighting the central role of this pathway in the healthy state (Fig. 1).(8,9)

More than 90% of cancer-related TP53 mutations have structural losses of both alleles 

and most result in loss or decreased function of genes in the p53 regulatory network, 

many of which are critical for growth arrest, routine apoptosis, and suppressing neoplasia.

(10) Mutations in TP53 can be somatic or germline, contact or structural, and based on 

their functional consequences can be divided into the most frequent complete or partial 

loss of function, to rarely silent or gain-of-function.(1,11,12) Majority of the TP53 hot-

spot mutations lead to loss of function causing inability to trigger p21, downregulation 

of genes associated with apoptosis and upregulation of proteins involved in cell cycle 

progression, e.g., cyclin B1, cyclin E1, FOXM1, CDK1, etc., and those involved in DNA 

damage response, e.g., CHK2, MSH6.(10) However, the gain-of-function hypothesis has 
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been challenged by elegant work demonstrating a dominant negative effect of missense 

TP53 mutations leading to disruption of activity of the remaining wild-type p53 after 

tetramerization.(13,14) This was further supported by clinical analysis showing lack of 

a more aggressive phenotype, a similar co-mutational landscape, and comparable clinical 

outcomes and response to therapy between patients harboring missense and truncating TP53 
mutations, throwing doubt on the gain-of-function hypothesis. Seventy percent of all TP53 
mutations are non-hotspot mutations and out of those around 30% of the mutations, e.g., 

those involving E180 and R181, while tumorigenic, behave very differently from p53-null 

and hotspot mutations.(15) These partial loss-of-function mutant p53 retain 10–50% of 

transcriptional activity compared to wild-type p53 and accumulation of these mutants can 

rescue the transcriptional apoptosis defect and sensitize leukemia cells to chemotherapy.(15) 

In contrast, mutations in other tumor suppressors, e.g., RB1, VHL, etc. more homogenously 

lead to no protein expression at all.(16)

More recently it has been noted that TP53 mutations also modulate diverse aspects of the 

innate and adaptive immune systems. Loss or dysfunction of p53 in solid tumors promotes 

tumor immune tolerance through downregulating antigen presentation, decreasing Toll-like 

receptor (TLR) mediated apoptosis, and increasing PD-L1 expression.(17) However, mutant 

p53 also favorably modulates the immune response by increasing NF-κB activity, tumor-

associated macrophage (TAM) infiltration, eliciting B-cell response, and activating T-cells, 

effects which potentially could be modulated with therapeutic intent.(17) The differential 

impact of cytotoxic therapy on TP53-mutated cancer cells and TP53 wild-type immune cells 

in the tumor microenvironment further adds to the stochastic complexity of these immune 

interactions and may impact cytokine production, immune synapse formation between 

antigen-presenting cells (APC) and T cells, and T cell fate.(18–20) With these diverse effects 

on various components of both the adaptive and innate immune system, p53 is increasingly 

being recognized as a ‘guardian of immune integrity’.(21)

TP53 mutation in MDS and AML

Clonal hematopoiesis is noted in 2% to 6% in the blood of patients with cancer, including 

clonal TP53 variants which could represent a precursor lesion in diverse malignancies.

(22,23) TP53 abnormalities occur in nearly 5–10% of patients with de novo MDS and 

AML.(24–26) This frequency is much lower than several other solid tumors, e.g., uterine 

carcinosarcoma, esophageal adenocarcinoma and lung squamous cell cancers where TP53 
alterations are noted in more than 80% cases. However, the frequency in AML/MDS goes 

up to 20–40% in older patients or those with therapy-related myeloid malignancies.(6,27) 

The frequency of TP53 abnormalities further increases to 70–80% in patients with complex 

karyotype, and in patients with loss of chromosome 17/17p, 5/5q, and 7/7q.(28,29) Therapy 

for a previous cancer, including radiation or chemotherapy do not directly induce TP53 
mutations. Rather, pre-existing progenitors carrying mutant TP53 and resistant to DNA 

damage expand under selective pressure from radiation or chemotherapy to give rise to 

TP53 mutated AML/MDS later in life.(5,30,31) While over 70% of TP53 abnormalities 

are missense substitutions clustering within the DNA-binding domain, diverse genetic 

aberrations in TP53 with complex and varied functional consequences have been described 

in MDS and AML.(1) These include chromosomal alterations leading to allelic gains or 
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losses or frameshift insertions or deletions. The impact of these disruptions range from 

partial loss-of-function, complete loss-of-function, or gain-of-function, resulting in diverse 

functional consequences.(1,26,27) Among TP53-mutated MDS, ‘multi-hit’ involvement 

with more than one genomic and/or chromosome 17 abnormality is noted in the majority 

of patients, including: multiple mutations in 24% of patients, mutations with concomitant 

deletions in 22% of patients, and mutations with concomitant copy number loss of 

heterozygosity in 21% of patients.(26) Notably, recent data strongly support that TP53 
mutant, particularly multi-hit, results in similarly poor clinical outcomes, regardless of 

whether classified as MDS or AML, arguing for a revised TP53 mutant myeloid entity 

encompassing both MDS and AML if the blast count is 10–19% (MDS/AML) or AML with 

mutated TP53 if blasts are 20% to recognize this highly adverse-risk myeloid pathology.(32–

35)

Multi-hit TP53-mutated MDS/AML often represents a distinct stem-cell disorder with a 

paucity of co-mutations in other myeloid malignancy-related genes, with co-mutations 

occurring in less than 25% cases.(36) This is consistent with TP53 mutations being early 

truncal events in the MDS/AML pathogenesis in such cases and consequently multi-hit 

TP53 mutations or bi-allelic defects evolve to become dominant clones conferring resistance 

to current standard therapies and consequently carry worse prognosis.(26) Mono-allelic 

TP53 mutations (33%) on the other hand frequently have co-mutations in other genes, 

most commonly TET2 (29%), SF3B1 (27%), ASXL1 (16%), and DNMT3A (16%), and 

are likely to be late sub-clonal events with varying impacts on outcomes.(26) As accurate 

multi-hit analysis requires determination of the allelic state by loss of heterozygosity 

mapping, clinically available conventional and cytogenetic techniques currently do not 

capture all bi-allelic patients. However, a reasonable determination of multi-hit state can 

be made if there is presence of more than one TP53 mutation, TP53 mutation(s) in 

the setting of a missing chromosome 17p locus, or a variant allele frequency (VAF) 

> 50%, which are 75% concordant with copy neutral LOH variants.(26) Nuclear p53 

accumulation assessed by immunohistochemistry may also serve as a surrogate for TP53 
mutation and copy number status.(37) Recent reports further show that blast count does 

not distinguish clinical course and patients with TP53 mutation with complex karyotype 

have similarly dismal outcomes irrespective of initial diagnosis of AML or MDS or the 

baseline bone marrow blast percentage.(32,33) As a result, the International Consensus 

Classification has categorized TP53 mutated MDS with excess blasts and TP53 mutated 

AML as a group of high-risk myeloid neoplasms harboring TP53 mutations to facilitate 

clinical trial conduct and regulatory approval for new drugs targeting this patient population. 

Chromothripsis, or chromosome shattering, is a catastrophic event leading to extensive 

chromosomal rearrangement.(38) Chromothripsis serves as an additional adverse risk 

biological characteristic associated with TP53 mutation and complex karyotype in AML/

MDS. Such massive shattering and reassembly of chromosomes correlate with genomic 

instability, and defines a subset of complex karyotype AML/MDS with even worse 

outcomes.(39,40)

In a recent survey of more than 500 TP53 mutant AML cases, three-quarters harbored 

a missense variant, most commonly R248, R273 and Y220, with other variants, such 

as TP53 deletion, frameshift and nonsense alterations less common. It was also found 
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that TP53 copy number loss was extremely prevalent, identified in 70% of AML cases 

with a concomitant TP53 abnormality.(37) AML survival appeared worse for patients 

who have either a concomitant TP53 mutation and TP53 copy number loss, or when 

multiple TP53 mutations are present. It is possible that certain TP53 hotspot variants 

confer a biological fitness advantage, especially if the restraining effect of the wild-type 

allele is also lost. Alternatively, deletion of chromosome 17p may result in an allelic 

loss of other haplo-insufficient tumor suppressors that may further enhance the oncogenic 

potential of mutant TP53 via p53 independent mechanisms.(41) Experimental CRISPR/Cas9 

genome modelling has demonstrated that human AML cell lines expressing TP53missense/+ 

have a competitive growth advantage in vivo over haploinsufficient TP53+/− isogenic 

lines, suggesting a dominant negative effect.(13) TP53missense/− cells, however, were also 

competitively more potent than TP53missense/+ cells with the wild-type allele retained, 

consistent with clinical observations where p53 loss of heterozygosity is often selected for at 

the time of clinical progression, including after venetoclax-based therapy.(42) The biological 

dominance of TP53 missense variants in AML supports the ongoing therapeutic search 

for new compositions with therapeutic potential to revert aberrant p53 protein function to 

normal.

TP53 mutational burden has also emerged as a significant prognostic factor in AML and 

MDS with a correlation with response to certain standard therapies. A VAF over 6% is 

associated with inferior overall survival (OS) and progression-free survival in lower-risk 

MDS. In high-risk (HR) MDS, increasing VAF strongly correlates with risk of complex 

cytogenetics, and a VAF > 40% was an independent covariate for poor OS.(43,44) These 

data were validated in a larger cohort which showed that the hazard of death increased by 

1.02 per 1% increase in VAF among all MDS.(45) In patients with newly diagnosed AML 

with monoallelic TP53 mutations, an increasing VAF (<20% vs. 20–40% vs. >40%) did 

not impact the response rates or the overall dismal survival with hypomethylating agent 

(HMA)-based therapies, with or without venetoclax, but an increasing VAF was associated 

with progressively lower response rates and inferior OS in the context of cytarabine-based 

regimens.(46,47)

p53 also plays a vital role in the normal function and homeostasis of hematopoietic stem 

cells (HSC) and the bone marrow microenvironment. During normal hematopoiesis, intact 

p53 mediates quiescence of HSCs, preservation of genomic stability, and reduction of 

reactive oxygen species. Loss or dysfunction of p53 leads to enhanced self-renewal of 

HSCs, and with other supporting oncogenic aberrations can lead to their transformation 

into leukemia stem cells (LSC).(36) p53 is activated in response to DNA damage with 

consequent transcriptional activation of several genes, resulting in DNA repair or cell cycle 

arrest and apoptosis.(2) An impaired apoptosis pathway likely contributes to resistance 

to cytotoxic chemotherapy or venetoclax-based therapies in multi-hit TP53-mutated MDS/

AML.(46,48,49) Haploinsufficiency of genes located on chromosome 5q, e.g., CSNK1A1, 

EGR1, APC, cooperate with loss of or mutations in TP53 to confer survival advantage 

in hematopoietic stem cells.(50,51) Degradation of the remaining CK1α leading to an 

increased p53-mediated apoptosis is the key mechanism of benefit with lenalidomide in 

MDS with del(5q).(52) Expansion of pre-existing clones or emergence of new clones with 

TP53 mutations consequently contributes to treatment failure and disease progression in 
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lower-risk MDS with del(5q) treated with lenalidomide.(53,54) Other notable genomic 

associations with TP53-mutated MDS/AML include amplifications involving EPOR/JAK2 
in patients with acute erythroid leukemia which is characterized by multi-hit TP53 
mutations.(55,56) Germline mutations in ERCC excision repair 6 like 2 (ERCC6L2) have 

been linked to genomic instability and somatic TP53 mutations leading to AML with 

erythroid differentiation.(57)

Poor outcomes with available therapies prompted investigations into the immune 

architecture and cytokine milieu of TP53-mutated MDS/AML with the goal of identifying 

potential immunotherapeutic approaches. TP53 mutated MDS/AML have an enrichment 

of immunoinhibitory checkpoints including PD-L1 on HSCs, TIM3 on myeloid derived 

suppressor cells, and LAG3 and TIGIT on bulk bone marrow blasts.(20,58,59) Furthermore, 

TP53-mutated MDS/AML have an immune-dampened microenvironment with up-regulation 

of FoxP3 transcription, an increase in ICOShigh (activated) regulatory T-cells, PD-1low 

myeloid derived suppressor cells (MDSC), and a decrease in OX40+ cytotoxic T-cells, 

ICOS+ and 4-1BB+ natural killer cells, as well as a marked impairment of CD3-CD28 

stimulated T-cells to secrete immune effector Th1 cytokines (polyfunctionality).(20,58,60) 

IFN-γ signaling is well recognized as a major driver of response to immune checkpoint 

inhibition in solid tumors. While studies in TP53-mutated AML show that IFN-γ signaling 

may be a biomarker of response to CD3 × CD123 dual-affinity receptor targeting (DART) 

antibody flotetuzumab , there is debate about whether the increased IFN-γ signal is a 

reflection of T-cell fitness in the tumor microenvironment, or a sequela of increased 

inflammation in response to cell death causing a heightened IFN-gamma production.(20,60) 

While bulk RNA analysis of bone marrow has shown high IFN-γ signaling pretherapy 

in TP53-mutated AML responders to flotetuzumab, single-cell CD3-CD28 stimulated T-

cell cytokine profiling has suggested decreased IFN-γ and Th1 cytokine secretion by T 

cells in newly diagnosed and relapsed/refractory TP53-mutated AML.(20,60) In addition, 

TP53-mutated AML also showed upregulation of proinflammatory Th17 genes, NF-κB, 

PI3K-AKT signaling and other markers of immune senescence. One could postulate that 

this may not only impact their response to standard therapies but also potentially abrogate 

development of a robust graft-vs-leukemia effect.(20)

In summary, these data point toward a profound immune dysregulation, with features of 

immunosenescence with an overall immune-evasive phenotype, which could potentially be 

leveraged to develop novel immunotherapy approaches for TP53-mutated MDS/AML.

Current therapies for TP53mut MDS and AML

HMAs are the current standard approach for newly diagnosed HR-MDS and in TP53-

mutated MDS patients offer an overall response rate (ORR) of 17–77% (encompassing 

CR, mCR, PR, HI), with IWG complete remission (CR) in 10–25%, and median OS 

of 8.2–12.4 months with one study reporting an ORR of 100% (n=9) with the 10-day 

regimen of decitabine.(45,61,62) In MDS, TP53 deletions are associated with significantly 

lower response rates to HMAs, and TP53 VAF more than 40% confer significantly worse 

outcomes with median OS of 4.1–7.7 months with HMA therapy (Table 1).(29,45) In a large 

cohort of MDS and oligoblastic AML who underwent sequential genomic testing during 
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HMA therapy, TP53 mutation was a strong negative predictor with median OS of 9.7 months 

(HR 2.33; p=0.001). Importantly, a clearance of TP53 mutations (i.e. to VAF of < 5%) was 

a strong predictor of improved outcome to HMA therapy, particularly in patients that were 

bridged to allogeneic stem cell transplantation (allo-SCT; HR 0.28; p=0.001).(44)

In TP53-mutated AML, frontline therapy with low-intensity chemotherapies, e.g., HMAs or 

low-dose cytarabine-based regimens demonstrated an ORR of 14–62% with a median OS of 

2.1–8.1 months. The rates of response with the 5-day vs 10-day regimen of decitabine were 

similar (29% vs 47%, p=0.40), in a single institution randomized study.(6,63–66) Intensive 

chemotherapy-based approaches offered similar outcomes with an ORR of 47–55% and 

median OS of 6.8–10.1 months, often with more toxicities, longer hospital stays, and 

prolonged myelosuppresion.(6,63,64,67) Baseline TP53 VAF was prognostic for response 

to cytarabine-based regimens with VAF>40% associated with an inferior CR and CR 

with incomplete hematologic recovery (CRi) rate of 35% and median OS of 4.7 months, 

compared with a CR/CRi rate of 79% and median OS of 7.3 months in patients with TP53 

VAF≤40%.(47) TP53 VAF however did not seem to impact response rates and median OS in 

the context of HMA-based regimens for AML, unlike the trend observed in TP53 mutated 

MDS with HMA.(47)

TP53 mutations confer resistance to venetoclax-based regimens in AML through alterations 

in mitochondrial homeostasis by inhibiting mitochondrial stress response and increasing 

oxidative phosphorylation.(68) Leukemia cells with TP53 loss have increased threshold for 

BAX/BAK activation and although this can be suppressed initially by venetoclax, over time 

they are able to escape BCL-2 inhibition due to competitive advantage.(49) HMA with 

venetoclax did show encouraging responses in frontline TP53-mutated poor cytogenetic 

risk AML with a CR/CRi rate of 41% (CR rate of 20%) versus CR/CRi rate of 17% 

(CR rate of 11%) with HMA-alone, as noted in subset analysis from the phase IB study 

of HMA with venetoclax, and VIALE-A trial.(46,48,69–71) However, the median OS in 

older/unfit patients with AML with venetoclax and HMA was 6.5 months which was similar 

to the 6.7 months with HMA alone. Given prior data suggesting decitabine 10 days may 

have a specific benefit in TP53-mutated AML, one study combining decitabine 10 days 

with venetoclax showing a CR/CRi rate of 57% (CR rate 37%) but with median OS of 

only 5.2 months.(46) A high 60-day mortality rate of 26% was observed with decitabine 

plus venetoclax, mainly due to refractory disease and contributed to the poor long-term 

OS. Nonetheless, venetoclax may still have a role in combination with novel therapies in 

TP53-mutated AML harnessing independent mechanisms of synergy. Combined inhibition 

of BCL-2 and MCL-1, and blockade of extrinsic and intrinsic apoptotic pathways, may 

also offer a novel approach that preclinically appears to be effective against TP53-mutated 

AML.(49,72)

Role of Allogeneic Stem Cell Transplant in TP53 mutated AML

Multiple analyses have shown that patients with TP53 mutated AML/MDS harbor a 80 

to 90% higher risk of relapse and death after allo-SCT compared to TP53 wild-type 

patients.(25,73,74) Majority of these relapses and death following allo-SCT occur in patients 

with concomitant chromosome 17 abnormality or complex karyotype, leading to ‘multi-hit’ 
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disease.(75) However, among patients with TP53-mutated AML, allo-SCT in first remission 

(CR1) can reduce the risk of relapse by up to 80% and risk of death by up to 70%.(47) 

However, only a minority of patients with TP53-mutated AML, regardless of age or fitness, 

are able to proceed to allo-SCT in CR1, ranging from 0–33% across different published 

series, with lower response rates, poor count recovery, increased rates of early mortality, and 

early relapse being the predominant barriers to allo-SCT in this population.(46,47,47,66) A 

case could be made for limiting allo-SCT only in TP53 mutated patients with AML who 

achieve at least a morphologic remission (i.e., <5% marrow blasts) as outcomes in patients 

not in morphologic remission before allo-SCT are poor in general, and even more inferior 

in TP53 mutated patients. Clearance of TP53 mutation prior to allo-SCT has been shown to 

be a favorable prognostic marker and patients who achieve TP53 mutation clearance or <5% 

by next-generation sequencing should be strongly considered for transition to allo-SCT in 

otherwise suitable candidates.(76)

While augmented reduced intensity conditioning with fludarabine/amsacrine/cytarabine-

busulphan has not been shown to improve outcomes over fludarabine-based reduced 

intensity conditioning regimen, myeloablative conditioning regimen has been shown to 

improve survival over reduced intensity conditioning in patients with AML with measurable 

residual disease (MRD).(77,78) Even with allo-SCT in TP53-mutated MDS and AML, 

the risk of relapse remains very significant and long-term survival remains low, at less 

than 20%.(28,29) Nevertheless, in the consensus opinion of the authors, allo-SCT still 

appears to offer the best chances of improving outcomes and achieving long term survival 

in appropriately selected patients, with upfront non- cytotoxic strategies to attain remissions 

without severe toxicities, early transition to allo-SCT in suitable candidates, close peri-

transplant monitoring for TP53 mutated clones, and the use of rational maintenance 

therapies post-transplant to improve outcomes in TP53 mutated patients.(75) To this end 

novel mutant p53 directed therapies such as eprenetapopt in combination with azacitidine 

have shown promising results as maintenance therapy after allo-SCT. In patients with TP53 
mutated AML/MDS following allo-SCT, this combination showed a median relapse-free 

survival of 14.5 months and median OS of 20.6 months which compared favorably to 

historical expectations.(79)

Emerging strategies for TP53mut MDS and AML

Recent progress in immunotherapeutics and mutant p53-directed approaches offer the hope 

of potentially improving outcomes in these patients (Fig. 2).(80) In this section we discuss 

emerging data with four promising agents in this space, namely magrolimab, flotetuzumab, 

sabatolimab, and eprenetapopt, and have briefly described other emerging strategies with 

potential for the field of TP53-mutated MDS/AML (Table 2).

Magrolimab

CD47 is an integrin-associated anti-phagocytic protein which is overexpressed in cancer 

cells and correlates with poor outcomes in AML. It binds to the signal receptor protein-α 
(SIRPα) on macrophages and dendritic cells and enables immune evasion by inhibiting pro-

phagocytic receptors like complement receptor 3, Fc receptors and SLAMF7 from initiating 
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phagocytosis.(81) Magrolimab (Hu5F9-G4) is a first-in-class humanized IgG4 monoclonal 

antibody against CD47 and prompts cancer cell phagocytosis by macrophages through 

disruption of the CD47-SIRPα inhibitory checkpoint thereby blocking the “don’t eat me 

signal”. CD47 is also a leukemia stem-cell (LSC) marker and targeting CD47 can potentially 

eliminate LSCs while sparing normal hematopoietic stem cells. Pre-clinical studies showed 

synergism between azacitidine and magrolimab in an AML cell lines and this combination 

was tested in a phase 1b trial which enrolled older/unfit patients with newly diagnosed AML 

ineligible for induction therapy and newly diagnosed intermediate to high risk MDS. Among 

older/unfit patients with with TP53-mutated AML treated on this trial (n=72), azacitidine 

with magrolimab showed an ORR of 49% (n=35/72) and CR rate of 33% (n=24/72).(82) 

The median duration of response was 8.7 months, and the median OS was 10.8 months.(82) 

In the 4 patients with TP53-mutated MDS enrolled, the combination led to a response in 

3 of 4 patients and a complete cytogenetic response in all patients.(83) Magrolimab with 

venetoclax and azacitidine was evaluated in patients with newly diagnosed TP53-mutated 

AML (n=14) with an ORR of 86% with a CR rate of 64%, MRD negative rate of 55%, and 

robust clearance of TP53-mutated clones in 8 of 9 CR/CRi patients (VAF sensitivity 1%).

(84) Other anti-CD47 targeted therapies in phase 1/2 clinical trials include lemzoparlimab, 

TTI-621, TTI-622, ALX148, SL-172154 (SIRPα-Fc-CD40L) and others with many agents 

have TP53 mutant specific cohorts.(85)

Flotetuzumab

CD123 serves as the receptor for interleukin-3, and its downstream signaling promotes 

hematopoietic progenitor cell proliferation through activation of the PI3K/MAPK pathway 

and upregulation of antiapoptotic proteins.(86) CD123 is differentially expressed in 

about 90% patients with AML and overexpression on AML blasts is associated with 

inferior outcomes.(87,88) Flotetuzumab is a CD123×CD3ε dual-affinity retargeting (DART) 

molecule which mediated T-cell activation and proliferation, resulting in eradication of 

CD123-expressing primary AML blasts in vitro and in vivo.(86,89) Flotetuzumab was 

evaluated in a phase 1/2 study in R/R AML, enriched for patients with AML with primary 

induction failure or early relapse (within 6 months of response).(90) Among patients with 

TP53-mutated R/R AML the ORR was 47% (n=7/15) with an encouraging median OS of 

10.3 months in responding patients.(20) The relatively short durability of response outside 

of patients who were bridged quickly to allo-SCT remains a challenge with a duration of 

response of 2–5 months in non-transplanted patients

CD123 expression did not correlate with response or cytokine release syndrome with 

flotetuzumab. Transcriptomic analysis suggested that an IFN-γ enriched, immune-infiltrated 

tumor microenvironment predicted response to flotetuzumab, and an immunosuppressed 

tumor microenvironment could be rejuvenated by flotetuzumab through T-cell-driven 

mechanisms.(90) Specifically among TP53-mutated patients higher bulk RNA expression 

of FOXP3, PD1 and inflammatory chemokines correlated with response along with CD8B 
and IFNG.(20,90) Vibecotamab (XmAb14045) is another CD123×CD3 bi-specific T cell 

engager (BiTE) which showed a modest ORR of 14% (n=7/51) in R/R AML.(91) Multiple 

CD33-directed BiTEs are currently in dose-escalation phase and have yielded modest 

responses in R/R AML. There are several other bi-specific antibody platforms targeting 
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CD123, CD33, CD135, CLEC12A, as well novel NK-cell-directed bi-specific killer cell 

engager (BiKE) and tri-specific killer cell engagers (TriKE) in early clinical development 

and if effective and safe may be interesting to evaluate for TP53mut AML given their 

potentially mutation agnostic mechanism of actions.

Eprenetapopt

Eprenetapopt (APR246) is a first-in-class agent which binds covalently to cysteine residues 

in the core DNA domain of mutant p53 and is postulated to cause refolding and 

restoration of an active wild-type-like conformation and function of p53.(16) Other proposed 

mechanism of this class of agents include induction of cell death via reactive oxygen 

species, ferroptosis, depletion of deoxyribonucleotides, and triggering of unfolded protein 

responses through depletion of antioxidants.(92–95) Two studies evaluated eprenetapopt 

with azacitidine in newly diagnosed adults with HMA-naïve low to high risk MDS, AML 

and MDS/MPN.(96,97) In a pooled analysis of the two trials, significantly higher rates of 

CR were noted in patients with isolated TP53 mutations (CR rate of 52% vs 30%), and in 

patients with biallelic TP53 mutation or complex karyotype (CR rate of 49% vs 8%).(98) 

Additionally patients with complete or partial remission and/or clearing TP53 mutation 

(VAF sensitivity 1%) and proceeding to allo-SCT had favorable outcomes with median 

OS not reached. In the overall AML, MDS, MPN population, immunohistochemistry of 

bone marrow mononuclear cells showing more than 10% staining for p53 was associated 

with higher CR rate (66% vs 13%, p=.01).(96) Reduction of mutant TP53 VAF below 

0.1% was associated with improved OS (NR vs. 10.7 months, p=.05).(97) However, in 

a randomized trial in newly diagnosed patients with TP53-mutated MDS azacitidine with 

eprenetapopt vs azacitidine with placebo did not meet the primary endpoint in spite of 

a numerically improved CR rate (33% vs 22%, p=0.13).(99,100) Preliminary results of 

a triple combination of eprenetapopt, venetoclax with azacitidine in previously untreated 

TP53-mutated AML (n=30) showed CR/CRi rate of 53% and a CR rate of 37% and 

accrual is ongoing.(101) A next-generation oral p53 reactivator APR-548 is currently under 

pre-clinical development. Mutant specific p53 activators, e.g., PC14586 for p.Y220C are 

currently under investigation for solid tumors (NCT04585750).(102)

Sabatolimab

Potential for immunotherapeutic agents to act in p53-agnostic manner and potentially 

circumvent some of the p53 associated resistance mechanisms, as well as growing insights 

into immune microenvironmental remodeling by TP53-mutant AML/MDS have led to 

an increasing interest in evaluating other immunotherapies in TP53-mutant AML/MDS. 

The T-cell immunoglobulin and mucin domain-3 (TIM-3) is another checkpoint which 

forms a part of a co-inhibitory receptor module expressed on exhausted T cells and 

is preferentially over-expressed on MDS/AML LSCs.(103)(104) TIM-3 is involved in 

an autocrine signaling loop via galectin-9 which promotes LSC renewal and antibodies 

blocking TIM-3 could therefore selective eradicate AML LSCs via CDC, ADCC, and 

ADCP.(105,106) Sabatolimab (MBG453) is a humanized, high-affinity, IgG4 targeting 

TIM-3 being evaluated in solid tumors and hematological malignancies. A phase Ib trial 

evaluated sabatolimab with HMA in newly diagnosed patients with high-risk (HR) MDS by 
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IPSS-R (n=53) or AML unfit for intensive therapy (n=48).(107) The adverse event profile 

of the combination was consistent with that of HMA alone with few, and mostly lower 

grade, immune related AEs noted. In patients with HR-MDS this combination demonstrated 

an ORR of 57% (CR rate 20%) and median duration of response (DOR) of 17.1 months. 

Among patients with newly diagnosed AML, this combination yielded a CR/CRi rate of 

30%, CR rate of 25% and median DOR of 12.6 months. Specifically, in patients with 

HR-MDS with adverse risk mutations TP53, RUNX1, ASXL1, CR/mCR rate was 43% and 

median DOR was encouraging at 21.5 months in 10/14 responders. In patients with newly 

diagnosed TP53-mutant AML the CR/CRi was 40% with median DOR of 6.4 months.

Other Immunotherapeutic Approaches

SIRPα-directed therapies

SIRPα-directed therapies to the macrophage ligand: SIRPα offer another approach to 

disrupt the CD47-SIRPα immune checkpoint and modulate myeloid derived suppressor 

cells. These agents may potentially mitigate on-target adverse effects of anti-CD47 antibody, 

e.g., anemia. Such therapies including anti-SIRPα antibodies, e.g., OSE-172, CC-95251, 

and SIRPα fusion proteins, e.g., ALX148, TT-621, are currently in phase 1 trials with 

ALX418 and TTI-621 being evaluated in combination with HMA in MDS, and in 

combination with HMA with venetoclax in AML.

Immune checkpoint inhibitor-based regimens

Immune checkpoint inhibitor-based regimens have overall yielded modest results in 

MDS/AML so far. The initial report with single agent ipilimumab yielded a CR in 42% 

patients (n=5/12) with relapsed AML post allo-SCT generating a great deal of excitement 

for this field in AML and MDS.(108) Blockade of PD-1, or PD-1 and CTLA-4, with 

azacitidine or high-dose cytarabine in all R/R AML yielded modest CR/CRi rates of 14–

36% patients. The median OS was 6.3–10.5 months with ORR of 23% in TP53-mutated 

R/R AML in these PD-1 based combinations.(109,110) In the frontline setting nivolumab 

with idarubicin and cytarabine yielded CR/CRi 50% in patients with TP53-mutated AML 

(n=4/8).(67) Unfortunately no significant improvement in CR/CRi rates or in OS in 

frontline higher risk MDS (n=84) or frontline older/unfit AML (n=129) was noted in a 

randomized frontline phase II study of azacitidine with or without anti-PD-L1 antibody 

durvalumab resulting in tempered enthusiasm and uncertain future for PD1/PD-L1/CTLA4-

based therapies in myeloid malignancies.(111,112)

Cellular therapy

Cellular therapy approaches have been challenging to develop due to the hostile milieu 

of the bone marrow niche in AML.(80) CAR-T therapies directed at myeloid antigens 

including CD33, CD38, CD70, CD123, CD135, CD371, CLL1, FLT3, TIM3, LILRB4, 

NKG2D, Lewis Y, and others are still in early development with modest responses ranging 

from isolated blast count reductions to brief CR/CRi in up to 50% patients in the dose-

escalation cohorts.(28,113) One second generation CAR-T targeting CLL1 has shown 

promising outcomes in pediatric AML with CR/CRi in 6/8 patients without any grade 3/4 

cytokine release syndrome or immune effector cell-associated neurotoxicity syndrome.(114) 
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While CLL1 is not expressed in hematopoietic stem cells, its expression on granulocytes 

and monocytes led to associated neutropenia which only resolved after eradication of CLL1 

CAR-T cells. Novel approaches to safely improve CAR-T cell efficacy through targeting 

multiple antigens with novel gating strategies, enhancing fitness and in vivo persistence, 

overcoming immunosuppressive microenvironment, and developing allogeneic CAR-based 

approaches will hopefully lead to better cellular therapies for AML.(115) Development 

of T-cell receptor (TCR)-like antibodies against mutant p53 and potential for engineering 

similar adoptive T-cell approaches are in early pre-clinical development.(116,117)

Off-the-shelf modified NK cell-based approaches have shown early promise in R/R 

AML with no dose-limiting toxicities or cytokine-release syndrome, immune effector 

cell-associated neurotoxicity syndrome, or graft-vs-host disease. In a phase 1 trial of 

FT516/538 (an induced pluripotent stem cell derived high-affinity, non-cleavable CD16 

expressing NK cell) in 12 patients with R/R AML with a median of 3 prior lines of 

therapy, the ORR was 42% with durable remissions in 2 patients lasting >6 months 

without subsequent interventions after NK infsuions.(118) If successful such strategies may 

find an important role in traditionally difficult to treat molecular and cytogenetic subsets 

such as TP53, RUNX1, inv3q and other subsets of AML/MDS. Such approaches may be 

especially attractive in patients with low-burden disease, MRD+ disease or potentially as 

a maintenance post-AML-therapy or post allo-SCT in high-risk patients in remission as 

these patients are likely to have a more favorable tumor microenvironment potentially not 

rendered deranged by the presence of high volume aberrant myeloid cells. Other similar 

adoptive cellular therapies rapidly entering clinic for AML/MDS include gamma-delta T-

cells, invariant NKT cells are currently in pre-clinical development (NCT04754100).(119–

121)

Other Non-immunologic Approaches

COTI-2

COTI-2 is a thiosemicarbazone compound with effects like eprenetapopt. It binds to mutant 

p53 and reverses conformation to a wild-type form thus restoring DNA binding function 

and normalizing wild-type p53 target gene expression.(16) It can also act independently 

through inducing DNA damage, causing replication stress, activating AMP-activated protein 

kinase and inhibiting the mTOR pathway. It showed acceptable safety in a phase I trial 

in gynecological malignancies (NCT02433626).(122) Other similar mutant p53 reactivators 

including PK110007, HO-3867, PK7088, etc. are in various stages of development.

Other miscellaneous approaches

Other miscellaneous approaches with potential application to TP53-mutated MDS/AML 

include arsenic trioxide-based approaches to induce proteasomal degradation of mutant p53 

(arsenic trioxide has been shown to structurally stabilize p53 mutants and transcriptionally 

rescue a subset of mutants through a cryptic allosteric site(123)), statin-based approaches 

to promote mutant p53 degradation via inhibition of the mevalonate pathway, and restoring 

zinc to zinc-deficient p53 mutants.(16,27,124,125) Future approaches directed toward TP53 
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mutations may include promotion of premature termination codon readthrough enabling the 

production of full length p53, and gene replacement therapies.(16,27)

In addition, rational combinations or sequential approaches of previously mentioned 

strategies with integration of allo-SCT as a part of the continuum of therapy (total therapy 

approach as pioneered by our multiple myeloma colleagues) may be needed to harness 

novel dependencies and synthetic lethality to improve response durability and survival 

TP53-mutated MDS and AML.

Conclusion

Four decades of cumulative discoveries have brought us to what is hopefully the cusp 

of important breakthroughs in the field of TP53-mutated cancers, with many of these 

efforts culminating in clinical trials being initiated in myeloid malignancies. With the 

increasing recognition of TP53-mutated MDS and AML as distinct stem-cell disorders 

we are beginning to better understand the diverse genetic and immune landscape of 

TP53 alterations, their functional consequences both on the tumor and the immune micro-

environment, and the heterogenous nature of TP53 mutations with varied prognostic 

consequences. Clearly, it is now well recognized that TP53 mutant MDS/AML disease 

represents a singular entity with poor outcomes necessitating dedicated clinical interventions 

with the hope of developing and optimizing the first TP53 specific agents. Encouraging 

early results of novel innate and adaptive immunotherapeutic approaches and mutant p53 

reactivators in combination with HMA with or without VEN are showing encouraging 

efficacy that need to be confirmed in randomized registration studies. If successful, new 

questions will emerge regarding predictive biomarkers, time and role of alloSCT, resistance 

mechanisms, side effect management, and optimal combination and sequencing strategies 

as well as maintenance applications of such novel strategies with the eventual hope of 

improving survival in this extremely difficult patient population.
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Statement of significance

Emerging data on the impact of co-mutations and associated cytogenetic aberrations, 

TP53 allelic burden, immunobiology, and tumor microenvironment of TP53-mutated 

MDS and AML are further unraveling the complexity of TP53-mutated AML and MDS. 

An improved understanding of the functional consequences of TP53 mutations and 

immune dysregulation in TP53-mutated AML/MDS coupled with dismal outcomes has 

resulted in a shift from the use of cytotoxic and hypomethylating agent-based therapies 

to novel immune and non-immune strategies for treatment of this entity. It is hoped that 

these novel rationally designed therapies and combinations will improve the outcomes in 

this area of significant unmet need.
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Fig. 1. 
Different subunits of the p53 are coded by a gene located on chromosome 17p13.1. 

p53 resides over a highly connected hub involving multiple signal transduction pathways 

including DNA damage response, oncogene activation, cellular stress and its positive 

and negative regulators. In turn p53 regulates numerous key cellular processes including 

cell cycling, genomic stability, cell metabolism, differentiation, proliferation, apoptosis, 

senescence and others. In addition, downstream signaling through p53 influences the tumor 

microenvironment through direct effect on several immunological targets.
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Fig. 2. 
Novel therapies for TP53-mutated myelodysplastic syndrome (MDS) and acute myeloid 

leukemia (AML). Cell extrinsic immunotherapeutic approaches include targeting cell 

surface markers including leukemia stem cell markers, negative regulatory macrophage and 

T cell checkpoints, bispecific engagers, adoptive cellular therapies including unmodified 

and chimeric antigen receptor modified cells. Cell intrinsic approaches include mutant p53 

reactivators, mutant p53 degraders, metabolism targeting agents, and others.
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