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Abstract

The rapid growth of biomedical literature poses a significant challenge for curation and 

interpretation. This has become more evident during the COVID-19 pandemic. LitCovid, a 

literature database of COVID-19 related papers in PubMed, has accumulated over 200,000 articles 

with millions of accesses. Approximately 10,000 new articles are added to LitCovid every month. 

A main curation task in LitCovid is topic annotation where an article is assigned with up to 

eight topics, e.g., Treatment and Diagnosis. The annotated topics have been widely used both 

in LitCovid (e.g., accounting for ~18% of total uses) and downstream studies such as network 

generation. However, it has been a primary curation bottleneck due to the nature of the task and 

the rapid literature growth. This study proposes LITMC-BERT, a transformer-based multi-label 

classification method in biomedical literature. It uses a shared transformer backbone for all the 

labels while also captures label-specific features and the correlations between label pairs. We 

compare LITMC-BERT with three baseline models on two datasets. Its micro-F1 and instance-

based F1 are 5% and 4% higher than the current best results, respectively, and only requires ~18% 

of the inference time than the Binary BERT baseline. The related datasets and models are available 

via https://github.com/ncbi/ml-transformer.
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1 INTRODUCTION

THE rapid growth of biomedical literature significantly challenges manual curation and 

interpretation [1], [2]. These challenges have become more evident under the context of 

the COVID-19 pandemic. Specifically, the median acceptance time of COVID-19 papers 

is about 2-time and 20-time faster than the acceptance time for papers about Ebola and 

cardiovascular disease [3]. The number of articles in the literature related to COVID-19 

is growing by about 10000 articles per month [4]. LitCovid [5], [6], a literature database 

of COVID-19 related papers in PubMed, has accumulated a total of more than 100000 

articles, with millions of accesses each month by users worldwide. LitCovid is updated 

daily, and this rapid growth significantly increases the burden of manual curation. In 

particular, annotating each article with up to eight possible topics, e.g., Treatment and 

Diagnosis, has been a bottleneck in the LitCovid curation pipeline. Fig. 1. shows the 

characteristics of topic annotations in LitCovid; we will explain the related curation process 

below. The annotated topics have been used both in LitCovid directly and downstream 

studies widely. For instance, topic-related searching and browsing account for over 18% of 

LitCovid user behaviors [6], and the topics have also been used downstream studies such as 

citation analysis and knowledge network generation. application [7], [8], [9]. Therefore, it is 

important to develop automatic methods to overcome this issue.

Innovative text mining tools have been developed to facilitate biomedical literature curation 

for over two decades [2], [10], [11], [12]. Topic annotation in LitCovid is a standard 

multi-label classification task, which aims to assign one or more labels to each article 

[13]. To facilitate manual topic annotation, we previously employed the deep learning 

model Bidirectional Encoder Representations from Transformers (BERT) [14]. We used one 

BERT model per topic, known as Binary BERT, and previously demonstrated this method 

achieved the best performance of the available models for LitCovid topic annotations [6]; 

other studies have reported consistent results [15]. Indeed, existing studies in biomedical 

text mining have demonstrated Binary BERT achieves the best performance in multi-label 

classification tasks [16], [17]. However, this method has two primary limitations. First, by 

training each topic individually, the model ignores the correlation between topics, especially 

for topics that often co-occur, biasing the predictions and reducing generalization capability. 

Second, using eight models significantly increases the inference time, causing the daily 

curation in LitCovid to require significant computational resources.

To this end, this paper proposes a LITMC-BERT, a transformer-based multi-label 

classification method in biomedical literature. It uses a shared BERT backbone for all the 

labels while also captures label-specific features and the correlations between label pairs. 

It also leverages multi-task training and label-specific fine-tuning to further improve the 

label prediction performance. We compared LITMC-BERT to three baseline methods using 

two sets of evaluation metrics (label-based and example-based) commonly used for multi-
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label classification on two datasets: the LitCovid dataset consists of over 30000 articles 

and the HoC (the Hall-marks of Cancers) dataset consists of over 1500 articles (the only 

benchmark dataset for multi-label classification methods in biomedical text mining).. It 

achieved the highest performance on both datasets: its instance-based F1 and accuracy are 3 

and 8% higher than the BERT baselines, respectively. Importantly, it also achieves the SOTA 

performance in the HoC dataset: its micro-F1 and instance-based F1 are 5% and 4% higher 

than the current best results reported in the literature, respectively. In addition, it requires 

only ~15% of the inference time needed for Binary BERT, significantly improving the 

inference efficiency. LITMC-BERT has been employed in the LitCovid production system, 

making the curation more sustainable. We also make the related datasets, codes, and models 

available via https://github.com/ncbi/ml-transformer.

2 RELATED BACKGROUND

2.1 Multi-Label Classification

Multi-label classification is a standard machine learning task where each instance is assigned 

with one or more labels. Multi-label classification methods can be categorized into two 

broad groups [18]: problem transformation, transforming the multi-label classification 

problem into relatively simpler problems such as single-label classification and algorithm 

adaptation, adapting the methods (such as changing the loss function) for multi-label data.

The methods under the problem transformation group are traditional approaches to address 

multi-label classification. Most popular methods include (1) binary relevance, where each 

label requires to train a corresponding binary classification model [19], (2) label powerset, 

where a binary classification model is trained for every combination of the labels [20], and 

(3) classifier chains, where the output of a binary classification model is used as the input 

to train a further binary classification model [21]. Such methods have achieved promising 

performance in a range of multi-label classification tasks [13], [22]. Indeed, existing studies 

have shown binary relevance BERT achieved the best performance for topic annotation in 

LitCovid [6], [15]. However, it is computationally expensive and transforming multi-label 

classification tasks into binary classification may ignore the correlations among labels. 

Recently, an increasing number of deep learning methods under the algorithm adaptation 

group have been proposed which predict all the labels directly as the output [23], [24], ]25].

2.1.1 Multi-Label Text Classification in the Domain of Biomedical Text Mining
—Text classification methods have been widely applied in biomedical text mining for 

biomedical document triage [26], retrieval [27], and curation [28]. Compared to the general 

domain, text classification especially for multi-label classification in biomedical text mining 

has three primary challenges: (1) domain-specific language ambiguity, e.g., a gene may 

have over 10 different synonyms mentioned in the literature; conversely, a gene and a 

chemical could share the same name [29]; (2) limited benchmark datasets for method 

development and validation; e.g., the HoC dataset [30] is the only multi-label text dataset 

among commonly-used benchmark datasets for biomedical text mining [16], [17] and it 

only has about 1500 PubMed documents; and (3) deployment difficulty, i.e., an important 

contribution of biomedical text mining is to make open-source tools and servers such 
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that biomedical researchers can readily apply. Therefore, the designed methods should 

be scalable to massive biomedical literature and are also efficient in standard research 

tool production settings where computational resources are limited such as the graphics 

processing unit (GPU) is not commonly available for method deployment.

Such challenges impact the method development in biomedical text mining. Most of the 

existing methods focus on transfer learning which employs word embeddings (such as 

WordVec) or transformer-based models (such as BERT) that are pre-trained in biomedical 

corpora to extract text representations [31], [32], [33], [34]. Indeed, this also applies to 

the multi-label classification methods in biomedical text mining. Existing studies have 

mostly used Binary BERT [16], [17] for multi-label classification: for each label, it trains 

a corresponding BERT (or other types of transformers) classification model. The evaluation 

results show that the BERT-related approaches achieve the best performance for multi-label 

classification in biomedical text mining compared to other multi-label classification methods 

that have been used in the general domain [35], [36].

2.2 LitCovid Curation Pipeline

A primary focus of this study is to develop a multi-label classification method to facilitate 

COVID-19 literature curation such as topic annotation in LitCovid. Here we summarize the 

topic annotation in the LitCovid curation pipeline and its challenges.

The detailed LitCovid curation pipeline is summarized in [6]. For topic annotation, an 

article in LitCovid is considered for one or more of eight topics (General information, 

Mechanism, Transmission, Diagnosis, Treatment, Prevention, Case report, or Epidemic 

forecasting) when applicable. Fig. 1. shows the characteristics of topic annotations of the 

articles in LitCovid by the end of September 2021. Prevention, Treatment, and Diagnosis 

are the topics with the highest frequency. Over 20% of the articles have more than one 

topic annotated. Some topics co-occur frequently, such as Treatment and Mechanism, where 

papers describe underlying biological pathways and potential COVID-19 treatment (https://

www.ncbi.nlm.nih.gov/pubmed/33638460). The annotated topics have been demonstrated to 

be effective for information retrieval and have been used in many downstream applications. 

Specifically, topic-related searching and browsing account for over 18% of LitCovid user 

behaviors among millions of accesses and it has been the second most accessed features 

in LitCovid [6]. The topics have also been used downstream studies such as evidence 

attribution, literature influence analysis, and knowledge network generation. application [7], 

[8], [9].

However, annotating these topics has been a primary bottleneck for manual curation. First, 

compared to the general domain, biomedical literature has domain-specific ambiguities 

and difficulties of understanding its semantics. For example, the Treatment topic can be 

described in different ways including patient outcomes (e.g., ‘these factors may impact in 

guiding the success of vaccines and clinical outcomes in COVID-19 infections’), biological 

pathways (e.g., ‘virus-specific host responses and vRNA-associated proteins that variously 

promote or restrict viral infection), and biological entities (e.g., ‘unique ATP-binding 

pockets on NTD/CTD may offer promising targets’). Second, compared to other curation 

tasks in Lit-Covid (document triage and entity recognition), topic annotation is more 

Chen et al. Page 4

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2022 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.ncbi.nlm.nih.gov/pubmed/33638460
https://www.ncbi.nlm.nih.gov/pubmed/33638460


difficult due to the nature of the task (assigning up to eight topics) and the ambiguity of 

natural languages (such as different ways to describe COVID-19 treatment procedures). 

Initially, the annotation was done manually by two curators with little machine assistance. 

To keep up with the rapid growth of COVID-19 literature, Binary BERT has been developed 

to support manual annotation. However, previous evaluations show that it has an F1-score 

of 10% lower than the tools assisting other curation tasks in LitCovid [6]. Also, Binary 

BERT requires a significant amount of inference time because each label needs a separate 

BERT model for prediction. This challenges the LitCovid curation pipeline, which may have 

thousands of articles to curate within a day.

3. DATA AND METHOD

3.1 Experiment Datasets

We used LitCovid BioCreative and HoC datasets for method development and evaluation. 

Table 1 provides the characteristics.

For the LitCovid BioCreative dataset [37], it contains 24960, 6239, and 2500 PubMed 

articles in the training, development, and testing sets, respectively. The topics were assigned 

using the above annotation approach consistently. All the articles contain both titles and 

abstracts available in PubMed and have been manually reviewed by two curators. The only 

difference is that the datasets do not contain the General Information topic since the priority 

of the topic annotation is given to the articles with abstracts available in PubMed [6]. In 

addition, the testing set contains the articles that have been added to LitCovid from 16th 

June to 22nd August after the construction of the training and development datasets. Using 

incoming articles to generate the testing set will facilitate the evaluation of the generalization 

capability of automatic methods. To our knowledge, this dataset is one of the largest 

multi-label classification datasets on biomedical English scientific text.. We have made this 

dataset publicly available to the community via https://ftp.ncbi.nlm.nih.gov/pub/lu/LitCovid/

biocreative/. For the HoC dataset, it contains 1580 PubMed abstracts with 10 currently 

known hallmarks of cancer that were annotated by two curators. The data set is available 

via https://www.cl.cam.ac.uk/sb895/HoC.html. We used the same dataset split from previous 

studies [16], [24]; the training, development, and testing sets contain 1108, 157, and 315 

articles, respectively. As mentioned, it is the only dataset used for multi-label classification 

in biomedical literature from commonly-used benchmark datasets [16], [17], [24].

3.2 LITMC-BERT Architecture

The architecture of LITMC-BERT is summarized in Figs. 2 and 3. Fig. 2 compares its 

architecture with other approaches (we will also use them as baselines), whereas Fig. 3 

details its underlying modules. The detailed hyperparameters are also summarized in Table 2 

and 3.4.1.

As mentioned, most biomedical text mining studies have used Binary BERT (Fig. 2A) for 

multi-label classification [16], [17]. Indeed, we have applied Binary BERT to annotate topics 

in the LitCovid curation pipeline as well [6]. An alternative approach is to uses a shared 

BERT model with a Sigmoid function (or other similar activation functions) to outputs all 
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the label probabilities directly (Fig. 2B), which we denote it as Linear BERT (Fig. 2B): it 

uses a Sigmoid function (or other similar activation functions) followed by a shared BERT 

model which outputs all the label probabilities directly. Linear BERT also forms the basis 

of LITMC-BERT (Fig. 2C). In contrast, for LITMC-BERT, each label has its own module 

(Label Module) to capture label-specific representations; and the label representations are 

further used (Label Pair Module) to predict whether a pair of labels co-occurs. It also 

leverages multi-task training and label-based fine-tuning. We explain each in detail below.

3.2.1 Transformer Backbone—The Transformer Backbone applies a transformer-

based model to get a general representation of an input text; in this case, the input text 

is the title and abstract (if available) of an article. In this study, the transformer-based 

model is BioBERT [38], which a BERT model pre-trained on PubMed and PMC articles. 

We evaluated a range of BERT variants and BioBERT (v1.0) gave the overall highest 

performance as the backbone model.

3.2.2 Label Module—Each label has a label module to capture its specific 

representations for the final label classification. Fig. 3A shows its detail. Essentially, the 

Label Module combines the final hidden vector for the CLS token of a BERT backbone (Fig. 

3A (1); we call it CLS vector) and the label-specific vector (Fig. 3A (2)) to produce the final 

label feature vector (Fig. 3A (5)).

Using the CLS vector of a BERT backbone is recommended by the authors of BERT 

for classification tasks [14]. For LITMC-BERT, it is shared by all the labels (since a 

shared BERT model is used as the backbone). In addition, for each label, a Multi-head Self-

Attention [39] and a global average pooling layer are applied to the last encoder layer of 

the BERT backbone (Fig. 3A (2)) to get a label-specific vector. This is designed to capture 

specific features for each label. We further normalize the CLS vector and label-specific 

vector with a multi-layer perceptron (MLP) consisting of a few dense layers (Fig. 3A (3)) 

(Fig. 3A (4)). This approach has been demonstrated to be effective for combining feature 

vectors from different sources [28]. The normalized vectors are summed up to produce the 

final label vector (Fig. 3A (5)).

3.2.3 Label Pair Module—The Label Pair Module further uses the label representations 

from the Label Module and captures correlations between label pairs. Fig. 3B shows its 

detail.

For a pair of labels 1 and 2, the Label Pair Module first uses their corresponding feature 

representations produced by the Multi-head Self-Attention in the Label Module (Fig. 3A) 

as inputs. Then it performs co-attentions (Fig. 3B (2)) and global average pooling (Fig. 3B 

(3)) to get two vectors from the inputs. The co-attention mechanism is an adaption of the 

Multi-head Self-Attention whereas the query and key components of the Self-Attention are 

the label pairs in this case (e.g., the attention from label 1 to label 2 and the attention from 

label 2 to label 1 in Fig. 3B (2)). This has been demonstrated to be effective for modeling 

correlations between pairs [40], [41]. Then, the two vectors are fused using the same method 

above (Figs. 3B (4) and 3B(5)) to get the final label pair vector (Fig. 3B (6)). The label 

pair vector is used to predict whether the labels 1 and 2 co-occur as auxiliary tasks for the 

Chen et al. Page 6

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2022 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



multi-training process introduced below. Auxiliary tasks are not directly related to primary 

tasks (label predictions in this case) but have shown effective for multitask training to make 

the shared representation more generalizable [42]. In addition, while the relations between 

label pairs are important, it does not necessarily apply to every label pair. We define a 

hyperparameter called label pair threshold: the Label Pair Module is only applied to a label 

pair if above the threshold. For a pair of labels 1 and 2, the threshold is calculated by the 

number of instances that labels 1 and 2 co-occur dividing by the minimum number between 

the number of instances of labels 1 and 2 in the training set.

3.2.4 Multi-task Training and Label-Based Fine-Tuning—The LITMC-BERT 

training process employs multi-task training where it trains and predicts the labels (main 

tasks) and co-occurrence (auxiliary tasks) simultaneously. The loss during the multi-task 

training is the total loss of main tasks and auxiliary tasks). Given that main tasks are the 

focus, we define a hyperparameter called auxiliary task weight (from 0 to 1) which takes 

a proportion of auxiliary task losses. The full hyperparameters and baselines are provided 

below. When the multi-task training converges, it further fine-tunes the Label Module for 

each label while freezing the weights of other modules. Such training approach has been 

shown effective in both text mining and computer vision applications [43], [44].

3.3 Baseline Models

We compared LITMC-BERT to three baseline models: ML-Net (a shallow deep learning 

multi-label classification model which has achieved superior performance in biomedical 

literature) [24], Binary BERT (Fig. 2A), and Linear BERT (Fig. 2B).

ML-Net is an end-to-end deep learning framework which has achieved favorably state of 

the art (SOTA) performance in a few biomedical multi-label text classification tasks [24]. 

ML-Net first maps texts into high dimensional vectors through deep contextualized word 

representations (ELMo) [33], and then combines a label prediction network and label count 

prediction to infer an optimal set of labels for each document.

Binary BERT and Linear BERT are introduced in 3.2. For N labels, Binary BERT trains 

N BERT classification models (one label each) whereas Linear BERT provides all the N 

label predictions in one model. Note that previous studies mostly have used Binary BERT 

in biomedical literature [16], [17]. It also has been the state-of-the-art (SOTA) model for 

multi-label classification in biomedical literature [15], [16], [17] and was also used in the 

LitCovid production system previously [6].

3.3.1 Hyperparameters—For each model, we performed hyperparameter tuning on the 

datasets and selected the best sets of hyperparameter based on the validation set loss. Table 

2 provides the hyperparameter values in the LitCovid BioCreative dataset; the configuration 

files of the hyperparameters are also provided in the github repository. Importantly, for 

BERT-related models (Binary BERT, Linear BERT, and LITMC-BERT), we controlled their 

shared hyperparameters (BERT backbone, maximum sequence length, learning rate, early 

stop steps, and batch size) to ensure a fair and direct comparison.

Chen et al. Page 7

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2022 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.4 Evaluation Metrics and Reporting Standard

There are a number of evaluation measures for multi-label classification tasks [13], [45], 

[46], which can be broadly divided into two groups: (1) label-based measures, which 

evaluate the classifier’s performance on each label and (2) example-based measures 

(also called instance-based measures), which aim to evaluate the multi-label classifier’s 

performance on each test instance. Both groups complement each other: in the case of topic 

annotation, labelbased measures quantify the specific performance for each topic, whereas 

example-based measures quantify the effectiveness of models at document level (which may 

contain several topics). We employed representative metrics from both groups to provide a 

broader spectrum on the performance.

Specifically, we used six evaluation measures as the main metrics. They consist of four 

label-based measures: macro-F1, macro-Average Precision (AP), micro-F1, and micro-AP 

and two instance-based measures: instance-based F1 and accuracy (also stands for exact 

match ratio and the complement of zero one loss in this case). We further reported six 

evaluation measures that have been used to calculate the main metrics as additional metrics. 

They consist of four label-based measures: macro-Precision, macro-Recall, micro-Precision, 

and micro-Recall and two label-based measures: instance-based Precision and instance-

based Recall. Their calculation formulas are summarized below.

3.4.1 Label-Based Measures—Label-based measures evaluate the multi-label 

classifier’s performance separately on each label by calculating their true positive (TP), 

false positive (FP) and false negative (FN) on the test set. For the j-th label yj, we calculated 

the following four metrics:

Precision j =
TPj

TPj + FPj

Recall j =
TPj

TPj + FNj

F1j =
2 ⋅ Precisionj ⋅ Recall j

Precision j + Recall j

APj = ∑
n

Recall jn − Recall jn − 1
Precision jn

F1 and AP are aggregated measures using both Precision and Recall in the calculation. 

AP is also a threshold-based measure which summarizes a Precision-Recall curve at each 

threshold (denoted as n in the formula).
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To measure the overall metrics for all the labels, we calculated both macro-averaged (using 

unweighted averaging across labels) and micro-averaged scores (counting TP, FP and FN 

globally rather than at label level) for the labels.

3.4.2 Example-Based Measures—The example-based metrics evaluate the multi-label 

classifier’s performance separately by comparing the predicted labels with the gold-standard 

labels for each test example. We focus on the following four metrics:

Precision = 1
p ∑

i = 1

p Yi ∩ Y i
Y i

= 1
p ∑

i = 1

p TP
TP + FP

Recall = 1
p ∑

i = 1

p Yi ∩ Y i
Y i

= 1
p ∑

i = 1

p TP
TP + FN

F1 = 2 ⋅ Precision ⋅ Recall
Precision + Recall

Accuracy = # correctly predicted instances
# all tℎe instances

where p is the number of documents in the test set; Yi refers to the true label set for the i-th 

document in the test set; and Y i refers to the predicted label set for the i-th document in the 

test set.

3.4.3 Statistic Test and Reporting Standard—We repeated each model 10 times, 

reported the mean and max values of the repeats for each evaluation measure above, and 

conducted the Wilcoxon rank-sum test (Confidence Interval at 95%; one-tail) following 

previous studies [40], [47]

4 RESULTS AND DISCUSSIONS

4.1 Overall Performance

Table 3 demonstrates the overall performance of the models on both datasets. As mentioned, 

we used six main metrics and reported their mean and max results (i.e., 12 evaluation 

measurement results). Out of these 12 measurement results, LITMC-BERT consistently 

achieved the highest results in 10 of them in the LitCovid BioCreative dataset and all the 

12 in the HoC dataset. On average, its macro F1-score is about 10% higher than ML-Net 

in both datasets; the same applies to other measures such as macro-AP and accuracy. 

Compared with Binary BERT, its label-based measures are about 2% and 4% higher 

on the LitCovid BioCreative and HoC datasets, respectively. Its instance-based measures 

on the HoC dataset show a larger difference; e.g., its accuracy is up to 10% higher. 

The observations are similar when comparing LITMC-BERT with Linear BERT: e.g., its 
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macro-F1 and accuracy are up to 2% and 4% higher on the HoC dataset, respectively. In 

terms of comparing Binary BERT with Linear BERT, Binary BERT achieved overall better 

performance on the LitCovid BioCreative dataset, which is consistent with the literature [6], 

[15], whereas Linear BERT achieved over better performance on the HoC dataset.

In addition, Fig. 4 shows the distribution of macro F1-scores of the models and the P-values 
of the Wilcoxon rank-sum test. On both datasets, LITMC-BERT consistently had a better 

macro-F1 score than ML-Net (P-values close to 0) and both Binary BERT and Linear BERT 

(P-values smaller or close to 0.001).

Further, comparing with the current SOTA results on the HoC dataset, LITMC-BERT 

also achieved higher performance. For LitCovid BioCreative, LITMC-BERT achieved 

better performance than the results reported by the challenge overview from 80 system 

submissions worldwide [37]. Existing studies on the HoC dataset used different measures 

and only reported one evaluation result (without repetitions to report the average 

performance or perform statistic tests). One study used instance-based F1 and reported 

that BlueBERT (base) and BlueBERT (large) achieved the highest instance-based F1 of 

0.8530 and 0.8730, respectively, compared with other BERT variants [16]. In contrast, 

LITMC-BERT achieved a mean instance-based F1 of 0.9030 and a maximum instance-based 

F1 of 0.9169, consistently higher than the reported performance. Similarly, another study 

used micro-F1 on a slightly different version of the HoC dataset (this is different from 

other studies [16], [24]) and reported that PubMedBERT achieved the highest micro-F1 of 

0.8232 [17]. The mean and maximum of microF1 of LITMC-BERT are 0.8648 and 0.8787, 

respectively. We manually examined the results and find that one possible reason is that the 

existing studies use the BERT model at sentence-level and then aggregate the predictions 

to the abstract-level for the HoC dataset [16]; this may ignore the inter-relations among 

sentences and cannot capture the context at abstract-level. In contrast, we directly applied 

the models at the abstract-level which overcomes the limitations.

4.2 Additional Measures, Label-Specific Results, and an Ablation Analysis

Table 4 provides additional measures to complement the main metrics. As mentioned, we 

reported the mean and maximum of six additional metrics (i.e., 12 in total). Out of these 

12 additional measurement results, LITMC-BERT achieved the highest results in 7 of them 

in the LitCovid BioCreative dataset and 11 of them in the HoC dataset, which is consistent 

with the main measurement results in Table 3.

In addition, we further analyzed the performance of each individual label. Figs. 5 and 6 

show F1s of each label in the LitCovid BioCreative and HoC datasets, respectively. Out 

of the seven labels in the LitCovid BioCreative dataset, LITMC-BERT had the highest F1 

in four of them. Similarly, it had the highest F1 in seven out of 10 labels in the HoC 

dataset. The results also demonstrate that LITMC-BERT had much better performance for 

labels with low frequencies. For the LitCovid BioCreative dataset, its F1s are up to 9% 

and 6% higher for the Epidemic Forecasting (accounting for 1.64% of the testing set) 

and Transmission (5.12%) labels than Binary BERT and Linear BERT, respectively. For 

the HoC dataset, its F1s are also up to 6% and 5% higher for the Avoiding immune 

destruction (5.40%) and Enabling replicative immortality (5.71%) labels than Binary BERT 
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and Linear BERT, respectively. This suggests that LITMC-BERT might be more robust to 

the class imbalance issue. Indeed, existing studies have demonstrated the class imbalance 

issue remains an open challenge for multi-label classifications and it is more difficult to 

improve the classification performance for rare classes [21], [22]. This is more evident that 

BERT-related models can already achieve F1-scores of close to or above 90% for labels with 

high frequencies on both datasets. Therefore, the performance of topics with low frequencies 

is arguably more critical.

Further, we performed an ablation analysis to quantify the effectiveness of the LITMC-

BERT modules. Specifically, we compared the performance of LITMC-BERT without 

the Label Module, the Label Pair Module, or both (i.e., Linear BERT) using the same 

evaluation procedure above. Table 5 shows the results. Recall that Linear BERT uses the 

same BERT backbone and does not capture label-specific features or correlations between 

labels; therefore, we can directly compare the effectiveness of the Label Module and 

the Label Pair Module with Linear BERT. On both datasets, LITMC-BERT with both 

modules had the highest performance in all the measures. For instance, the Label Module 

increased the average macro-F1 by 2.1% and 0.5% in LitCovid BioCreative and HoC, 

respectively; the Label Pair Module increased the average macro-F1 by 0.7% and 0.5% 

in LitCovid BioCreative and HoC, respectively. Consistent observations are also shown in 

other metrics; for example, the Label Module increased the average macro-AP by 2.5% and 

1.5% in LitCovid BioCreative and HoC, respectively. This suggests that the two modules 

complement to each other and combining both is effective. In addition, removing either 

module dropped the performance in both datasets; removing both of them had the lowest 

performance on average. This suggests both modules are effective. Also, the results suggest 

that the Label Module is more effective in the LitCovid BioCreative dataset (e.g., the 

maco-F1 is reduced by up to 2% if removing the Label Module) whereas the Label Pair 

Module is more effective in the HoC dataset (e.g., the maco-F1 is reduced by up to 1% if 

removing the Label Pair Module).

4.3 Generalization and Efficiency Analysis

The above evaluations show that LITMC-BERT achieved consistently better performance 

on both datasets. We also further evaluated its generalization and efficiency in the LitCovid 

production environment. While transformer-based models have achieved SOTA results in 

many applications, their inference time is significantly longer than other types of models 

[48], [49]. It is thus important to measure its efficiency in practice. Reducing inference time 

is also critical to the LitCovid curation pipeline, which may have thousands of articles to 

curate within a day (the peak was over 2500 articles in a single day) [6]. A random sample 

of 3000 articles in LitCovid was collected between October and December, 2021, which 

was independent to the training set. We used it as an external validation set and measured 

the accuracy and efficiency of these models. As mentioned, Binary BERT was used in 

LitCovid for topic annotations. We used a single processor on CPU with a batch size of 

128, which is consistent with the LitCovid production setting, and tracked the inference time 

accordingly. Table 6 details the performance. LITMC-BERT achieved the best performance 

in all the accuracy-related measures, took ~18% of the prediction time of Binary BERT, and 

was only 0.05 sec/doc slower than Linear BERT as the trade-off. Note that Binary BERT 

Chen et al. Page 11

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2022 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



was previously used in the LitCovid production. It took about 3.4 seconds on average to 

predict topics for an article. Note that this does not include overhead time (e.g., switching 

into other automatic curation tasks) and post-processing time (e.g., sorting the probabilities 

and showing the related articles for manual review). Therefore, just predicting the topics 

for a large batch of articles may take over an hour, delaying the daily curation of LitCovid. 

In contrast, it only takes LITMC-BERT about 0.5 seconds on average for inference, which 

accounts for ~15% of the time used by Binary BERT. We have employed LITMC-BERT into 

the LitCovid production system given its superior performance on both effectiveness and 

efficiency.

4.4 Limitations and Future Work

While LITMC-BERT achieved the best overall performance in both datasets compared 

with other competitive baselines, it does have certain limitations that we plan to address 

in the future. First, from the method level, it still relies on transfer learning from BERT 

backbones given the scale of multi-label classification datasets in biomedical literature. In 

contrast, some methods used other domains include label clustering [50] and label graph 

attentions [51]. We plan to investigate these methods and quantify whether they are effective 

for biomedical literature. Second, it has more hyperparameters to tune (such as finding the 

optimal label pair threshold) compared with other straightforward BERT-based models. It 

would be better to incorporate dynamic modules that learn these hyperparameters adaptively. 

Third, the Label Pair Module focuses only on co-occurred labels which may miss more 

complex scenarios such as labels in n-ary relations.

5 CONCLUSION

In this paper, we propose a novel transformer-based multi-label classification method on 

biomedical literature, LITMC-BERT. Compared to the existing multi-label classification 

methods in biomedical literature, it captures label-specific features and also captures the 

correlations between label pairs. The multi-task training approach also makes it more 

efficient than binary models. LITMC-BERT achieved the highest overall performance on 

two datasets than three baselines. Also, it only takes ~18% of the inference time taken by 

the previous best model for COVID-19 literature. LITMC-BERT has been employed in the 

LitCovid production system for more sustainability and effectiveness. We plan to further 

improve the method such that it is more dynamic and capable of handling more complex 

relations among labels and further quantify its effectiveness on multi-label classification 

tasks beyond biomedical literature (such as clinical notes).
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Fig. 1. 
Characteristics of topic annotations in LitCovid up to September 2021. (A) shows the 

frequencies of topics; (B) demonstrates topic co-occurrences; and (C) illustrates the 

distributions of the number of topics assigned per document. The figure is adapted from 

[37].
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Fig. 2. 
An overview of BERT-based multi-classification models for biomedical literature using 

an example of classifying two labels (Labels 1 and 2). (A): Binary BERT: train a BERT 

model for each label; (B) Linear BERT: train a shared BERT model and output all the 

label probabilities at once; (C): LitMC-BERT (our proposed approach): train a shared BERT 

model, capture label-based features (Label Module) and models pair relations (Label Pair 

Module), and also predict both labels and their co-occurrences via co-training.
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Fig. 3. 
The illustration of the Label Module and Label Pair Module. MLP: multi-layer perceptron. 

The detailed hyperparameters are provided in Table 2.
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Fig. 4. 
The distributions of macro-F1s for each model on the LitCovid BioCreative (A) and HoC 

datasets (B). Each model was repeated 10 times and the Wilcoxon rank sum test (Confidence 

Interval at 95%; one-tail) was performed. The P-values are shown in the figure.
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Fig. 5. 
The performance (F1) of the methods for each label in the LitCovid dataset.
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Fig. 6. 
The performance (F1) of the methods for each label in the HoC dataset.
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