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Abstract

The renin-angiotensin system (RAS) is classically described as a hormonal system in which 

angiotensin II (Ang II) is one of the main active peptides. The action of circulating Ang II 

on its cognate Ang II type-1 receptor (AT1R) in circumventricular organs has important roles 

in regulating the autonomic nervous system, blood pressure (BP) and body fluid homeostasis, 

and has more recently been implicated in cardiovascular metabolism. The presence of a local or 

tissue RAS in various tissues, including the central nervous system (CNS), is well established. 

However, because the level of renin, the rate-limiting enzyme in the systemic RAS, is very low 

in the brain, how endogenous angiotensin peptides are generated in the CNS—the focus of this 

review—has been the subject of considerable debate. Notable in this context is the identification 

of the (pro)renin receptor (PRR) as a key component of the brain RAS in the production of Ang 

II in the CNS. In this review, we highlight cellular and anatomical locations of the PRR in the 

CNS. We also summarize studies using gain- and loss-of function approaches to elucidate the 

functional importance of brain PRR-mediated Ang II formation and brain RAS activation, as well 

as PRR-mediated Ang II-independent signaling pathways, in regulating BP. We further discuss 

recent developments in PRR involvement in cardiovascular and metabolic diseases and present 

perspectives for future directions.
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1. Introduction

The renin-angiotensin system (RAS) is a much more complex system than originally 

envisioned, comprising different peptides, enzymes, and receptors with endocrine, paracrine, 
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and autocrine characteristics [1]. The importance of this system in the pathogenesis of 

hypertension and other cardiovascular diseases is exemplified by the therapeutic success of 

angiotensin converting enzyme (ACE) inhibitors and angiotensin II type I receptor (AT1R) 

antagonists in treating these diseases [2, 3]. As classically described, the RAS includes 

angiotensinogen, an α-globulin protein produced mainly by the liver that is cleaved in the 

circulation by the enzyme renin (produced by juxtaglomerular cells of the kidney) to form 

the decapeptide angiotensin I (Ang I). Ang I is then cleaved by ACE, an enzyme mainly 

produced by endothelial cells in the pulmonary circulation and the kidneys, forming the 

octapeptide angiotensin II (Ang II). Ang II is considered the main biological peptide of the 

RAS, and its actions, which can lead to the pathogenesis of hypertension through sodium 

retention [7, 8], vasoconstriction [9], aldosterone synthesis and secretion from the adrenal 

cortex [10–12], increased sympathetic activity [13, 14] and thirst [15, 16], are attributable to 

binding of this peptide to angiotensin receptors [4–6].

In addition to the classical systemic RAS, the local or tissue RAS in various organ systems, 

including the brain, is now well established. However, because the level of renin, the 

rate-limiting enzyme in the systemic RAS, is very low in the brain, how endogenous 

angiotensin peptides are generated in the central nervous system (CNS) has been the subject 

of considerable debate and is the focus of this review. Here, we discuss the brain prorenin-

angiotensin system, with an emphasis on the identification of the (pro)renin receptor (PRR) 

as a key component of the brain RAS in the production of Ang II in the CNS. We 

highlight the cellular and anatomical locations of the PRR in the CNS and summarize 

studies using gain- and loss-of function approaches to elucidate the functional importance of 

the brain PRR in blood pressure (BP) regulation through Ang II formation and brain RAS 

activation as well as through Ang II-independent signaling pathways. We further discuss 

recent developments in elucidating the role of the PRR in cardiovascular and metabolic 

diseases and present perspectives for future directions.

2. RAS in the CNS

Blood-borne substances, including Ang II, can act on highly vascularized structures of the 

CNS located around the ventricles, which are characterized by the lack of a blood-brain 

barrier (BBB). These circulation-accessible structures, termed circumventricular organs [17, 

18], include the subfornical organ (SFO), organum vasculosum of the lamina terminalis 

(OVLT), and area postrema (AP) [19] as illustrated in Figure 1. Because many studies have 

demonstrated expression of RAS components in areas of the CNS that are protected by the 

BBB, and neither renin [20] nor Ang II [21] can penetrate the BBB under physiological 

conditions, it was reasonable to hypothesize that the CNS is capable of producing Ang 

II locally. Several pathways for Ang II generation in the CNS have been proposed. For 

example, Ang II can be produced by the conversion of angiotensinogen to Ang I by 

cathepsins D and E, and elastase and proteinase 3, or directly by the conversion of 

angiotensinogen to Ang II by cathepsin G, tonin, elastase, and proteinase 3 [22, 23]. More 

recently, the PRR, possibly by activating prorenin to cleave angiotensinogen to Ang I, 

has been shown to mediate Ang II formation in the CNS [24, 25]. Under hypertensive 

conditions, the BBB is disrupted in association with inflammation, oxidative stress, and the 

release of vasoactive molecules in the brain microvasculature [26]. In hypertension, Ang 
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II can also access areas of the CNS that are protected by a BBB, like the paraventricular 

nucleus (PVN), nucleus tractus solitarius (NTS), and rostral ventrolateral medulla (RVLM) 

[19, 27] as illustrated in Figure 1. This BBB breakdown observed in hypertensive animals 

seems to be dependent, at least in part, on Ang II, as evidenced by the fact that chronic 

oral administration of an AT1R antagonist, but not a vasodilator drug, attenuates the 

BBB breakdown [19, 27]. However, the mechanisms responsible for BBB breakdown in 

hypertension remain to be elucidated.

It is now well established that most RAS components are expressed in the CNS. The first 

RAS component to be identified in the CNS was renin. In 1971, Ganten et al. [20] showed 

that renin enzymatic activity is approximately 10-times higher in the caudate nucleus than in 

mesenteric artery branches. Moreover, a number of studies have demonstrated both mRNA 

and protein expression of angiotensinogen [28–32], renin [28, 29, 33], ACE [34–36], AT1R 

[37–43], and AT2R [40, 41, 44, 45] in the CNS. AT1Rs are particularly highly expressed 

in areas of the CNS related to BP regulation and fluid homeostasis [37, 38, 40–43, 46, 

47], including the OVLT, SFO, median preoptic nucleus (MnPO), PVN, supraoptic nucleus 

of the hypothalamus (SON), dorsomedial hypothalamic nucleus (DMH), RVLM, NTS, 

arcuate nucleus (Arc), and AP. AT2Rs are expressed in areas not traditionally related to 

BP regulation, such as the lateral septum, several thalamic nuclei, the subthalamic nucleus, 

locus coeruleus and inferior olive nucleus [37, 38, 40, 41, 44, 45], as well as in areas 

related to BP regulation, such as the SFO, OVLT, PVN, Arc, MnPO, DMH, NTS, AP, 

medial prefrontal cortex (mPFC), and amygdala [44, 47]. In general, AT1Rs and AT2Rs are 

expressed in separate populations of neurons within each brain region. Some regions, such 

as the OVLT, SFO, PVN and Arc, contain more AT1R-positive cells than AT2R-positive 

cells, whereas other regions, including the NTS and AP, contain more AT2R-positive cells 

than AT1R-positive cells [47]. In addition to components of the classical vasoconstrictor 

axis of the RAS, many research groups have also demonstrated that angiotensin converting 

enzyme 2 (ACE2) [48–51], which converts the octapeptide Ang II into the heptapeptide 

angiotensin-(1-7) (Ang-(1-7)), a Mas receptor agonist, is expressed and plays an important 

role in the CNS [52, 53]. Ang-(1-7) has effects that oppose those of Ang II, promoting 

vasodilation, decreasing BP, and improving baroreflex sensitivity [5, 54, 55].

3. Renin and prorenin in the CNS

Renin expression and enzymatic activity in the brain has been the subject of debate 

for decades. Most studies showed low level renin mRNA expression in the brain using 

techniques such as Northern blot hybridization [28], ribonuclease-protection [56], and 

competitive polymerase chain reaction (PCR) [57]. To our knowledge, two reporter mouse 

strains have been used to investigate renin expression and renin promoter activity in the 

brain [29, 58, 59]. In the first case, Lavoie et al. [29, 58] used a mouse strain that expresses 

enhanced green fluorescent protein (eGFP) driven by the renin promoter (REN-1) that 

allows identification of the cellular and spatial distribution of brain renin expression [60], 

demonstrating renin expression in different brain regions, including the SFO and RVLM. 

Using NeuN immunolabeling, they also found that renin was co-localized mainly with 

neurons and demonstrated adjacent expression of renin and angiotensinogen in the RVLM 

[29]. In the other case, Allen et al. bred a mouse strain expressing Cre recombinase under 
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the control of the human renin promoter with Cre recombination-dependent lacZ reporter 

mice. They showed that human renin promoter activity is detectable in neurons in all areas 

investigated and found that its expression did not appear to correlate with the expression of 

other RAS components, such as angiotensinogen and Ang II receptors [59]. Interestingly, 

unlike Lavoie et al. [29, 58], they did not detect human renin promoter activity in the 

SFO or RVLM [59]. The use of different genetic strategies and renin promoters from 

different species in the development of these mouse strains may explain the divergent results 

found by the two groups. In the mouse strain developed by Lavoie and colleagues, GFP is 

expressed under the control of the endogenous mouse renin promoter together with intact 

endogenous mouse renin expression and identifies cells that currently express renin. On the 

other hand, the mouse strain used by Allen and coworkers expresses Cre recombinase under 

the control of the human renin promoter, and thus illuminates cells that have ever expressed 

renin. Notwithstanding these differences, the results of these studies provide evidence of 

endogenous renin promoter activity and expression in the brain.

In juxtaglomerular cells of the kidney, renin mRNA is translated into preprorenin starting 

at exon 1a (renin-a). After removal of the signal peptide, prorenin can be either directly 

secreted or further processed to its active form, renin, and then secreted into the circulation 

[61]. In the CNS, there are two alternative transcripts for the renin gene [62, 63]. Renin 

produced by transcription starting at exon 1a (renin-a) is the same as the key prorenin 

with an intact signal peptide and is predicted to be secretable into the extracellular space 

as prorenin. This brain isoform, also named secreted renin (sREN or more accurately 

sProrenin), is distinct from the intracellular form of renin [64]. Prorenin has only 3% of the 

intrinsic enzymatic activity of renin in plasma [65], and it is still not clear whether sProrenin 

can be enzymatically processed to renin in the brain [22]. However, exogenous prorenin 

infused into the mouse brain can mediate Ang II formation and elevate BP, effects that are 

strictly dependent on its receptor, the PRR, suggesting possible non-proteolytical activation 

of prorenin in the CNS through binding to the PRR [24].

Renin-b, a novel transcript starting at exon 1b of the renin gene that is expressed in the brain, 

has also been identified in rats, mice, and humans. This transcript is responsible for the 

translation and synthesis of a specific brain renin isoform that lacks the signal peptide and 

part of the prosegment, also named intracellular renin (icREN) by virtue of its intracellular 

localization [61–63]. To initially dissect the role of icREN in BP regulation, Lavoie et al. 
(2006) [66] generated transgenic mice in which human icREN expression is driven by the 

GFAP promoter and bred them with mice expressing human angiotensinogen driven by 

the same promoter. They found an increase in fluid intake, mean arterial pressure, and BP 

response to intracerebroventricular (ICV) infusion of losartan, suggesting increased brain 

RAS activity in these mice. Later, the same group selectively deleted icREN and surprisingly 

also observed a significant increase in systolic BP [67]. This effect was associated with 

increases in sympathetic activity to the heart and kidneys, AT1R expression in the PVN, 

brain RAS activity, and expression of total renin (icREN+sProrenin) in the RVLM [67]. 

They concluded that, under baseline conditions, icREN suppresses sProrenin expression 

in the brain, an action that is impaired by hypertension-induced stimuli. Taken together, 

these data indicate that, contrary to expectations, endogenous icREN might modulate the 

expression of sProrenin to exert a protective role. On the other hand, the direct role of 
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endogenous sREN or sProrenin in the CNS has been explored in very few studies. In 

one study, Xu et al. investigated the role of classical sREN or sProrenin, encoded by 

renin-a, in cardiovascular and metabolic regulation in a mouse model in which renin-a was 

specifically deleted in neurons or astrocytes [68]. They found that deletion of renin-a in 

these cells caused no changes in BP, heart rate (HR), food or fluid intake, urinary volume, 

sodium intake, or parameters related to energy output under baseline conditions. The authors 

concluded that CNS sProrenin may not play a major role in cardiovascular or metabolic 

regulation. However, this conclusion was later refuted by the same group using the icREN-

deleted mice described above, pointing to the potential importance of sProrenin in the neural 

regulation of BP and metabolic rate [67, 69]. Notwithstanding these observations, the role 

of CNS sProrenin in the context of cardiovascular or metabolic diseases is not yet fully 

understood. Considering the key role played by the brain RAS in the pathogenesis of these 

diseases [6, 25, 51, 70–73], future studies are warranted to fill this important knowledge gap.

Although the role of endogenous CNS sProrenin in BP regulation is not yet defined, the 

functional importance of exogenous prorenin in the CNS has been revealed by several 

studies [24, 25, 74–76]. For example, direct ICV infusion of prorenin induces an increase in 

BP in C57Bl/6J mice that is attenuated by PRR deletion in neurons [24] or co-administration 

of a PRR antagonist (PRO20) [25]. On the other hand, the pressor response to central 

infusion of prorenin is exacerbated by PRR overexpression in neurons [75]. Interestingly, 

ICV infusion of renin also elevates BP, but this effect is not attenuated by deletion 

of the neuronal PRR [24], suggesting that renin is capable of exerting its enzymatic 

activity independent of the PRR. This finding also indicates that this enzymatic activity 

probably does not require conversion of sProrenin to renin in the CNS, but may involve 

nonproteolytic activation through binding to the PRR. In a later study, Huber et al. [74] 

showed that bilateral microinjection of human prorenin into the PVN increases splanchnic 

sympathetic nerve activity (SSNA) in anesthetized Sprague–Dawley (SD) rats. Interestingly, 

co-administration of the handle region peptide (HRP), another PRR antagonist, or Tiron, 

a scavenger of reactive oxygen species (ROS), prevents this increase in SSNA. These 

observations show that exogenous prorenin acts through the PRR in the CNS to play 

important roles in BP and autonomic regulation.

Despite extensive literature describing renin/prorenin expression and enzymatic activity as 

well as increases in sProrenin levels/expression in the CNS [24, 28, 29, 56–59, 62, 63, 

66–68, 71, 77, 78], the precise cellular and regional localizations as well as the physiological 

significance of sProrenin remains incompletely understood, inspiring a continuing debate 

[73, 79–84]. Ganten et al. (1971) [20] demonstrated renin enzymatic activity in the caudate 

nucleus, frontal cortex, thalamus, hypothalamus and brainstem of dogs, whereas Hirose 

et al. (1978) [85] showed renin enzymatic activity in whole-brain extracts of rats. Other 

studies have also demonstrated renin protein expression using immunoassays. Hermann et 
al. [86], in 1987, reported that renin is expressed in neuronal and glial cell cultures from 

the hypothalamus and brainstem of Wistar Kyoto (WKY) rats and that it is expressed at 

higher levels in cell cultures from spontaneously hypertensive rats (SHRs) than WKY rats. 

Moreover, renin and/or sProrenin protein levels and enzyme activity, measured as total 

renin (renin + prorenin) by enzyme-linked immunosorbent assay (ELISA) and enzyme 

kinetics assays, respectively, have been previously reported in the hypothalamus and 
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brainstem of hypertensive DOCA-salt mice [24]. On the other hand, a recent study by 

van Thiel et al. (2017) provides an example of the opposing point of view, arguing that, 

because of the nanomolar-range affinity of the PRR for prorenin, higher than physiological/

pathophysiological prorenin levels may be required for this binding. In addition, this study 

further suggests that there is no brain RAS at all [80]. They reported that 1) angiotensin-

generating ability in the brain is renin-dependent, 2) DOCA-salt and Ang II hypertension 

suppress both plasma and brain renin, 3) angiotensinogen protein is undetectable in the 

brain, despite expression of angiotensinogen mRNA, and 4) the levels of renin/sProrenin 

are profoundly decreased (>60%) in all brain regions analyzed after washing away blood 

from the brain vasculature. Citing these lines of evidence, the authors raised questions about 

the local production of Ang II in the brain, despite the numerous studies supporting it 

[24, 25, 70, 71, 87–91]. It is worth noting that, although there was a significant decrease 

in renin/sProrenin levels after blood was removed from the brain vasculature in this latter 

study, renin/sProrenin was still detectable in most brain regions, showing that renin and 

sProrenin are indeed expressed in the brain. In support of this conclusion, a very early 

study by Genain et al. (1985) [78] examined renin enzymatic activity and angiotensinogen 

concentration in different brain regions of SD rats on either low- or high-salt diets. They 

detected both renin enzymatic activity and angiotensinogen expression in these regions, 

showing that NaCl deprivation increased renin enzymatic activity in the olfactory bulb and 

anterior pituitary. The authors also controlled for residual plasma contamination by both 

perfusing rats and by evaluating renin enzymatic activity in brain regions of nephrectomized 

rats, experiments that collectively demonstrated the presence of de novo renin enzymatic 

activity in the CNS. These results corroborate previous findings from our group showing that 

renin and prorenin are expressed in the cortex, hypothalamus and brainstem of mice, and 

are elevated in the two latter brain regions of DOCA-salt hypertensive mice [24]. Because 

renin/sProrenin levels in the CNS are relatively low compared with those in the kidney, it has 

been a challenge to study its function. Notably, unlikely the case in the kidneys, it has never 

been shown that renin is stored in a type of granule cell in the brain, whereas it is predicted 

that sProrenin is secreted and acts on the PRR to exert its function [6, 73]. As very elegantly 

discussed in a recent review by Nakagawa et al. [73], the brain is composed of many neural 

circuitries, different cells and neuron types, and serves a large range of functions. Because 

RAS components may exhibit distinct distributions and expression in these brain regions, 

the cellular, neuroanatomical, and molecular specificity in the brain must be taken into 

consideration in making such determinations. Thus, techniques that are much more specific 

and sensitive than were used in these previous studies may be required to accurately assess 

renin/prorenin levels and function in the brain [73].

4. An overview of the PRR outside the CNS

The PRR, one of the more recently discovered members of the RAS, is a 350-amino-acid 

single-transmembrane protein composed of a large extracellular domain (ECD; ~310 amino 

acids), a single transmembrane domain (TMD; ~20 amino acids), and a short intracellular 

domain (ICD; ~19 amino acids) [6, 92]. The PRR forms homodimers through interactions 

of both the ECD and ICD [93–95] and is ubiquitously expressed, mainly in the plasma 

membrane but also in intracellular compartments like the perinuclear space [79, 92, 96, 
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97]. It is encoded by the ATP6AP2 gene, localized on the X chromosome. The PRR 

exhibits a high degree of homology between species at the nucleotide sequence level (95%) 

and amino-acid sequence level (80%) [98]. PRR orthologs are present in both vertebrates 

and invertebrates. The ECD amino-acid sequence is similar among vertebrates, while the 

sequence of the ICD is highly conserved in vertebrates and invertebrates [99, 100]. The 

PRR has multiple functions, including activation of the tissue RAS [24, 70, 71, 75, 92, 

101, 102] and activation of tyrosine phosphorylation-dependent signaling pathways [70, 75, 

92, 102]. The PRR is also a component of the vacuolar H+-ATPase, acting as an adaptor 

protein between the H+-ATPase and the Wnt receptor complex, and plays an important role 

in lysosomal acidification and autophagy, among other functions [79]. In addition, an exonic 

splice enhancer mutation in the ATP6AP2 gene leads to X-linked mental retardation and 

epilepsy, suggesting a novel role for the PRR in cognitive function and brain development 

[103]. Our focus here is on two PRR functions—mediating Ang II formation as a key RAS 

component, and promoting tyrosine phosphorylation-dependent signaling pathways—in BP 

regulation. For more information on these other PRR functions, see a recent review by 

Ichihara and Yatabe [79].

The PRR plays an important role in activation of the tissue RAS. PRR binding to prorenin, 

previously considered to be an inactive renin precursor, leads to structural conformational 

changes in prorenin that lead to its activation without cleavage of the prosegment, suggesting 

that prorenin is important in the formation of Ang II in tissues where the PRR is expressed 

[6]. Binding of either renin or prorenin to the PRR increases the catalytic efficiency of 

angiotensinogen cleavage to Ang I [92, 98]. Notably, when bound to the PRR, the catalytic 

efficiency of prorenin in converting angiotensinogen to Ang I is as high as that of renin [92]. 

Renin and prorenin binding to the PRR also induces intracellular signaling independent of 

the formation of Ang II, including activation of mitogen-activated protein kinases (MAPKs) 

such as p38 and c-Jun N-terminal kinase (JNK) [106], extracellular signal-regulated kinases 

(ERK)-1 and −2 (ERK2) [92, 104], as well as their downstream targets, heat shock protein 

27 (HSP27) [105], transforming growth factor-β (TGFβ) and NADPH oxidase (NOX) [75, 

102], enhancing the production of proinflammatory cytokines [107, 108] and expression of 

Wnt-mediated promyelocytic zinc finger (PLZF) protein [109].

Three different forms of the PRR have been described to date: the full length protein 

containing both N- and C- termini [92], a truncated form called the M8-9 fragment 

containing the C-terminal region [110], and a truncated form, also called soluble PRR 

(sPRR), containing the N-terminal region [111]. The M8-9 fragment and full-length PRR 

are associated with V-ATPase, which is essential for cell survival [110, 112]. Cousin et al. 
(2009) [111] showed that sPRR is cleaved by furin from the full-length PRR and is present 

in the circulation. They also showed that sPRR can bind both renin and prorenin. Several 

groups have investigated the physiological role of sPRR and its contribution to essential 

hypertension [113], obesity-induced hypertension [114, 115], pre-eclampsia [116], chronic 

heart failure [117, 118], and other health conditions. A recent study showed that circulating 

sPRR stimulates the RAS, increasing plasma renin concentration and angiotensinogen 

expression in the kidney and liver [114]. More recently, however, Wang and colleagues [119] 

showed that intravenous administration of histidine-tagged recombinant sPRR improves 

diet-induced obesity and metabolic syndrome. Despite several studies indicating that sPRR 
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levels are increased in different pathophysiological conditions [120], as also discussed by 

Cousin et al. (2009) [111], it is yet not known whether sPRR can activate prorenin or if it 

competes with membrane full-length PRR, acting as a natural antagonist. Moreover, to our 

knowledge, no study to date has investigated whether sPRR plays a role in BP regulation 

through a central mechanism, a question that warrants further investigation.

As previously mentioned, the PRR is expressed in different organs and tissues, including 

the kidneys [92, 121], heart [92], brain [92], vascular smooth muscle cells [122], adipose 

tissue [123], placenta [92], liver [92] and pancreas [124], among others [125]. Specifically, 

several studies have investigated mechanisms related to the regulation of PRR expression 

in the kidney under different pathophysiological conditions. PRR expression in the kidney 

is upregulated by 1) glucose levels, through PKC-Raf-1-ERK1/2-NF-κB, PKC-JNK-NF-κB, 

and PKC-JNK-AP-1 (c-Jun) signaling pathways [126]; 2) sodium concentration, through 

xanthine oxidase activity in proximal tubules and mineralocorticoid receptor activation in 

distal tubules [127, 128]; 3) Ang II, through COX-2– [129] and AT1R-NADPH–dependent 

[130, 131] mechanisms; and 4) a high-fructose diet, through uric acid [132]. Nevertheless, 

our understanding of the mechanisms that regulate PRR expression in other tissues outside 

of the kidney is still very limited.

4.1. PRR expression in the CNS

PRR mRNA and protein are highly expressed in most regions of the mouse brain, including 

key regions involved in BP and body fluid regulation, such as the SFO, SON, RVLM, PVN 

and NTS [70, 96, 133–136], as also summarized in Table 1. Based on the morphology of 

cells expressing PRR mRNA in the above-mentioned brain regions, Contrepas et al. [133], 

using in situ hybridization on paraffin-embedded mouse brain sections, reported in 2009 that 

the PRR is primarily expressed in neurons and in cells of the choroid plexus. A year later, 

Raizada and colleagues confirmed and extended these previous results in rats [134]. Using 

quantitative real-time PCR, they showed that the PRR is expressed in the brain regions 

indicated above, as well as the MnPO, OVLT and central amygdala (CA), and that it is 

expressed in neurons (NeuN+), but not astrocytes (GFAP+), in the SON. They also compared 

PRR mRNA expression in these brain regions between WKY rats and SHRs and reported 

that PRR expression is higher in the SON, CA, and NTS of SHR rats [134]. In 2012 and 

2015, we and others demonstrated using immunofluorescence that the PRR is expressed in 

neurons of the mouse SFO, PVN, arcuate nucleus (Arc), NTS, RVLM, cortex and nucleus 

raphe pallidus [6, 70, 71, 74, 96], and that its expression level is higher in the SFO and 

PVN of Ang II-dependent [96] and DOCA-salt [137] hypertensive mice compared with 

normotensive mice. In the PVN, we found that the PRR is mostly expressed in neurons, 

but also in a few microglia cells [70]. Recently, Hu et al. (2020) [138] showed that both 

prorenin and PRR expression are increased in the RVLM in stress-induced hypertension. 

Takahashi et al. reported that, in humans, PRR mRNA is highly expressed in the CNS, 

including the hypothalamus and pituitary, and showed by immunohistochemistry that the 

PRR is expressed in the PVN and SON, where it is co-localized with arginine-vasopressin 

(AVP) and oxytocin in neurons in these nuclei [135]. Later, our group showed that the PRR 

is expressed in most neurons of the human SFO, with minor expression in microglia but 

no expression in astrocytes. Interestingly, PRR immunoreactivity is higher in this region in 
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hypertensive humans [136], suggesting potential clinical significance. In vitro, two studies 

using cell culture techniques demonstrated the expression of the PRR in astrocytes and 

microglia from rodents. Specifically, Shan et al. reported that PRR mRNA is expressed in 

cultured astroglia from hypothalamic and brainstem regions of WKY rats [97]. In another 

study, Shi et al. (2014) [108] showed by immunolabeling that PRR protein is expressed in 

both cultured primary microglia from SD rats and in cultures of immortalized microglia 

(N9 cells) [108]. Overall, the PRR is mostly expressed in neurons in vivo, with minor 

expression in microglia, but not in astrocytes, although there is limited in vitro support for 

PRR expression in this latter cell type.

Our understanding of the mechanisms responsible for the regulation of PRR expression in 

the brain in both physiological and pathophysiological conditions remains very limited. Our 

group previously showed that PRR mRNA and protein levels are increased in the PVN 

and hypothalamus of DOCA-salt hypertensive mice and that treatment with losartan or 

captopril prevents the increase in PRR mRNA expression observed in these mice, indicating 

that Ang II/AT1R signaling regulates PRR expression [137]. Furthermore, this regulation 

of PRR expression is mediated by transcription factors downstream of the AT1R, namely 

cAMP response element-binding protein (CREB) and activator protein-1 (AP-1). Other 

factors and mechanisms that regulate the PRR in the CNS in various physiological and 

pathophysiological conditions, such as high salt or high-fat diet (HFD), remain unexplored.

In summary, these studies show that PRR mRNA and protein are mostly expressed in 

neurons of key brain cardiovascular regulatory regions in mice, rats, and humans. Some 

evidence supports expression of the PRR in microglia, while no studies have shown 

PRR protein expression in astrocytes in vivo. Future studies using cell-specific reporter 

strains should provide additional insight into PRR expression patterns under physiological 

conditions and in the context of cardiovascular diseases, such as hypertension, heart failure, 

obesity, and diabetes. Furthermore, current knowledge regarding which neuronal types 

express the PRR is still limited for most brain regions. Advances in Cre-loxP technology, 

which uses the DNA recombinase, Cre, to either inactivate or induce the expression of a 

gene by genetic excision or inversion/translocation of DNA sequences between two loxP 

sites [139], should also facilitate investigation of PRR expression and function in different 

neuron types. In addition, future studies are warranted to understand how PRR expression in 

the CNS is regulated. This information will provide valuable insight into the pathogenesis of 

cardiovascular and metabolic diseases.

4.2. The PRR in CNS regulation of BP: gain-of-function approaches

Only a few studies have investigated the role of the brain PRR in the regulation of BP using 

gain-of-function strategies, as summarized in Table 2. In 2010, Shan et al. [134] induced 

human PRR overexpression in the SON of SD rats by microinjection of adeno-associated 

(AAV) virus encoding the human PRR (AAV-hPRR). They observed reductions in water 

intake and urine volume and osmolality, as well as increased levels of AVP in the urine and 

plasma, demonstrating the importance of the PRR in the SON in regulating fluid intake and 

AVP secretion. A few years later, a transgenic mouse expressing the hPRR specifically in 

neurons was developed and characterized [75]. These mice, in which hPRR is expressed 
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under the control of the neuron-specific rat synapsin 1 promoter (Syn-hPRR mice), exhibit 

increased PRR expression in the SFO, PVN, NTS, AP, RVLM and other regions throughout 

the brain. Under baseline conditions, there is no difference in BP, HR, or locomotor activity 

between transgenic and wild-type (WT) mice; however, the pressor response to ICV infusion 

of human prorenin is greater in Syn-hPRR mice. Notably, the pressor response to prorenin 

infusion was not changed by co-infusion of the AT1R antagonist losartan or ACE inhibitor 

captopril, suggesting that the pressor response to prorenin is not caused by increased Ang 

II/AT1R signaling. In fact, Ang II levels are not increased in the hypothalamus of these mice. 

Interestingly, PRO20, a PRR antagonist, exerted a dose-dependent attenuation of the pressor 

response produced by the ICV infusion of prorenin. In this study, this pressor response was 

found to be mediated by ERK phosphorylation and NADPH oxidase 4 (NOX4) activation in 

the CNS. These data highlight the importance of Ang II-independent PRR signaling in the 

regulation of BP.

Several studies have also used gain-of-function approaches in in vitro cell culture systems to 

investigate the PRR and its mechanisms. Neuro-2A (N2A) cells overexpressing the human 

PRR show an increase in reactive oxygen species (ROS) production following incubation 

with mouse prorenin [102]. Interestingly, oxidative stress was attenuated by treating these 

cells with the AT1R antagonist losartan, suggesting that this effect, at least in part, is Ang 

II-dependent. In fact, incubation of these cells with prorenin resulted in both increased 

intracellular Ang II (whole-cell lysates) and secreted Ang II (in cell culture medium). There 

were also increases in the expression of NOX2 and NOX4 mRNAs in PRR-overexpressing 

N2A cells, suggesting a mechanism involving ROS production. Results obtained by 

inducing hPRR overexpression in the SFO of mice by ICV injection of AAV2-hPRR virus 

provide additional support for this mechanism [102]. Specifically, PRR overexpression 

induced activation of PI3K and MAPK, resulting in NOX2 and NOX4 upregulation and 

increased ROS production. Notably, ROS production in PRR-overexpressing N2A cells 

was decreased by siRNA-mediated knockdown of NOX2 and NOX4. Taken together, these 

findings suggest that binding of prorenin to the PRR induces oxidative stress in N2A cells, 

an effect that appears to be mediated by both Ang II-dependent and Ang II-independent 

pathways.

4.3. The PRR in CNS regulation of BP: genetic loss-of-function approaches

Different approaches have been used to decrease PRR expression in studies investigating 

the role of PRR in the neural regulation of BP (Table 3) [96, 107, 134]. Shan et al. (2010) 

[134] showed that PRR knockdown in the SON of SHRs induced by microinjection of 

AAV virus encoding shRNA against the PRR (AAV-PRR-shRNA) attenuated age-dependent 

increases in BP and decreased HR. These effects were associated with decreased levels of 

plasma AVP, revealing a role for the SON PRR in regulating BP and AVP secretion. In 

another study, Li et al. (2012) [96] knocked down the PRR in the SFO of hypertensive 

renin-angiotensinogen (RA) double-transgenic mice and found that PRR knockdown in the 

SFO resulted in decreased BP, improved spontaneous baroreflex sensitivity, and attenuated 

cardiac and vasomotor sympathetic tone. These effects were associated with a decrease 

in AT1aR mRNA and protein expression and AVP mRNA expression in the PVN as 

well as a decrease in plasma AVP levels, demonstrating the importance of the PRR in 
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regulating autonomic function and AVP synthesis and secretion. Using a similar approach, 

Zubcevic et al. (2013) [107] knocked down the PRR in the NTS of 8-week-old SHRs and 

observed an increase in mean arterial pressure (MAP) and a shift in the cardiac baroreflex 

curve to higher MAP values, with no change in the maximum gain. These effects were 

associated with decreased mRNA expression of NF-κB (nuclear factor-κB), interleukin 

(IL)-6, tumor necrosis factor (TNF)-α, and C-C motif ligand 5 (Ccl5) in the NTS. They 

further investigated the cardiovascular effects of renin infusion in the NTS and showed that 

it produces a dose-dependent reduction in MAP and HR in SHRs, but not in WKY rats. 

Moreover, this effect was not changed by co-administration of losartan but was reversed 

by co-infusion of HRP, a PRR antagonist. Taken together, these data indicate that PRR 

activation has an excitatory effect on NTS neurons independent of Ang II.

The Cre-loxP system allows researchers to investigate the role of the PRR in specific cell 

types or in specific brain regions in BP regulation. Li et al. (2014) [24] induced PRR 

knockdown specifically in neurons by breeding PRR-floxed mice with mice expressing Cre 

under the control of a pan neuronal promoter, the neuron filament heavy chain promoter 

(Nefh-Cre). In this study, PRR knockdown in neurons did not change baseline BP, HR, 

locomotor activity, or body weight. These mice exhibited expected pressor responses to 

the ICV infusion of carbachol (acetylcholine receptor agonist), Ang II, and mouse renin; 

interestingly, however, the pressor response to ICV-administered prorenin was reduced. 

These data indicate the importance of the PRR in mediating Ang II formation through 

activation of prorenin. Furthermore, in DOCA-salt hypertensive mice, PRR knockdown in 

neurons prevents increased formation of Ang II and attenuates hypertension development 

and cardiac and vasomotor sympathetic tone, and improves cardiac parasympathetic tone. 

These results reveal the importance of the neuronal PRR in the formation of Ang II and the 

regulation of autonomic activity during hypertension.

In another study, neuronal PRR knockdown decreased saline and total fluid intake, sodium 

preference, urine volume and sodium excretion in response to DOCA, suggesting that 

the neuronal PRR has a regulatory role in sodium appetite [140]. More recently, it was 

shown that PRR knockdown in PVN neurons by microinjecting PRR-loxP mice with Cre-

expressing AAV virus (AAV2-Cre) attenuated the development of DOCA-salt hypertension 

and improved autonomic function [70]. These effects were associated with 1) reduced 

phosphorylation of ERK1/2, a marker of neuronal activation, in PVN and RVLM neurons; 

2) decreased AT1aR mRNA expression in the PVN; and 3) attenuated AT1aR-dependent 

Ca2+ activity in the PVN, providing a mechanistic basis for the role of the PRR in 

angiotensinergic signaling during DOCA-salt–induced hypertension. In a separate study, 

Pitra et al. (2019) [76] showed that PRR mRNA expression is also increased in the SON of 

DOCA-salt hypertensive rats. Using an electrophysiological approach, they further showed 

that the response to the application of prorenin was exacerbated in SON magnocellular 

neurons of hypertensive rats. Moreover, knockdown of the PRR selectively in neurons 

attenuated the elevation in plasma AVP levels observed in DOCA-salt hypertensive mice, 

again demonstrating a role for the PRR in AVP secretion. Finally, only one study to date 

has investigated the role of the PRR in the CNS in the pathogenesis of obesity-induced 

hypertension and type II diabetes [71]. In this recently published study, Worker et al. 
(2020) [71] showed that neuronal PRR deletion mediated by a pan-neuronal promoter (Nefh) 
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attenuated the development of hypertension and type II diabetes induced by a 60% fat 

diet for 16 weeks. This dietary regimen was associated with marked increases in prorenin 

levels in the plasma and hypothalamus, as well as elevation of Ang II in the hypothalamus. 

Neuronal deletion of the PRR did not alter plasma Ang II l or sProrenin levels in the plasma 

and hypothalamus, but did significantly reduce hypothalamic Ang II, supporting a critical 

role for the neuronal PRR in endogenous brain Ang II formation and metabolic regulation.

4.4. PRR in the CNS regulation of BP: pharmacological approaches

One of the strategies that has advanced our understanding of the role the CNS PRR plays in 

BP regulation is the central administration of exogenous prorenin. ICV infusion of prorenin 

increases BP; this effect is attenuated by PRR deletion [24] in neurons and exacerbated by 

neuronal PRR overexpression [75]. Furthermore, PVN microinjection of prorenin increases 

sympathetic splanchnic nerve activity [74]. Collectively, these finds indicate that prorenin 

acts through the PRR to mediate its effects. Only a few studies have used PRR antagonists 

to investigate the role of the brain PRR in the regulation of BP. To date, two PRR 

antagonists, HRP [141] and PRO20 [25], have been developed and used in these studies. 

HRP is a decoy peptide containing the handle region of the prorenin prosegment and 

inhibits the conformational change and non-proteolytic activation of prorenin induced by its 

binding to the PRR [141, 142]. Treatment with HRP attenuates the development of diabetic 

nephropathy [141, 143], decreases glomerulosclerosis in aged rats [106], diminishes cardiac 

hypertrophy in hypertensive rats [144], and improves fat distribution in obese mice [145]. 

However, some studies have suggested that HRP does not inhibit prorenin binding to the 

PRR [146] and might instead have a partial agonistic effect on the PRR, which may be part 

of the reason for the conflicting results obtained using this decoy peptide [6, 146–149]. On 

the other hand, PRO20, composed of the first 20 amino acids of the prorenin prosegment, 

is a competitive antagonist of prorenin binding to the PRR [6, 25]. It has been shown 

that treatment with PRO20 decreases BP and attenuates kidney injury in hypertensive mice 

[150], decreases BP in a model of high fructose-induced salt sensitivity [132], reduces 

high-salt–induced apoptosis in inner medullary collecting duct cells [151], and mitigates 

protein overload-induced renal injury [152]. In addition, PRO20 has been used as a tool to 

better understand the role of the PRR in renal physiology [153–157], including the role of 

the collecting duct PRR in regulating aquaporin 2 expression [155] and epithelial sodium 

channel (ENaC) activity [154], and the role of the renal PRR in potassium homeostasis 

[156].

Focusing on the CNS, Zubcevic et al. (2013) showed that infusion of renin into the NTS 

of SHR rats decreased MAP and improved the baroreflex sensitivity of these rats, effects 

that were reversed by co-administration of HRP [107]. Another group has also used HRP to 

investigate the effects of prorenin on microglia cell cultures [108]. These researchers showed 

that prorenin has proinflammatory effects in these cells and that these effects are attenuated 

by incubation with HRP. On the other hand, PRO20 blocks the binding of prorenin to both 

mouse and human PRRs in the brain and prevents prorenin-induced Ca2+ influx in human 

neuronal cells [25]. Moreover, ICV infusion of PRO20 attenuates the pressor effects of ICV-

infused prorenin in normotensive mice and lowers BP in mice with either Ang II-dependent 

hypertension or DOCA-salt hypertension. ICV infusion of PRO20 also decreases cardiac 
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and vasomotor sympathetic tone and increases cardiac parasympathetic tone in DOCA-salt 

mice. Consistent with these findings, ICV infusion of PRO20 reduces the formation of Ang 

II in the cortex, hypothalamus, and brainstem of DOCA-salt mice [25]. Recently, Hu et 
al. (2020) [138] reported that rats with stress-induced hypertension exhibit higher BP and 

renal sympathetic nerve activity (RSNA) as well as increased expression of prorenin and the 

PRR in the RVLM. Chronic intracisternal infusion of PRO20 into these rats decreased BP 

and RSNA. Mechanistically, these researchers found that a proinflammatory state developed 

in the RVLM of SIH rats, with increased microglia proliferation and activation, NLRP3 

expression in microglia, ROS production, and levels of IL-1β and TNF-α. Interestingly, 

treatment with PRO20 attenuated these changes. Taken together, these studies show that 

PRR antagonism is a new therapeutic approach that could be used to study physiological 

and pathophysiological roles of the PRR and as a new pharmacological approach for the 

treatment of cardio-renal and metabolic diseases.

5. Conclusions and Perspectives:

While our understanding of the role of the brain PRR in the regulation of BP has 

advanced considerably, the importance of the brain PRR in other cardiovascular and 

metabolic diseases remains undefined. As summarized in Figure 1, the PRR exerts an 

excitatory role in key cardiovascular regulatory regions of the brain and is involved in 

the regulation of inflammation, neuronal activity, autonomic function, sodium appetite, and 

AVP synthesis and secretion. These effects are mediated through both Ang II-dependent 

and -independent signaling pathways, as well as activation of oxidative stress, PI3K, 

MAPK, and NF-κB signaling pathways. Although the PRR is expressed mainly in neurons 

in the CNS, the mechanisms regulating the neuronal PRR and neural circuitries of the 

PRR in specific neuron types remain largely undefined. With advances in the Cre-loxP 

system, future development of a PRR-Cre mouse strain and cell-specific reporter strains 

can be expected, providing important tools to better understand the role and mechanisms 

regulating PRR expression under physiological conditions and in the pathogenesis of 

different cardiovascular diseases, including, but not limited to, hypertension, heart failure, 

and diabetes. The precise cellular localization and functional importance of CNS sProrenin, 

the endogenous ligand for the brain PRR, is another critical knowledge gap that warrants 

further investigation.

The clinical significance of the PRR is beginning to emerge through accumulating basic 

and translational research. Traditional RAS blockers such as angiotensin receptor blockers 

and ACE inhibitors induce secretion of reactive renin, increasing its levels and enzymatic 

activity in plasma [158–164]. Furthermore, plasma renin levels are elevated by treatment 

with aliskiren [165], a renin inhibitor used for the treatment of hypertension. However, 

aliskiren does not inhibit binding of renin or prorenin to the PRR or activation of direct 

PRR signaling pathways [166]. Therefore, the indirect actions of these drugs might 

result in clinical consequence owing to activation of Ang II-independent PRR signaling, 

a possibility that needs further evaluation. Future studies investigating Ang II-dependent 

and/or -independent brain PRR signaling pathways in various cardiovascular and metabolic 

diseases would provide critical evidence supporting the clinical relevance of the PRR. In the 

end, by inhibiting both tissue/local RAS overactivation and Ang II-independent direct PRR 
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signal pathways, PRR antagonism might present a better strategy for controlling BP and 

end-organ damage. Additional PRR antagonists would thus be valuable tools for advancing 

our understanding of the role of the PRR in a wide range of cardiovascular, metabolic and 

aging-related diseases, and could ultimately constitute a new category of drugs for treating 

these diseases.

Although the role of sPRR in BP regulation has been investigated in several peripheral 

tissues, its potential role in neural autonomic regulation remains unexplored and needs 

further investigation. Among other functions, the PRR is a component of the vacuolar H+-

ATPase, acting as an adaptor protein between the H+-ATPase and the Wnt receptor complex 

to play an important role in lysosomal acidification and autophagy. However, no studies have 

yet investigated whether these PRR functions play a role in the neural regulation of BP. 

Although additional discoveries await, the takeaway point from the literature is that the PRR 

is a key component of the brain RAS that mediates endogenous Ang II formation and Ang II 

-independent signaling pathways.
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Figure 1. Schematic depiction of PRR action in brain regions that regulate BP.
In the CNS, the PRR exerts an excitatory function in the subfornical organ (SFO), supraoptic 

nucleus (SON), paraventricular nucleus (PVN) and nucleus tractus solitaries (NTS; orange), 

and is involved in the regulation of autonomic function and arginine vasopressin (AVP) 

synthesis and secretion. AP, area postrema; CVLM, caudal ventrolateral medulla; IML. 

intermediolateral column; NA, nucleus ambiguus; PP, posterior pituitary.
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