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Abstract

Purpose of Review—The incidence of type 1 diabetes (T1D) is rising in all age groups. 

T1D is associated with chronic microvascular and macrovascular complications but improving 

glycemic control can delay the onset and slow the progression of these complications. Utilization 

of technological devices for diabetes management, such as continuous glucose monitors (CGM) 

and insulin pumps, is increasing, and these devices are associated with improvements in glycemic 

control. Thus, device use may be associated with long-term prevention of T1D complications, 

yet few studies have investigated the direct impacts of devices on chronic complications in T1D. 

This review will describe common diabetes devices and combination systems, as well as review 

relationships between device use and cardiovascular outcomes in T1D.

Recent Findings—Findings from existing cohort and national registry studies suggest that 

pump use may aid in improving cardiovascular risk factors such as hypertension and dyslipidemia. 

Furthermore, pump users have been shown to have lower arterial stiffness and better measures of 

myocardial function. In registry and case-control longitudinal data, pump use has been associated 

with fewer cardiovascular events and reduction of cardiovascular disease (CVD) and all-cause 

mortality.
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Summary—CVD is the leading cause of morbidity and mortality in T1D. Consistent use 

of diabetes devices may protect against the development and progression of macrovascular 

complications such as CVD through improvement in glycemic control. Existing literature is 

limited, but findings suggest that pump use may reduce acute cardiovascular risk factors as well as 

chronic cardiovascular complications and overall mortality in T1D.
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Introduction:

Type 1 diabetes (T1D) is the most common form of diabetes in the pediatric population but 

is diagnosed in all ages, and incidence rates are continuing to rise. Currently, 1.6 million 

people are estimated to have T1D in the United States (1) and this figure is predicted to 

increase to 5 million people by the year 2050 (2). T1D is a result of permanent autoimmune 

destruction of insulin-producing pancreatic β-cells leading to an absolute insulin deficiency, 

and thus requires treatment with insulin for the remainder of the lifetime (3). Insulin is 

administered subcutaneously via injection with a syringe or pen or via infusion with an 

insulin pump. Injection therapy combines long-acting insulin (LAI, also referred to as basal 

insulin) and short- or rapid-acting insulin (RAI) to create a multiple daily injection (MDI) 

regimen. LAI is administered once or twice daily to inhibit gluconeogenesis and ketogenesis 

and RAI is administered multiple times per day to correct acute hyperglycemia and/or with 

meals to prevent hyperglycemia from carbohydrate intake (4).

Chronic hyperglycemia increases risk for microvascular and macrovascular complications, 

as well as resultant increased morbidity and mortality in T1D. The landmark 1993 

Diabetes Control and Complications Trial (DCCT) demonstrated in both pediatric and adult 

populations alike that intensive insulin treatment and subsequent improvement in glycemic 

control delays the onset and slows the progression of these complications, but these 

improvements came at the expense of higher rates of hypoglycemia (5, 6). Hypoglycemia 

is associated with acute complications such as cognitive impairment and seizures and 

can contribute to chronic vascular and neurocognitive complications. Consequently, T1D 

treatment guidelines recommend achievement of >70% time in goal glycemic range (TIR), 

considered to be between 70 mg/dL and 180 mg/dL), and targeting a hemoglobin A1c 

(HbA1c) of 7% or less (4, 7-10). Adjunct TIR goals include minimizing the amount of time 

that blood glucoses exceed goal range and targeting <4% of time per day with glucoses 

below the goal range (10).

As diabetes technologies continue to undergo rapid advancement, utilization rates are 

increasing across many national registries, particularly for devices related to glucose 

monitoring and insulin delivery (11-15). Incorporating devices such as insulin pumps and 

continuous glucose monitors (CGM) into diabetes management is shown to help persons 

with diabetes (PwD) reduce risk of hypoglycemia and improve HbA1c and TIR (16-20), 

and thus may contribute to delaying onset and slowing progression of T1D-associated 
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complications. This review will provide an overview of commonly utilized diabetes devices 

and combination systems, as well as review relationships between technology use and 

T1D-associated cardiovascular outcomes.

Devices:

Continuous Glucose Monitors (CGM)

A subcutaneous CGM estimates blood glucose concentrations by measuring glucose 

concentration in the interstitial fluid via a sensor inserted directly under the skin. This 

device serves as an alternative to self-monitoring of blood glucose (SMBG) with a single 

measurement “fingerstick” glucometer (21). CGM sensors are inserted by the user and 

adhered directly to the skin with adhesive. In 2000, the Minimed CGM System was the 

first to obtain United States Food and Drug Administration (FDA) approval (22), and since 

that time, newer generations have continued to improve upon accuracy, functionality, and 

ease of use. CGMs can relay glucose values to a designated receiver, cellphone, and/or an 

insulin pump, and multiple brands now hold FDA approval to replace fingerstick glucose 

measurements for decision-making in insulin dosing in pediatric and adult populations with 

diabetes (23). Current devices have varying durations of wear, but typically require removal 

and replacement every 7 to 14 days. These devices are typically equipped with optional and 

customizable alerts for hypoglycemia, hyperglycemia, and rapid glycemic change.

CGMs can be divided into two categories based on data type: “real time” and “flash”. Real 

time CGMs (rtCGM) report glucose s every 1-5 minutes through Bluetooth communication 

to the designated receiver, cellphone, or insulin pump. Flash CGMs, also referred to as 

intermittently-scanned CGMs (isCGM), glucose concentrations every 1-15 minutes, but 

only download the data to the designated reader when the user “flashes” the Near Field 

Communication tag, at which time the previous 8 hours of data is downloaded (21). In 

2018, the first 90-day implantable real-time glucose sensor received FDA approval for use 

in adults 18 years and older with diabetes, and then in 2019 also received approval for 

use in insulin dosing decision-making (24). This device is implanted under the skin during 

an outpatient procedure, requires users to wear a removable transmitter on the skin atop 

the sensor location, and is replaced every 90-180 days. This CGM glucose concentrations 

values every 5 minutes and transmits data via Bluetooth to a cellphone app (19, 25). 

CGMs may also be categorized based on calibration need, including factory-calibrated and 

calibration-requiring devices. Older CGM devices required 2-3 SMBG values per day to 

calibrate the sensor value against a reference glucose concentration. Many newer CGM 

devices are factory calibrated, allowing advanced calibration algorithms to ensure accuracy 

without the need for user SMBG entry. Table 1 provides an overview of commonly used 

CGMs.

CGMs are beneficial for all ages of people with T1D, regardless of insulin delivery method. 

Studies performed around the world utilizing various CGMs have associated CGM use with 

reductions in hypoglycemia (18, 26-31) and HbA1c (12, 14, 19, 30, 32-34), improvements 

in TIR (19), fewer episodes of diabetic ketoacidosis (DKA) (14, 35), and improvements 

in psychosocial outcomes (36-38). Furthermore, early initiation of CGM (i.e., within 

1 year of T1D diagnosis) has shown association with lower HbA1c and fewer diabetes-
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related emergency visits (39, 40). Few studies have directly compared rtCGM and isCGM, 

but limited evidence suggests that rtCGM has greater benefit than isCGM in reducing 

hypoglycemia and improving TIR (41-44). CGM has become standard of care in diabetes 

management around the world; indeed, United States and international clinical guidelines 

for both youth and adults with T1D support use of CGM, stating that CGMs are safe 

and effective in both populations. The American Diabetes Association (ADA) recommends 

CGM be considered from the time of diagnosis and implementation of insulin therapy 

(41). The International Society for Pediatric and Adolescent Diabetes (ISPAD) guidelines 

include that rtCGMs are effective in lowering HbA1c, reducing glucose variability, reducing 

hypoglycemia, and increasing TIR (45). Similarly, a joint statement by from the ADA and 

the European Association for the Study of Diabetes (EASD) describes CGM as the standard 

for glucose monitoring for most adults with T1D and an effective method to improve HbA1c 

and reduce hypoglycemia (4).

Insulin Pumps

Increasing numbers of PwD are utilizing insulin pumps, also referred to as continuous 

subcutaneous insulin infusion (CSII) systems, for insulin delivery (13, 46). The first insulin 

pump prototype was designed in 1963 and was a large system that was worn by the user 

similarly to a backpack. Wearable insulin pumps have now been commercially available 

since 1976 and have continued to undergo reductions in size and advancement in ease of 

use and capabilities (47). Use of modern CSII replaces the need for insulin injections, as 

these devices continuously infuse RAI into the subcutaneous tissue via a small cannula and 

allow for bolus dosing to be administered with carbohydrate intake at meals or to correct 

hyperglycemia. When utilized as a singular device without associated CGM, insulin dosing 

parameters for basal and bolus insulin are programmed into the pump. Users then input 

blood glucoses and carbohydrate counts for the pump to calculate and deliver the appropriate 

insulin bolus dose. CSII devices can be divided into two categories: tubed and patch. Tubed 

pumps store insulin in a reservoir within the pump device. Insulin is then delivered through 

tubing to a small subcutaneous infusion cannula adhered to the skin. Patch pumps are an 

adhesive patch device that includes an insulin reservoir that is directly connected to an 

infusion cannula. The cannula is inserted under the skin at the time the device is adhered 

to the body. Most insulin pumps require the entire patch or the infusion site to be changed 

every 3 days, though there are now tubed infusion sets approved for 7 days of continuous 

wear.

CSII is also beneficial for all ages of those with T1D, as it is associated with lower HbA1c 

(14, 20, 28, 33, 48-52). One pediatric study showed that when compared to MDI users, 

pump users had lower HbA1cs for 6 years of treatment follow up (53). CSII use is also 

associated with lower rates of hypoglycemia (33, 48, 54, 55), lower total daily insulin doses 

(48), less glycemic variability (56), and improved sleep (57) as compared to MDI therapy. 

In older adults with T1D, people using CSII were less likely to exhibit cognitive dysfunction 

compared to those using MDI (33). Recent data from diabetes registries and cohort studies 

also demonstrate associations between insulin pump use and reduced rates of DKA (13, 

14, 48, 58), although two meta-analyses analyzing results of clinical trials found higher 

incidence of DKA in people using CSII when compared to MDI use (28, 52). Like CGMs, 
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insulin pump use is supported by United States and international T1D clinical treatment 

guidelines for both pediatric and adult populations. Both ADA and ISPAD guidelines 

recommend consideration of insulin pump therapy at the time of T1D diagnosis, as CSII 

is safe and effective and helps to achieve glycemic targets, reduce risk of hypoglycemia and 

DKA, improve quality of life, and prevent T1D-associated complications (41, 45).

Evolution of Device Collaboration

CGM and CSII devices may be used as independent devices; however, in recent years, 

technology has advanced to include real-time CGM data as a factor in user-directed and 

automated pump dosing decisions. Sensor-augmented insulin pump therapy (SAP) describes 

when a PwD uses CGM data to inform user-driven real-time decisions in insulin dose 

adjustment via CSII pump. SAP use is associated with a lower HbA1c without increasing 

rates of hypoglycemia when compared to MDI (59-61) and CSII alone (62). Automated 

insulin suspension systems allow the insulin pump to suspend basal insulin delivery in 

response to either a current low glucose concentration or prediction of an impending 

hypoglycemic event, as identified by CGM. Automated insulin suspension has been shown 

to reduce HbA1c (63, 64) hypoglycemia (65-68), and patient-reported fear of hypoglycemia 

(69).

The concept of a completely closed-loop insulin pump and glucose monitoring system has 

existed since 1974 when Dr. Ernst Friedrich Pfeiffer developed a system that combined 

an intravenous insulin infusion and continuous glucose monitoring (47, 70). Dr. Pfeiffer’s 

system at that time was too large and complex for commercial use but served as a foundation 

for advancements in diabetes devices. Current closed-loop systems are termed automated 

insulin delivery (AID) devices wherein CGM data is incorporated in real time into insulin 

dosing algorithm software to automatically modulate (i.e., increase or decrease) basal insulin 

delivery via CSII pump. Some systems also include AID for hyperglycemia correction. 

The most advanced commercial systems currently available are the hybrid closed loop 

(HCL) devices, which requires user input of carbohydrate intake at mealtimes as well as 

some user-initiated correction doses. The first of such devices (Medtronic MiniMed 670G) 

obtained FDA approval in 2016 (Figure 1). Since the novel MiniMed device’s market 

appearance, multiple other AID systems have obtained FDA approval. Tthese devices 

continually undergo rapid advancements in functionality and ease of use. Two systematic 

review and meta-analysis studies from 2017 and 2020, respectively, found AID system 

use to be the most effective treatment strategy for achieving target range blood glucose 

concentrations (71, 72). Figure 2 depicts a current HCL system.

AID Systems

The first commercial HCL system, the Medtronic MiniMed 670G, consist of the Medtronic 

670G insulin pump paired with the Guardian 3 sensor. It received FDA approval in 2016 

based on pivotal trial data demonstrating an average TIR of 68.8% in adults and 67.2% in 

adolescents with T1D (73). The 670G system was subsequently approved in children with an 

average TIR of 65% and the updated 770G system later received approval in young children 

with an average TIR of 63.8% (74, 75). While the 670G and 770G systems brought HCL 

technology from research to real-world use, the systems were limited by frequent fingerstick 
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testing requirements, excessive system alerts, and frequent exits from automation (76-79). 

A 12 month analysis of real-world use of the Medtronic 670G at a single center found a 

significant decrease in time spent in HCL mode over time, with a decrease from 70.7% at 1 

month of use to 49.3% at 12 months of use in children with T1D (77). This same analysis 

demonstrated showed that adults had a higher time in HCL mode which was maintained in 

the 78-76% range over 12 months. The updated version of the Medtronic MiniMed design, 

the advanced hybrid closed loop 780G system, appears to have resolved these issues. This 

system includes automated basal insulin delivery based upon total daily insulin requirements 

over previous days as well as automatic correction dose delivery. The approval trial of 

the 780G system demonstrated a 75.1% average TIR for adults and 72.7% average TIR 

for adolescents, with adults spending 95.2% time in HCL mode and adolescents spending 

93.8% time in HCL mode over 3 months of system use (80). Initial trials were conducted 

using the Guardian 3 CGM but the commercially available system pairs with the Guardian 4 

CGM. At the time of writing, 780G is CE marked in Europe but is still under review by the 

FDA for approval in the United States.

The second HCL system to come to market was the Tandem Control-IQ (CIQ) HCL 

system, which includes the Tandem t:slim X2 insulin pump paired with Dexcom G6 

CGM (Figure 3). This system expanded on a decade of previous research involving the 

University of Virginia Diabetes Assistant algorithm and can adjust basal insulin delivery 

rates as well as administer automatic correction doses according to current and predicted 

future glucose concentrations (81-83). The National Institute of Health (NIH)-sponsored 

randomized controlled trial of the CIQ system demonstrated an average 71% TIR for adults 

and adolescents and a 67% average TIR for children (84, 85). These studies resulted in FDA 

approval for adults and adolescents in 2019 followed by approval in children in 2020. Pilot 

testing of the CIQ system in young children demonstrated an average TIR of 71.3% during a 

brief hotel study with additional at-home use (86). The approval trial of this system in young 

children has been completed but not yet published.

The European market has several phone-based HCL designs which have received CE mark. 

The CamAPS FX system demonstrated an average TIR of 65% in adults and was the first 

system approved to be controlled from the user’s cell phone (87). The algorithm runs on an 

Android phone and works with the Dexcom G6 CGM and the DANA Diabecare RS insulin 

pump (88). In an approval trial completed in 2017, the Diabeloop system demonstrated an 

average TIR of 68.5% in adults (89) and the commercial version of the system is compatible 

with the Roche Accu-Chek Insight, Vi Centra Kaleido, SOOIL Dana-I and Cellnovo insulin 

pumps (88).

The most recently approved HCL system is the Insulet Omnipod 5 patch-pump system 

which pairs the Omnipod tubeless patch pump with the Dexcom G6 CGM (Figure 4). This 

system can modulate basal insulin delivery rates based upon customizable glucose targets 

and current and predicted glucoses, with further basal insulin rate automation over the 3-day 

period of wear as the system recognizes glucose trends (90). The approval trial for Omnipod 

5 demonstrated an average 73.9% TIR for adults and adolescents and an average 68% 

TIR for children over the course of 3 months of use (91). Additional studies completed in 

the young child age group demonstrated an average 68.1% TIR (92). Table 2 provides an 

Pauley et al. Page 6

Curr Cardiol Rep. Author manuscript; available in PMC 2023 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



overview of HCL systems that are currently available and under FDA review in the United 

States.

Diabetes Technology and Cardiovascular Outcomes:

Current T1D treatment strategies and goals are largely founded upon results from numerous 

studies from the DCCT and its epidemiological follow-up study, the Epidemiology of 

Diabetes Interventions and Complications (EDIC), which demonstrated that intensive insulin 

therapy aimed at achieving glycemic control approximating normoglycemia is effective 

at delaying the onset and slowing the progression of microvascular and macrovascular 

complications seen in T1D (5). Delaying and slowing these chronic complications is critical, 

as they contribute significantly to morbidity and mortality in T1D.

Macrovascular complications, specifically atherosclerotic cardiovascular disease (ASCVD), 

are the leading cause of morbidity and mortality in diabetes (93, 94). T1D significantly 

increases the risk for cardiovascular disease (CVD) and this occurs independently of other 

common CVD risk factors. Notably, people with T1D are more than twice as likely to 

exhibit cardiovascular mortality than the general population, even when meeting glycemic 

targets (95, 96). Known cardiovascular risk factors also contribute to this risk but are not 

entirely responsible for the excess mortality associated with diabetes (97). Development of 

atherosclerosis begins in childhood, and youth with T1D may develop subclinical CVD even 

within the first 10 years of diabetes diagnosis (98). CVD contributes to 25-50% of deaths in 

those with T1D of less than 20 years diabetes duration, and that percentage increases with 

longer diabetes duration (93, 99, 100).

Glycemic status is a modifiable risk factor for CVD, and glycemic control has been 

shown to predict coronary heart disease events independently of other risk factors (101, 

102). Chronic hyperglycemia may promote atherosclerosis, endothelial dysfunction, and 

arterial stiffness (103). Studies also demonstrate associations between glucose variability, 

CVD, and all-cause mortality, regardless of mean glucose concentration (103-107). 

Alongside chronic hyperglycemia and glucose variability, hypoglycemia also contributes 

to cardiovascular complications. Hypoglycemia-induced changes in hemodynamics, 

hemostasis and coagulation, arterial wall stiffness, and cardiac electrophysiology and 

autonomic function are postulated to explain the associations seen between hypoglycemia 

and cardiovascular complications including myocardial ischemia and cardiac arrhythmias 

(108). Studies have found that a history of recurrent hypoglycemia was associated with 

reduced survival after a major CVD event such as myocardial infarction or stroke (109), 

and those with T1D who report history of repeated hypoglycemia events had a higher 

prevalence of CVD (110). DCCT/EDIC showed that tighter glycemic control can improve 

cardiovascular risk factors such as hypertension, carotid intima media thickness, and 

coronary artery calcium scores, and even reduce cardiovascular events (111-114).

As diabetes device use may improve glycemic control and stability, use of diabetes 

technologies may also have favorable impacts on T1D-associated complications. Indeed, 

a recent prospective cohort study including 515 adults with T1D utilizing CGMs and insulin 

pumps found that TIR and HbA1c were independent risk factors for microvascular and 
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macrovascular complications, respectively (115). Yet, few existing studies have assessed 

for relationships between technology use and complication onset or severity in T1D. 

Limited studies suggest that CSII use may reduce microvascular complications seen in 

T1D, such as retinopathy, neuropathy, and diabetic kidney disease (116-123). There is also 

evidence suggesting insulin pump use may be beneficial for cardiovascular risk factors and 

CVD. A large study from the Diabetes-Patienten-Verlaufsdokumentation (DPV) registry 

involving multiple diabetes centers in Germany, Austria, Switzerland, and Luxembourg 

found that initiation of insulin pump therapy within 6 months of diagnosis in people with 

childhood onset T1D was associated with a better cardiovascular risk profile compared to 

those with delayed CSII initiation within 2-3 years of T1D diagnosis. Specifically, they 

reported lower mean systolic blood pressure and higher high density lipoprotein cholesterol 

(HDL-C), although no significant relationships were seen with diastolic blood pressure, low 

density lipoprotein cholesterol (LDL-C), or triglycerides (124). A 12-month, randomized, 

multicenter case-control study found that PwD using insulin pumps demonstrated increased 

HDL-C and decreased total cholesterol, LDL-C, and triglycerides as compared to MDI 

users. This finding persisted after 8 years of follow up (56, 125). During the follow up 

study, CSII use was also associated with fewer cardiovascular events, specifically atrial 

fibrillation, premature ventricular contractions, acute coronary infarction, angina pectoris, 

peripheral vascular ischemia, and heart failure, as compared to MDI use (125). Similar 

results were seen in a large T1D Swedish registry, which found pump use was associated 

with a 45% reduction in fatal coronary heart disease, 42% reduction in fatal CVD, and a 

27% reduction in all-cause mortality as compared to MDI use over a mean follow up period 

of 6.8 years. Authors hypothesize that the reduction in severe hypoglycemic episodes seen 

with insulin pump use in the study may have contributed to the reduction of cardiovascular 

mortality (126). Similarly, a 2017 study in participants with T1D utilizing CSII found that 

longer duration of CSII use was related to longer duration of freedom from chronic diabetes 

complications, fewer cardiovascular events, and lower mortality (127).

Arterial stiffness is a marker of cardiovascular events, and pulse wave velocity (PWV) is the 

gold standard measure of arterial stiffness (128). A prospective study found young adults 

with T1D of 10 or more years duration had increased PWV compared to healthy controls. 

After 5 years of follow up, CSII use was associated with reduced PWV compared to MDI 

users (129). These results align with previous literature which showed lower PWV in those 

with T1D using CSII as compared to MDI (130). Endothelial dysfunction is suggested to 

play a role in development of atherosclerosis (131), and a recent study including 123 youth 

and adults with T1D found that pump use may impart cardiac benefit through improvements 

in endothelial function and overall myocardial performance. As compared to MDI use, CSII 

users had lower measures of carotid intima-media thickness and anteroposterior diameter of 

the infrarenal abdominal aorta via ultrasound assessment, and lower left and right Tei index 

and left E/e’ ratio (132).

Expert Commentary and Conclusions:

For over 3 decades, the primary barometer for diabetes control has been HbA1c, based on 

established correlations between HbA1c and vascular complications. Over the past several 

years, however, TIR has emerged as a viable alternative to HbA1c. Analysis within the 
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DCCT demonstrated that TIR derived from frequent SMBG measurements can hold similar 

correlations to T1D outcomes as those seen with HbA1c (133). Additional analyses of 

correlations between HbA1c and average glucose concentrations have demonstrated wide 

ranges of average glucose at each HbA1c percentage, with potential bias for HbA1c 

tendencies across racial/ethnic groups (134, 135). These observations have driven diabetes 

assessment to move “beyond HbA1c” to include use of other measures such as TIR, glucose 

management index (GMI), and glycemia risk index (GRI) (10, 136, 137). During the 

quarantine period due to COVID-19, many practices managed PwD using CGM, with an 

emphasis on TIR and other CGM-derived metrics as patients were unable to obtain HbA1c 

measurements in a medical office or laboratory. With growth of telemedicine practices, it is 

expected that virtual visits will continue to require glycemic assessment via TIR.

AID research uses both HbA1c and TIR as prespecified endpoints, though there is interest 

in the field to consider TIR as a primary glycemic outcome. Technology research moves 

at a rapid pace with new devices developed every year. Technology development studies 

frequently last 1-4 weeks and thus require a valid metric of glycemic control that can be 

assessed within that timeframe. Even within pivotal trials, the need for laboratory HbA1c 

assessments necessitates in-person visits and venipuncture, which may limit clinical trial 

participation for some populations. For these reasons, it is desirable for TIR and CGM-based 

metrics to gain acceptance as valid endpoints.

A concern with fully equating CGM-derived metrics with established HbA1c targets is that 

little research exists to definitively correlate soft outcomes such as TIR, GMI, and GRI 

with hard outcomes such as diabetes-associated retinopathy, nephropathy, neuropathy, and 

cardiovascular disease. While HbA1c is clearly correlated with vascular hard endpoints, 

associations between CGM-derived metrics and vascular endpoints are limited to inferences 

made through associations with HbA1c rather than direct comparisons. This has been a 

major limitation for both regulatory agencies and payers accepting CGM-derived endpoints 

as fully validated surrogates for change in rates of vascular disease.

Next steps include combining data from large multicenter studies, registries, and national 

databases to clearly demonstrate these relationships with CGM metrics obtained over the 

past 5-10 years. Additionally, prospective longitudinal studies are needed to examine CGM-

derived metrics, CGM and AID use, and the rates of vascular disease in order to move 

beyond dependence on HbA1c as the primary indicator of glycemic control in T1D.
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Figure 1. 
Medtronic 670G insulin pump (left) with Guardian Sensor 3 continuous glucose monitor 

(right).
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Figure 2. 
Illustration of Hybrid Closed Loop System. A continuous glucose monitor measures 

the interstitial glucose concentration and sends the glucose measurement to the control 

algorithm. The algorithm calculates the dose of insulin required based on the glucose 

received. The insulin pump then delivers the insulin dose. The cycle repeats.
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Figure 3. 
Tandem Control-IQ Hybrid Closed Loop System: (A) Insulin infusion set with subcutaneous 

cannula. (B) Dexcom G6 continuous glucose monitor. (C) Tandem t:slim X2 insulin pump 

with infusion tubing.
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Figure 4. 
Omnipod patch pump (top right) with personal diabetes manager (left) and Dexcom G6 

continuous glucose monitor (bottom right).
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