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Abstract

Time-frequency representations of electroencephalographic signals lend themselves to granular 

analysis of cognitive and psychological processes. Characterizing developmental trajectories of 

time-frequency measures can thus inform us about the development of the processes involved, 

as well as correlated traits and behaviors. We decomposed EEG activity in a large sample of 

individuals (N = 1692; 917 females) assessed at approximately three-year intervals from the age 

of 11 to their mid-20s. Participants completed an oddball task that elicits a robust P3 response. 

Principal component analysis served to identify the primary dimensions of time-frequency energy. 

Component loadings were virtually identical across assessment waves. A common and stable 

set of time-frequency dynamics thus characterized EEG activity throughout this age range. 

Trajectories of change in component scores suggest that aspects of brain development reflected in 

these components comprise two distinct phases, with marked decreases in component amplitude 

throughout much of adolescence followed by smaller yet significant rates of decreases into early 

adulthood. Although the structure of time-frequency activity was stable throughout adolescence 

and early adulthood, we observed subtle change in component loadings as well. Our findings 

suggest that striking developmental change in event-related potentials emerges through gradual 

change in the magnitude and timing of a stable set of dimensions of time-frequency activity, 

illustrating the usefulness of time-frequency representations of EEG signals and longitudinal 

designs for understanding brain development. In addition, we provide proof of concept that 

trajectories of time-frequency activity can serve as potential endophenotypes for childhood 

externalizing psychopathology and alcohol use in adolescence and early adulthood.
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2 Introduction

Understanding change in neural systems can help us characterize both the normative 

developmental trajectories of psychological processes and how variations in such trajectories 

contribute to the emergence of psychopathology or problematic behaviors. Time-frequency 

analysis of electroencephalographic signals (EEG) represents a useful tool in this endeavor. 

It is a signal processing method that decomposes EEG signals into fine-grained temporally- 

and spectrally-varying subcomponents, which in turn may better reflect cognitive processes 

than event-related potential (ERP) components (Donner and Siegel, 2011; Karakaş and 

Barry, 2017). The developmental trajectories of time-frequency features can illuminate 

the developmental course of important cognitive and psychological processes, as well as 

aspects of brain development more generally, such as whether change is primarily linear, 

such that change occurs at a constant rate over time, or nonlinear. If nonlinear, is it 

curvilinear, reflecting a largely continuous growth process, or does it comprise discrete 

phases? Characterizing the developmental trajectories of EEG activity associated with 

different cognitive, psychological and psychopathological processes can thus add important 

insights to this literature.

The P3 has attracted considerable interest in recent years as a means of studying age-related 

differences in neural correlates of cognitive processing (Riggins and Scott, 2020). This 

ERP component, typically elicited in the detection of rare target stimuli, is arguably 

the most studied measure in human cognitive electrophysiology and psychophysiological 

endophenotype research (Iacono et al., 2017; Polich, 2007). However, the P3 is not a unitary 

component (cf. Johnson, 1986); it is sometimes referred to as the late positive complex 
(e.g., Dien et al., 2004). The P3 appears to reflect an amalgamation of cognitive processes, 

including decision making, signal matching, stimulus-response mappings, attention and 

working memory (Barry et al., 2016; Polich, 2007; Verleger, 2020), making it difficult to 

draw firm conclusions regarding which specific processes might be reflected in age-related 

differences in P3 amplitude. Time-frequency analysis offers a potential solution to this 

conundrum. Research using time-frequency methods has shown that the P3 is a weighted 

mixture of at least two distinct processes – theta- and delta-band activity (Karakaş et al., 

2000a, 2000b; Kolev et al., 1997) – that vary with respect to topographic distribution, EEG 

characteristics and associations with cognitive phenomena (Demiralp et al., 2001; Harper 

et al., 2017; Polich, 2007). Time-frequency analysis of EEG activity related to the P3 may 

therefore permit a fine-grained and informative approach to studying developmental change 

in the neural correlates of cognitive processes.

The majority of research into time-frequency activity in children and adolescents has used 

a cross-sectional design (see Malone et al., 2021 for a recent summary). In the aggregate, 

these studies indicate that aspects of cognitive control and other cognitive processes are 

reflected in specific time-frequency features, suggesting that characterizing developmental 

trajectories of those features can inform us about the development of the associated 

processes (Malone et al., 2021). Although not without limitations, longitudinal designs are 

indispensable for studying individual change, rather than age-related differences in mean 

level. Furthermore, longitudinal designs can assess whether developmental trajectories are 

modulated by individual characteristics, such as sex or genotype (Chorlian et al., 2017, 
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2015), or external influences, such as substance use and abuse. Despite these benefits, only 

one longitudinal study of time-frequency activity spanning more than a single year has 

been published, to our knowledge. Chorlian and colleagues (2015) examined theta activity 

eliciited by an oddball task during a time window chosen to coincide with the P3 response. 

They observed decreases in theta power elicited by a novelty oddball task throughout 

adolescence and early adulthood, with striking sex differences in the pattern of change.

Although informative, these results leave unexplored activity in frequency ranges other 

than theta. The oddball P3 is most prominent at more posterior sites, such as Pz, and 

delta activity is the most prominent influence on posterior P3 responses (e.g., see Figure 

1 in Karakaş et al., 2000a). Reductions in parietal P3 amplitude constitute a particularly 

robust endophenotype for externalizing psychopathology, such as antisocial behavior and 

personality and substance abuse (Hicks et al., 2007; Iacono et al., 2002; Patrick et 

al., 2006). Understanding trajectories of change in endophenotypes is likely to enhance 

our understanding of the endophenotype itself (Iacono and Malone, 2011). Moreover, 

developmental trajectories may themselves constitute useful endophenotypes (Iacono et al., 

2017). Trajectories can be estimated with greater precision than cross-sectional snapshots of 

an endophenotype, and they can inform us about timing of change in trajectory or trajectory 

shape, which may shed light on the nature of the endophenotype and the psychological, 

endocrinological or neural mechanisms it reflects. Characterizing the trajectories of time-

frequency representations of the EEG activity associated with the parietal P3, particularly 

activity in the delta and slow theta range, offers the potential to add to our understanding of 

psychopathology and psychopathology risk.

We conducted the current investigation to address two broad aims. The first was to 

characterize developmental trajectories in time-frequency activity elicited in an oddball 

paradigm, the paradigm most often used to elicit the P3. The data for this investigation 

are well suited for this endeavor: repeated measures in a large, population-based sample of 

twins (N = 1692 individuals, 917 of them females), assessed as many as five times from 

11 years of age to their mid-20s using identical stimulus delivery and recording procedures. 

We identified the relevant dimensions of time-frequency activity empirically, rather than 

selecting them a priori, sidestepping the subjectivity and sample-specificity inherent in 

specifying ROIs, which cannot be taken into account in statistical analyses. This permitted 

a comprehensive characterization of developmental trends. The extant research indicates 

that a decline in raw time-frequency power is a common feature of brain development in 

adolescence. Our approach permitted us to assess how common this is. That is, does this 

characterize all dimensions of time-frequency or is there variation in the pattern of change? 

Is there variation in the rate or timing of change in trajectories? Answers to these questions 

have important implications for our understanding of brain development.

Our second broad aim was to assess associations between trajectories of time-frequency 

activity and measures of externalizing behavior or psychopathology. Specifically, we 

assessed whether childhood externalizing psychopathology moderates trajectories of time-

frequency activity and whether developmental trajectories themselves might predict 

externalizing behavior in the form of a measure of cumulative alcohol consumption between 

the ages of 11 and 24. This served as a preliminary test of the proposal we have made 

Malone et al. Page 3

Psychophysiology. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



elsewhere that developmental trajectories might serve as useful endophenotypes (Iacono et 

al., 2017).

3 Method

3.1 Participants

The primary sample for this investigation consisted of the younger cohort of the Minnesota 

Twin Family Study (MTFS), an ongoing population-based longitudinal study of 1512 

individual twins. Participants visited the laboratory at the age of 11 and at 3- to 4-year 

intervals thereafter to a target age of 24. A total of 1487 MTFS subjects had usable 

data for the laboratory task used here from at least one assessment. We included data 

from an additional 205 participants in the Enrichment Study (ES) of the MCTFR who 

completed an identical assessment at their intake, age-11 visit.1 Participants in both studies 

are same-sex twins who had been raised together. Approximately 60% of the participants in 

each cohort are monozygotic (MZ) twins. Table 1 provides the number of participants and 

their mean ages at each assessment wave. Participating families were representative of the 

state of Minnesota with respect to ethnic and racial background and socioeconomic status 

(Iacono et al., 1999; Keyes et al., 2009). See the Supplementary Material for demographic 

characteristics of the families. Not including ES participants, who only contributed data 

from the initial, age-11 assessment, 82% of participants provided data for three or more 

of the five total assessments and 94% completed at least two. All participants provided 

informed consent or assent, depending on their age at the time of each assessment, and 

these studies are conducted in accordance with the Code of Ethics of the World Medical 

Association (Declaration of Helsinki).

3.2 Experimental task

Participants completed the rotated heads oddball paradigm of Begleiter and colleagues 

(Begleiter et al., 1984). They sat in a darkened room in a comfortable chair with a high back 

to support the neck and a response button affixed to each arm of the chair, while viewing a 

sequence of 240 stimuli. One-third of the stimuli consisted of a bird’s eye view of a stylized 

head, including a nose and one ear. In half these target trials, the head was presented such 

that the ear appeared on the same side of the screen as the stylized head. In the other half, 

the head was rotated 180 degrees, putting the ear on the opposite side of the screen as it 

was on the head. The participant’s task was to press the left or right button to indicate 

whether the ear was on the left or right side of the head, respectively. The remaining 160 

trials consisted of plain ovals, which participants were instructed to ignore. Stimuli were 

displayed for 100 ms. A trial consisted of a 500-ms prestimulus interval and a 1500-ms 

response window. The inter-trial interval followed a uniform random distribution between 

1000 and 2000 ms. Participants were familiarized with the stimuli and procedure through 10 

practice trials.

1Most ES participants were assessed by means of a similar, but not identical procedure that included high-density EEG recording at 
their age-11 assessment and follow-up visits. Only the intake assessment for the 205 participants included here used exactly the same 
software and recording system as the MTFS participants.
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3.3 EEG recording

While participants completed this task, a Grass Neurodata 12 system was used to record 

EEG activity. For all participants, signals were collected from the midline parietal site (Pz) 

in addition to two adjacent lateral parietal sites via Ag/Ag-Cl scalp electrodes in an elastic 

electrode cap, with linked earlobes serving as a reference and an electrode on the shin as 

ground. Eyeblinks and other eye movements were recorded by means of two additional 

electrodes placed in a transverse arrangement above and immediately adjacent to one eye 

(over the outer canthus). High- and lowpass filter cutoff frequencies (half-amplitude) were 

0.01 and 30 Hz, respectively, and amplifier roll-off was 6 dB per octave. Data were digitized 

at 256 Hz to 12 bits resolution and written to disk in 2-s epochs.

3.4 Cumulative alcohol use

Participants were asked about their substance use at each assessment, either in the context 

of a computerized substance use inventory (CSU; Han et al., 1999) or the Substance 

Abuse Module (SAM) of the Composite International Diagnostic Inventory (CIDI; Robins 

et al., 1990), a semi-structured interview administered to twins beginning at the age-17 

assessment. Both instruments included very similar questions about four aspects of drinking: 

the amount typically consumed; the frequency of drinking; the maximum number of drinks 

consumed at one time; and the frequency of (CSU) or number of times becoming intoxicated 

(SAM). Responses were recoded to form 6- or 7-point ordinal scales, as described elsewhere 

(Malone et al., 2021; McGue et al., 2014). (See Table S1 in the Supplementary Material for 

details.) Because only 13 participants reported any use at the age-11 assessment (less than 

1% of the sample), we excluded this assessment from our measure of cumulative use, which 

consisted of the mean score across the four assessment waves between age-14 and age-24 

assessments. We required participants to have data from at least three occasions, resulting in 

a total of 1,233 participants, with 81% providing data for all four assessments. (The 210 ES 

subjects were ineligible by virtue of having EEG data only from one assessment, the initial 

age-11 assessment.)

Cronbach’s alpha among the four indicators of alcohol use, derived separately for each 

assessment wave using the psych package (Revelle, 2021), ranged from 0.81 to 0.94 (Mdn 

= 0.895). Figure S1 displays the distribution of scores on the combined drinking measure for 

each assessment wave. Twin intraclass correlations (ICCs), also computed using the psych 

package, characterizing the degree of similarity of twins at each assessment ranged from 

0.52 to 0.68, indicating moderate to substantial twin similarity at each assessment wave. Our 

measure of alcohol use thus demonstrates a high degree of reliability.

3.5 Data analysis

3.5.1 Preprocessing—We screened the EEG signals via an in-house Matlab© 

(MATLAB, 2012) algorithm for amplitudes exceeding a threshold or transient artifacts as 

well as flat signals (constant voltage), supplemented by notes recorded at the time of each 

laboratory assessment to identify data that were unusable due to recording or technical 

issues.
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3.5.2 Time-frequency transform—Time-frequency decomposition was conducted 

using functions in the Psychophysiology Toolbox Matlab toolbox (http://

www.ccnlab.umd.edu/Psychophysiology_Toolbox/). EEG signals from individual trials were 

transformed into time- and frequency-specific estimates of total energy (both phase-locked 

and phase-independent) by means of the reduced interference distribution (RID) (Williams, 

1996). As a member of Cohen’s class of transforms, the RID has several advantages over 

other methods of time-frequency representation, such as wavelets: it provides uniform 

resolution throughout the range of times and frequencies and preserves the marginals, 

meaning that its row and column means are identical to those of the raw signal. We 

downsampled signals to 64 Hz in both the time and frequency domains, resulting in a 

resolution of 15.625 ms and 0.5 Hz respectively, and averaged across all artifact-free target 

trials.

3.5.3 Exclusions—Participants with an accuracy rate less than 60% or with more than 

10 false alarms (inappropriate button press to non-target stimuli) were excluded. In addition, 

we required at least 30 artifact-free trials. This resulted in a loss of 90 subject-assessments, 

57 of them from the age-11 intake assessment, 3 from the age-24 assessment, and the rest 

distributed relatively equally among the remaining three assessments, producing the total 

sample size of 1692 given above (1487 from the MTFS and 205 from the ES.) The number 

of valid trials increased with assessment age, ranging from 74.4 at age 11 (SD = 9.1) to 79.1 

at age 24 (SD = 3.7).

3.5.4 Principal component analysis—We conducted principal component analysis 

(PCA) on the time-frequency transforms of each subject’s EEG at Pz between 0 and 1250 

ms after stimulus onset and between 0 and 7.5 Hz (Bernat et al., 2007; Bernat et al., 2005). 

As commonly used, PCA is a compressed sensing method to faithfully and parsimoniously 

represent a data matrix. It represents time-frequency energy in terms of two matrices: 

loadings and scores. The former consist of weights that effectively act as a linear filter: 

they accentuate the most salient aspects of the component, or the dimension of the EEG 

it represents, in time and frequency (Coles and Rugg, 1996). The latter reflect the degree 

to which those dimensions are manifest in a given time-frequency representation of the 

EEG, and can be thought of as the component’s ‘amplitude’ for a particular subject or 

subject-electrode.

After unfolding (or “matricizing”) the three-dimensional data array, Xitf, where i indicates 

participants, t time bins and f frequency bins into a Xitf matrix, we obtained principal 

components via the singular value decomposition, separately for each wave. We determined 

an appropriate number of components by means of cross-validation (see the Supplementary 

Material). Singular vectors were constrained to unit variance as is customary, which 

results in component loadings that are dimensionless, whereas component scores preserve 

the original units of energy (scaled power). To facilitate interpretation of the result, the 

component structure was varimax-rotated. To determine how similar solutions were across 

assessment waves, we computed Tucker congruence coefficients (Tucker, 1951). These 

allowed us to quantify the degree of similarity between all pairs of component loadings for 

a given assessment and the successive assessment. That is, we computed the congruence 
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between varimax-rotated loadings at age 11 and age 14, between age 14 and age 17, and 

so on, thus assessing the degree to which the component structure was similar across 

assessment waves. Congruence coefficients equal the cosine of the angle between a pair 

of loadings. As such, values of 0 indicate that the angle between two sets of loadings is 

orthogonal, reflecting a complete lack of concordance between them, whereas values of 1 

indicate that the angle between them is 0, reflecting perfect concordance.

3.5.4.1 Correlations among components and with P3: In a complementary assessment 

of the stability, or lack thereof, in component structure across ages, we computed 

Pearson correlation coefficients among component scores. Whereas component loadings 

are orthogonal and component scores uncorrelated, rotating components results in the loss 

of one or both forms of orthogonality (Jolliffe, 2002). This is no less true of varimax 

rotation, despite it being an orthogonal rotation. Normalizing components to unit length, 

as we did here, retains orthogonality of components but allows scores to correlate, 

thus permitting an assessment of associations among component scores. In addition, we 

computed correlations between each component and P3 amplitude in order to characterize 

patterns of covariance between the different components and P3, as well as change in such 

patterns with development. For this purpose, a computer algorithm identified the P3 as 

the (positive-going) peak with the greatest amplitude between 300 and 600–800 ms, the 

slower-developing responses of the youngest participants requiring extending the upper limit 

of the response window.

3.5.5 Statistical analyses—Trajectories of time-frequency activity. After establishing 

the equality of matched components across waves, we assessed the nature of change in 

time-frequency energy with development. Initial exploratory analyses, results of which are 

presented below, indicated that change in scores comprised two distinct phases, and that 

variance in scores decreased monotonically across assessment waves. This motivated us to 

fit piecewise regression models to the data. Based on exploratory analyses, we chose a linear 

function to characterize growth in each model piece. The change point, or inflection point 

(also known as the knot), is the age at which a transition occurs between phases of the 

growth trajectory.2

In the present situation, the change point age is unknown. Estimating this parameter from 

the data makes it a nonlinear problem: the regression coefficient capturing the magnitude 

of change subsequent to the knot depends on the value of the knot, which is itself 

unknown. To avoid the convergence problems nonlinear models are prone to, we adopted 

a two-step strategy, which converted the estimation problem into a linear one. In the first 

step, we used a grid search between age 11 and age 25 to identify the change point in 

trajectory of component scores that minimized model deviance (misfit). We subsequently 

used these estimates as known change points in linear mixed effects (LME) models of 

repeated measures of component scores. Scores were assumed to be determined by two 

2We use the term inflection point in its colloquial sense, as “a moment when significant change occurs or may occur” (from the 
Merriam-Webster online dictionary) and not in the mathematical sense of a point on a curve reflecting a change in trajectory from 
concave upward to downward, or vice versa.
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linear functions of age, which yielded the rate of linear change before and after the change 

point, respectively (see the Supplementary Material).

In this parameterization, the intercept represents the estimated component score at the 

component trajectory’s inflection point. Models also included random intercepts at the 

individual and twin-pair level to account for within-subject and within-pair dependency. 

Missing data are inevitable in longitudinal studies, but LMEs accommodate missing data 

well: if the data are missing at random (MAR; Little and Rubin, 2002), such models yield 

unbiased estimates. In addition, LMEs permited us to use data from ES participants who 

were only assessed once with this particular protocol: they are nevertheless informative 

about mean level at age 11.

These were conducted using the R statistical computing environment (R Core Team, 

2019). We used lme in the nlme package (Pinheiro et al., 2019) to fit growth models, 

because it allows for heteroskedastic model residuals, as well as flexibility in specifying a 

covariance structure for the within-subject residuals. We specified a continuous first-order 

autoregressive process (CAR1) for the residuals to account for autocorrelation in component 

scores over time. Unlike a standard AR1 process, CAR1 does not assume fixed and equal 

time intervals. Because sex differences in overall EEG power or ERP amplitudes are often 

observed, we included sex as a covariate of interest in our analyses to adjust trajectory 

estimates for any differences in overall component score level. For purposes of significance 

testing, we used Holm’s sequential multiple comparison procedure (Holm, 1979) to control 

the overall family-wise error rate across the 12 tests of growth parameters (two parameters 

related to age for each of six components), as well as the six tests of main effects of sex.

3.5.5.1 Sex as a potential moderator of trajectory shape: In light of the marked sex 

differences in trajectories observed by Chorlian and colleagues (2015), we examined sex 

differences in rates of change. For these and subsequent analyses, we computed Bayes 

factors (Kass and Raftery, 1995) as measures of the evidence favoring one model over a 

another (Wagenmakers, 2007) in addition to adjusted p-values associated with individual 

coefficient estimates. Approximations to Bayes factors can be obtained from the difference 

in Bayesian Information Criteria (BIC; Schwarz, 1978) values. Values of at least 3 are 

thought to indicate positive evidence in favor of the alternate model (Kass and Raftery, 

1995). A value of 6, for example, corresponds to a posterior odds of 20:1 in favor of the 

model with the smaller value of BIC. That is, our focus is on model comparison rather than 

hypothesis-testing per se.

The results of Chorlian and colleauges (2015) constitute prior evidence of an important sex 

difference in trajectories of time-frequency power. We therefore also examined evidence 

for such sex differences in our data by means of the bias-corrected Akaike Information 

Criterion (AICc; Akaike, 1974; Hurvich and Tsai, 1989). Like differences between models 

in BIC, differences in AICc between models serve as measures of the weight of evidence 

in favor of a given model (Anderson, 2008). AICc and BIC differ in several important 

respects. However, one practical difference is that AIC tends to favor more complex models, 

which seemed appropriate in the context of determining whether there are sex differences in 

trajectory shape, given previous findings.
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3.5.5.2 Growth curve parameters as predictors of drinking: Determining whether 

aspects of trajectories in time-frequency activity might predict cumulative alcohol use 

required a structural equation model (SEM), rather than our regression model. Piecewise 

SEM models treat intercept and the two slope parameters as latent variables. We used 

Mplus Version 8.7 for these analyses (Muthén and Muthén, 1998−−2017), which allow 

for definition variables, in combination with the MplusAutomation R package (Hallquist 

and Wiley, 2018). Definition variables permit the analyst to use individual-specific ages of 

measurement as loadings (cf. Sterba, 2014), rather than requiring loadings to be fixed across 

all participants. Trajectory change point estimates from our regression analyses were used 

to identify the two pieces of the piecewise growth model. Baseline models included sex 

effects on intercept and the slope of the first phase, as well as latent influences on intercept 

and the slope parameters (which are essentially random effects). The nested nature of the 

sample was accommodated via the COMPLEX option in Mplus, which uses a cluster-robust 

sandwich estimator to produce appropriate estimates of parameter standard errors. Our 

baseline models included estimating the mean level of cumulative alcohol use as well as its 

variance in order to provide an appropriate test of associations between growth curve latent 

variables (intercept and the two latent slopes) and cumulative use as an outcome measure. 

See the Supplementary Materials for additional details.

In a second step, we determined whether growth curve parameters predicted cumulative 

use. This consisted of estimating effects of the model intercept on cumulative alcohol use 

and then of both slope parameters as well. We used BIC and Bayes factors to assess the 

relative weight of evidence between the three models. The greater penalty imposed by BIC 

than AIC and its variants for each additional model parameter favors parsimonious models, 

which makes for a more stringent assessment of evidence that growth curve parameters were 

associated with alcohol use.

4 Results

4.1 Task performance and P3 across assessment ages

Table 1 provides the number of participants with valid data at each assessment wave as 

well as descriptive statistics regarding task performance. (Our total sample size exceeds the 

number of participants with valid data at any given assessment wave because a number 

of participants without usable data at the age-11 assessment had valid data at subsequent 

assessments. The main reasons for unavailable or unusable data were recording problems, 

highpass filter settings or electrode selections in the early days of the intake assessment that 

were incompatible with subsequent settings, lack of time to complete the task due to the 

length of the day and participant refusal.) Response accuracy, although already high at age 

11, improved across waves, especially between age 11 and age 17. Variability in response 

accuracy showed a similar age-related trend. Mean reaction time decreased dramatically 

across assessment waves, this decrease being especially pronounced between the age-11 and 

age-14 assessments and somewhat less so between age-14 and age-17. The coefficient of 

variation was relatively equal across waves, indicating similar performance characteristics 

despite substantial age-related differences in mean reaction time (range, 0.17 to 0.19).
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Table 1 also includes P3 amplitude and latency, along with their respective standard 

deviations, for each assessment age. A decrease with age is apparent for both: mean 

amplitude decreased by 60% and latency decreased by 72% between the age-11 and 

age-24 assessments. Although striking, the story these reductions tell about development 

is incomplete. In Figure 1 we have plotted the grand mean ERPs for each age. In addition 

to the marked decrease in overall amplitude and peak latency across assessments, which 

parallel reductions in P3 amplitude and latency, a change in ERP morphology is evident 

as well. Late activity following the P3 peak is particularly evident at the earliest waves, 

becoming less pronounced with development. Early peaks in the waveform, such as the 

P2 and N2 components, are little more than a momentary pause in the rise of the P3 

at the youngest ages, but become more clearly resolved with development, and the P3 

peak itself becomes increasingly localized in time. Figure S2 recapitulates this figure along 

with heatmaps (false color maps) of mean time-frequency power at each assessment wave. 

Power is concentrated at low frequencies. Low-frequency activity occurs initially throughout 

most of the response window, but, with development, becomes more localized in time and 

somewhat higher in frequency, echoing changes observed in the grand mean ERPs. These 

changes are notable, and we turn to the time-frequency dimensions underlying the ERP for 

aid in understanding them.

4.2 Assessing time-frequency structure across age and assessment waves

Before proceeding with formal statistical assessment of parametric models of change in 

time-frequency activity and of factors that might influence trajectories of change, we 

conducted a series of exploratory analyses. These consisted of determining the degree of 

similarity in component loadings and the distribution of component scores across waves and 

fitting semi-parametric models to these scores as an agnostic approach to describing change 

in component scores with age, which we describe in some detail in the following three 

subsections.

4.2.1 Time-frequency structure: A bird’s eye view—Six principal components 

exceeded the cross-validation error threshold for the age-11 and age-24 waves, and five 

exceeded this threshold for the remaining waves. We therefore retained 6 components for 

further analysis, which accounted for 92.1 to 93.9% of the total variance in time-frequency 

energy. The resulting solutions were rotated so as to satisfy the Varimax criterion.

Before displaying these solutions, we first averaged component loadings – the weighted 

contribution of a given component to each time-frequency bin – and grand-mean ERPs 

across assessment ages in order to obtain summary representations of the data to orient 

the reader to what follows. The six components are ordered by their timing. Heatmaps 

(false color images) depicting the patterns of loadings are weighted by the mean score on 

each component, thus reflecting a component’s relative contribution to total time-frequency 

energy (cf. Dien et al., 2004). Red indicates the largest loadings, blue the smallest and 

green indicates intermediate values. The first component is a low-frequency component 

that largely spans the P2/N2 complex and the rise of the P3. Its maximum occurs at 

approximately the latency of the N2 component of the ERP, which is displayed at the top 

of Figure 2. The second and third components are the highest in frequency, extending into 
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the slow theta range.3 Component 2’s maximum occurs at 375 ms, which approximately 

coincides with the inflection point near the height of the ERP, possibly corresponding to the 

P3a component. The third component spans the peak of the ERP, with a maximum at 515 

ms. This appears likely to correspond to the P3b. The fourth component is the lowest in 

frequency and spans the peak of the ERP and a portion of the downward slope. The fifth 

component has its maximum at approximately 800 ms. This component may correspond 

to the late positive potential. The last component is a low-frequency component occurring 

at the very end of the response window likely reflecting variation among individuals with 

respect to the resolution of the late slow wave.

4.2.2 How similar are the component loadings across assessment ages?—
Whereas Figure 2 collapsed component loadings and grand mean ERPs across age, Figure 

3 disaggregates these data, depicting heatmaps of the rotated loadings separately for each of 

the five assessment waves. Each column represents a different age. Loadings are unweighted 

here and therefore dimensionless. Components are ordered identically across columns based 

on their approximate timing as in Figure 2 to facilitate comparison across assessment 

ages, and the wave-specific grand mean ERP appears at the top of each column to permit 

evaluating the relationship between components and ERP. For instance, component 4, which 

spans much of the late positive complex, has a maximum value which lags the peak of 

the ERP by a relatively constant amount (115–175 ms) despite the fact that both occur 

increasingly early with age.

It is evident from the figure that the component loadings are similar across assessment 

ages. Tucker’s (1951) congruence coefficients provide a quantitative measure of similarity 

between a pair of component loading matrices. We computed congruence coefficients 

between loadings at successive assessment waves, with components matched by their timing 

as in Figure 3. Congruence coefficients equal the cosine of the angle between a pair of 

loadings. As such, values of 0 indicate that the angle between two sets of loadings is 

orthogonal, reflecting a complete lack of concordance between them, whereas values of 

1 indicate that the angle between them is 0, reflecting perfect concordance. Complete 

results are provided in Figure S6. Coefficients were uniformly large for matched pairs of 

components (range, 0.91 to 1.00), with a median value of 0.98. As a rule of thumb, values 

of 0.95 or greater suggest that the two components can be considered equal (Lorenzo-Seva 

and Berge, 2006). These results indicate a high degree of congruence, with coefficients 

approaching unity with increasing age. By contrast, congruence coefficients between 

unmatched components were small and approached 0: the median coefficient ranged in 

absolute value from from 0.01 to 0.04. Thus, matched components were virtually identical 

and unmatched ones almost completely unrelated. This pattern of results constitutes strong 

evidence that the component structure is equivalent from one assessment age to the next.

3Although some might object to our use of the term “slow theta” to refer to components with a peak frequency between 2.5 and 3 
Hz, we note that there is a precedent for this in the literature (Goyal et al., 2020) and we argue that the time-frequency properties 
(loadings) of these two components differ from those of the other components that are lower in frequency. In addition, the precise 
frequency of synchronous behavior of neural ensembles likely depends on a host of factors, including task, participant age and spatial 
location. Insisting a priori that theta activity can only comprise activity between 4 and 7 Hz, say, risks reifying the construct, especially 
when different researchers use different frequency bounds.
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If one scans each row in Figure 3, the striking similarity in component loadings from one 

wave to the next is evident. At the same time, however, subtle change is evident in several 

components. For instance, component 4’s maximum becomes progressively earlier in time 

with age, especially between the age-11 and age-17 assessments. Other components, such 

as components 1 and 2, increased somewhat in frequency and/or became more compact in 

time. Figure S6 in the Supplementary Material displays the component loadings organized 

by assessment age, which facilitates assessing the degree of component stability across 

age. The Supplementary Material also describes two ad hoc descriptive analyses of these 

small changes in component loadings, which lead to two conclusions: there are systematic 

shifts toward faster latencies, especially for components 3–5, and higher frequencies of 

components 1 and 2, and the stability in component loadings reflected so clearly in Tucker’s 

congruence coefficients is nevertheless compatible with noticeable, albeit subtle, change 

over the course of adolescent and early adult development.

4.2.3 Age-related trends in component scores—Having established the equality 

of matched components from one wave to the next, we examined the nature of change in 

scores across waves. Component scores reflect the degree to which a component is present 

in a participant’s time-frequency activity. As such, they serve as measures of a component’s 

“amplitude” (Coles and Rugg, 1996). We examined the distribution of component scores 

across assessment waves as well as the nature of mean trajectories in component scores. 

Panel a of Figure 4 depicts violin plots of the distribution of scores at each assessment 

wave, which indicate nonlinearity in the pattern of change in scores as well as a substantial 

reduction in variance across waves. We also fit a semiparametric smoothing spline model 

(Gu, 2013) to component scores as a function of chronological age, rather than wave, 

using the bigsplines package (Helwig, 2018), with the age basis consisting of segments 

joined by cubic splines and with sex as a nominal covariate to allow for sex differences 

in overall amplitude. In keeping with the exploratory nature of this analysis, we included 

a sex by age interaction term to allow trajectories to differ between male and female 

participants. Random effects corresponding to individual within twin pair accommodated the 

nested structure of the data. The number of knots for the spline function, which determines 

how much bend or “wiggliness” is allowed in modeling the association between age and 

component score, was chosen on the basis of generalized cross-validation. Panel b of 

Figure 4 depicts the model-implied trajectory along with 95% Bayesian confidence intervals 

for each component. Although subtle sex differences are evident, confidence intervals for 

the trajectories of males and females largely overlapped each other and trajectories were 

not qualitatively distinct. Trajectories are clearly nonlinear, and the particular nature of 

nonlinearity in these trajectories suggests that developmental change comprises two distinct 

phases, each with different rates of reductions in component scores.

4.3 Piecewise linear models of component-score trajectories

These results informed our statistical analyses, suggesting a piecewise linear model of 

change, with change points that varied by component. After obtaining estimates of the age 

at which the change point occurred for each component as described in the Method section, 

we fit linear piecewise regression models to component scores across assessment ages 

using lme, to allow for heteroskedastic residual variances and a CAR1 structure for their 
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covariances. Two functions of age were estimated, one for each side of the change point 

(see Method). Consistent with the violin plots in Figure 4, estimates of residual variances 

decreased steadily across waves, with this decrease being greatest between the age-11 

and age-17 assessments. Autoregressive coefficients ranged from 0.58 to 0.79, indicating 

substantial within-participant stability in component scores.

Parameter estimates for the fixed effects in these models appear in Table 2, along with 

the estimated inflection point age for each component. Inflection points occurred late 

in adolescence for all components, with some variability with respect to their specific 

timing. Attrition analyses described in the Supplementary Material suggested that the 

assumption that data were MAR is reasonable for these data, which makes parameter 

estimates unbiased. Regression coefficients are adjusted for main effects of sex and represent 

the expected change in component score (time-frequency energy) for a year increase in 

chronological age. As can be seen under the heading “Rate of Initial Change”, age was 

associated with initial reductions in time-frequency energy (component scores) up to the 

inflection point that were large relative to their standard errors, with p-values too small to 

include in the table (most exceeded machine precision and the largest equaled 1.5e-260). 

Table 2 also provides 95% confidence intervals for slope estimates. The absolute amount of 

change, as reflected in (partial) regression coefficients, was greatest for component 4. It was 

relatively small for components 2 and 3, the two low-theta components.

Under the heading “Rate of Subsequent Change” we present estimates of the rate of change 

after each inflection point, along with 95% confidence intervals around them. Comparing 

estimates of the two rates of change for a given component indicates that the magnitude of 

change was markedly greater (by approximately an order of magnitude) before the inflection 

point than after it. Although smaller in magnitude, the rates of absolute change after the 

inflection point were still significant by Holm’s sequential testing procedure: the largest 

adjusted p-value equaled 2.3×10−04 and the smallest was 8.9×10−109.

In order to assess the magnitude and significance of change in linear slope following the 

inflection point for each component, we subtracted the second slope estimate from the first, 

deriving standard errors for these estimates, and thus confidence intervals, by means of the 

delta method in the car package (Fox et al., 2020). These were large in magnitude and 

confidence intervals around them did not come close to 0, indicating a meaningful change 

in trajectory and supporting the validity of the piecewise model. For all components, paired 

coefficients were nearly equal in magnitude but opposite in sign, indicating a change in 

slope that largely – but not completely – offset the initial rate of change: the change in slope 

equaled between 83.2% and 94.3% of the absolute value of the raw change estimates for the 

first phase.

Thus, the rate of change between age 11 and each component’s inflection point was 

substantially greater than the rate of change after the inflection point, although the decline 

in component score was significant for all components, before and after the inflection point. 

Inflection points occurred relatively late in adolescence for all components, although there 

was variation of several years in the exact timing; inflection points for the two low-theta 

components (2 and 3) were close to age 20.
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4.3.1 Model-predicted trajectories of change—These results provide clear evidence 

for the significance of estimates of rates of change, whether relative to the rate of initial 

change or in absolute terms. They do not by themselves indicate how adequate the piecewise 

linear model was to characterizing change in component scores. We therefore plotted the 

trajectories implied by model parameters in order to determine how well the piecewise linear 

model accounted for the observed data. These are depicted in Figure 5, along with 95% 

confidence intervals around them, obtained using the semi-parametric residual bootstrap 

method (Carpenter et al., 2003) as implemented in the lmeresampler package (Loy et al., 

2021). Component means, and 95% confidence intervals around them, are plotted at the 

average assessment age for a given wave, which might deviate somewhat from the target 

age and was slightly different for male and female participants. The ordinate in each plot 

is individually scaled to permit seeing detail in the plotted data. Model-implied trajectories 

conformed very closely to observed mean scores at each assessment wave, indicating that 

a piecewise growth function characterizes change in time-frequency component scores well 

for each of the components. (In the Supplementary Material, we examine for comparison 

several models representing change as curvilinear, rather than piecewise linear. These 

models did not account for the observed data as well as the piecewise linear model.)

4.4 Moderators of developmental change

4.4.1 Sex differences in level and slope—As expected, component scores were 

significantly greater overall for females than males in Wald tests with 858 df, with group 

differences in mean scores ranging from 42.1, for component 2, to 234.4, for component 1. 

Holm-adjusted p-values were all 0.006 or less, indicating that these amplitude differences 

were significant for all components.

By contrast, tests of the sex by age interaction terms yielded minimal evidence of sex 

differences in rates of change. Likelihood-ratio tests, on 2 df, were significant only for 

the latest two occurring components (5 and 6) p = 9.3×10−04 and 1.6 ×10−07, respectively. 

Bayes factors, based on the difference in values of BIC for models including the sex by age 

interaction terms relative to their corresponding main-effects models, strongly favored the 

sex-differences model for component 6, the late slow wave, with a value of 6517.8, which 

is consistent with the small adjusted p-value for this effect. They were less than 1 for the 

other five components, albeit barely so for component 5 (0.94), indicating stronger evidence 

in favor of the model including only a sex main effect. We conclude that a meaningful sex 

difference in overall rate of change is mainly evident for the late slow wave, although the 

rate of change in component–5 scores may also differ between sexes: the probability that 

the sex-difference model was correct given the data was only 0.49. In light of the findings 

of Chorlian and colleagues (2015), in the Supplementary Material we present AICc values 

for the different models. These suggested small sex differences in the linear rate of change 

before and after each trajectory’s inflection point.

4.4.2 Individual differences in pubertal status—Although results indicated 

minimal sex differences in rates of change, examining the mean scores for males and 

females suggested the possibility of a more nuanced situation than our statistical tests 

suggested. In particular, there is a small departure from a pattern of linear change in 
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component scores between 11 and 17 in a manner that differs for males and females. The 

total amount of change during this span is almost identical for the two sexes, differing by 

no more than 0.2%, but for females the majority of change occurred early in adolescence, 

between 11 and 14, for all components (as much as 70%), whereas for males, the majority 

of change in components 1–4, as much as two-thirds, occurred between 14 and 17, and the 

relative amount of change during this interval was greater among males relative to females 

for all components. (See component 3 in Figure 5, for example. The direction of the male-

female difference in mean scores for this component flipped between the age-11 and age-14 

assessments and again between age 14 and age 17.) We speculated that this might be due 

to sex differences in the timing of puberty and rates of maturation. Although not commonly 

considered in relation to EEG measures, there is nevertheless evidence of effects of pubertal 

hormones on measures of brain organization and in shaping neural circuits (Bedny et al., 

2018; Schulz et al., 2009), as well as sex differences in white matter microstructure (Ho et 

al., 2020). Testicular hormones during puberty appear particularly important for organizing 

synaptic plasticity in the hippocampus (Schulz et al., 2009), a possible source of the P3 

(Halgren et al., 1980; see also Polich, 2007). Sex differences in the onset and course 

of pubertal development might result in subtly different trajectories of measures of brain 

function between male and female adolescents. The Pubertal Development Scale (PDS; 

Petersen et al., 1988), a self-report measure of bodily changes related to puberty, had been 

administered at the first two assessment waves as part of the comprehensive assessment 

of study participants. We therefore conducted follow-up analyses to determine whether 

variation in pubertal status might account for sex differences in component scores. We 

caution that these analyses are post-hoc and entirely exploratory.

A small number of participants were missing PDS ratings (n = 69), almost all from the 

intake assessment. Scores were fixed at the maximum score for the age-17 and subsequent 

assessments. We re-fit piecewise linear regression models with (mean-centered) PDS score 

as a time-varying covariate of interest in addition to the sex by age interaction terms. This 

resulted in significant improvements in model fit, with likelihood-ratio tests on 1 df ranging 

from 17.1 to 48.9 and adjusted p-values all less than or equal to 3.6×10−05. Bayes factors 

also provided strong indications that the posterior odds of the model including PDS score 

was correct. The smallest was 67.4 and all others were greater than 100. These values 

correspond to “very strong” and “decisive evidence,” respectively (Wetzels et al., 2011). 

Taken together, these results indicate a robust main effect of pubertal status on overall 

component score. More germane to our present purpose, we found that Wald tests of the 

two sex by age interaction terms for component 6 were not significant when adjusted for 

effects of PDS (Holm-adjusted p-values equal to 1). Thus, the apparent sex difference 

in rate of change on component 6 seems to be accounted for by sex differences in the 

timing of pubertal development. At the same time, adjusting for pubertal status did produce 

significant interaction between sex and the initial slope effect. This was only marginally 

significant, however, with an adjusted p-value of 0.049. This may represent a chance finding 

but might represent a sex difference not captured in our model; indeed, model-predicted 

trajectories in Figure 5 underestimate the difference in mean scores at the earliest ages for 

component 2. (See the Supplementary Material for a depiction of the trajectory predicted 

by a model including this one sex by age interaction.) Finally, estimates of initial level and 
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initial slope were somewhat attenuated when adjusted for effects of pubertal status. The 

median reduction in coefficient magnitude equaled 17.2% and 34.4% for intercept and slope, 

respectively. All were still significant, but these somewhat unanticipated results indicate that 

pubertal status moderated trajectories of component score change.

4.5 Time-frequency components and their trajectories as developmental endophenotypes

4.5.1 Consistency of cross-sectional correlations among component scores
—PCA yields orthogonal component loadings and uncorrelated component scores. Rotating 

components can make them more readily interpretable but results in the loss of one or 

both forms of orthogonality, even if the rotation itself is orthogonal (Jolliffe, 2002). The 

normalization used here retains orthogonality of components but allows scores to correlate, 

thus permitting an assessment of associations among component scores to determine how 

stable these might be across assessment ages. We computed Pearson correlation coefficients 

among components, as well as between each component and P3, to quantify the degree of 

stability (or change) in the pattern of associations among these measures. Figure 6 depicts 

the correlations graphically as a heatmap.

The magnitude of the component 6–component 3 correlation was modest in adolescence and 

declined to near 0 by adulthood, and the correlation between component 6 and P3 amplitude 

showed a similar age-related trend. By contrast, correlations among the other components 

and between each component and P3 amplitude were stable across ages, especially for 

components 1–4. The component 1–P3 amplitude correlation in particular was large in 

magnitude and invariant across development. There was thus substantial stability in the way 

component scores related to one another as well as with P3 amplitude, echoing the stability 

of component loadings with development and standing in marked contrast to the pattern of 

change in ERP morphology. That the correlation between component 1 and P3 amplitude 

was uniformly large in magnitude across assessment ages is particularly striking.

4.5.2 Stability of component scores longitudinally—Figure 7 consists of a heat 

map of component-score correlations across assessment waves. Correlations between age-17 

scores and scores from the early adulthood assessments were relatively uniformly large, 

indicating that they had become quite stable by this stage of development. In general, 

across-wave correlations tended to be moderate to large in magnitude, with the exception of 

component 6, the late slow-wave component.

4.5.3 Trajectories of time-frequency component scores “predict” alcohol use
—Log-likelihood values and model-fit statistics for SEM models assessing effects of growth 

curve parameters on cumulative alcohol use appear in Table 3. We assessed, and compare, 

three models: a baseline model consisting of the piecewise linear SEM model; a model 

adding the intercept in these models, reflecting overall level of component score magnitude 

at the inflection point, as a predictor of cumulative drinking; and a model including all three 

growth curve parameters (intercept and both slopes) as predictors of drinking.

The most likely model for component 2 was the Intercept model, indicating a significant 

association between the component 2 intercept and cumulative drinking. A pseudo-R2 

statistic based on the difference in model likelihoods (Magee, 1990) equaled 0.016. (The 
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likelihood-ratio based pseudo-R2 is a function in part of the sample N. The effective sample 

size in clustered samples is influenced by the different sources of dependency in the data 

and is therefore generally poorly defined in such samples. In addition, the effective sample 

size in the presence of missing data is unknown. We use the number of unique individual 

subjects here, which is consistent with Mplus’s estimates of BIC, which similarly depends 

on sample size. This may result in a slight overestimate of R2.) The Baseline model was 

most appropriate for component 6, the late slow wave component, indicating that parameters 

of the trajectory characterizing developmental change in this component were not associated 

with cumulative drinking.4

The model including all three growth curve parameters did not converge on a reproducible 

solution for components 2 and 6. For the remaining four components, however, the evidence 

favoring this model was unambiguous. The relative weight of evidence in favor of this model 

relative to the other models was 1, indicating that it almost certainly was the best model, and 

Bayes factors for this model relative to the intercept-only model were all so large as to be 

decisive. Pseudo-R2 values ranged from 0.045, for component 5, to 0.079 for component 5. 

Wald statistics for each individual growth curve parameter were less than .05 for 11 of the 

12 parameters. Holm’s multiple comparison procedure yielded 9 adjusted p-values less than 

.05: the intercept and the second slope parameter for components 1, 3 and 4 and all three 

parameters of the component 5 trajectory in relation to cumulative drinking.

To aid in interpreting these findings, we re-expressed point estimates of the association 

between growth curve and drinking as a function of their respective standard deviations 

(Supplementary Material?). Expressing the results this way, a subject with a component-

score intercept (level) one SD smaller than another subject would be expected to have a 

larger score on the cumulative drinking measure of between 0.70 and 1.75 units, depending 

on the component. A subject whose rate of change in the second phase of change in 

component score magnitude was one SD greater (more negative) than another would be 

expected to have a larger drinking score of between 0.45 and 1.75 units. To contextualize 

these results, a 1-SD difference between subjects in intercept or slope would be associated 

with the difference between drinking very infrequently (a few times a year) and drinking as 

much as once a week or more, on average, over the period from age 14 to age 24, or between 

having 1–3 drinks per occasion and at least twice that much over this same time period (see 

Table S1).

5 Discussion

We examined dimensions of time-frequency energy derived via PCA from task-related EEG 

activity in adolescents and young adults, who completed a rotated heads oddball paradigm 

used to elicit the P3 response as many as five times between the ages of 11 and 24. 

Principal component loadings were virtually identical from one assessment wave to the 

next, indicating that a common and stable set of time-frequency dynamics characterized 

4Model comparison based on the bias-corrected AIC rather than BIC indicated that the Intercept model was almost as likely as the 
Baseline model for the late slow-wave component: probability of the Intercept model given the data was 0.479 relative to 0.521 for 
the Baseline model. However, the probability of the Intercept model by BIC was only 0.064. Therefore, although the Intercept model 
cannot be ruled out, the weight of evidence favors the Baseline model.
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EEG activity. Correlations between component scores and P3 amplitude were large in 

magnitude (for all but one component) and stable across assessment ages, indicating shared 

variance between the components and P3 that was largely unaffected by developmental 

changes in the latter. At the same time, subtle shifts in component timing, and, to a lesser 

extent, frequency, were evident as well. These changes were almost imperceptible from one 

assessment to the next but produced noticeable change in component loadings between 11 

and 24 years of age. Component scores decreased with development in a nonlinear fashion. 

Piecewise linear models of change captured change in component scores well in that 

model-predicted trajectories conformed closely to the observed mean scores. Components 

differed with respect to overall magnitude, rate of decline and timing of the inflection point 

(change point). All these factors in concert produce the marked age-related change in the 

morphology and amplitude of the grand-mean ERP derived from the same EEG activity.

In a second set of exploratory analyses, we assessed performance of trajectories of 

component-score change as potential endophenotypes. Parameters describing aspects of 

the trajectories of change in component score – the intercept and two slope terms – 

were associated with a measure of cumulative alcohol use from middle adolescence into 

early adulthood. The intercept for component 2 predicted cumulative drinking, whereas 

the intercept and one or both slope parameters predicted cumulative drinking for four 

components. (We use the verb “predict” in the sense of statistical predictors of a dependent 

measure.) Although subjects’ heaviest drinking typically occurred toward the end of the 

period between 14 and 24, it is impossible to definitively determine the temporal sequence 

involving change in component score and drinking, which helps to establish causality. 

Nevertheless, these findings serve as proof of concept of the potential importance of 

developmental trajectories as endophenotypes and point to future research to move us closer 

to establishing cause and effect.

5.1 Normative developmental change and its correlates

5.1.1 Developmental trajectories of change in time-frequency component 
scores reflect two distinct phases—Despite variation among component scores in 

overall level and rates of change, developmental trajectories of change followed the same 

general pattern for all components and was well approximated by a piecewise linear 

regression model. That a piecewise model characterized change in components suggests 

that the brain development captured in these trajectories comprises two distinct phases. 

Estimates of the change point marking the transition between phases were relatively late 

in adolescence, although the exact timing varied by about 4 years (between 16 and 19 1
2

years of age), somewhat reminiscent of the Piagetian notion of horizontal décalage (Flavell, 

1963). The first phase thus extended throughout most of adolescence, giving way to a 

second phase with a smaller rate of change in late adolescence and participants’ 20s. These 

findings are broadly consistent with findings of important structural brain development 

during adolescence which persist, albeit to a lesser degree, into early adulthood (e.g., 

Lenroot and Giedd, 2010; Bethlehem et al., 2022).

5.1.2 Sex and pubertal status effects on component scores—As expected, 

there were significant sex differences in overall level of component scores across age. 
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By contrast with the findings of Chorlian and colleagues (2015), however, we found only 

weak evidence of sex differences in rates of change in component scores. Interaction 

effects were significant for the two latest-occurring components (5 and 6), but Bayes 

factors indicated that the evidence supported a significant difference only for component 

6. The bias-corrected AIC yielded slightly stronger evidence for sex differences. Yet these 

amount to very slight sex differences in rates of linear change before and after trajectory 

inflection points, not qualitatively different trajectories. What is more, individual differences 

in pubertal development appeared to account for the apparent sex difference in component 6 

score trajectory: adjusting component scores for scores on a self-reported scale of pubertal 

development resulted in nonsignificant sex by age interaction effects.

Main effects of pubertal status on component scores were significant, and including these 

scores attenuated estimates of rates of change in component score somewhat. Althought the 

magnitude of effects was small, these findings are consistent with evidence of important 

hormonal influences on brain structure and function in adolescence (Bedny et al., 2018; Ho 

et al., 2020; Schulz et al., 2009). However, we caution that analyses of pubertal status were 

all post-hoc and exploratory.

5.2 Individual differences in component-score trajectories: Growth curve parameters as 
predictors of alcohol use

Examining trajectories of change in an endophenotype can offer greater statistical power 

than estimating an endophenotype’s effect in a cross-sectional analysis. This advantage 

is shared by other approaches that aggregate over multiple time points. However, the 

latter loses information about change, such as whether an endophenotype alters the 

shape of a trajectory (e.g., rate of change), and timing. Trajectories of change may 

also predict important outcomes in their right: developmental trajectories may themselves 

constitute candidate endophenotypes. Indeed, our piecewise linear SEM models to “predict” 

cumulative alcohol use yielded several findings supported by the weight of evidence. Only 

component 6, the late slow wave, was unassociated with drinking. For the remaining five 

components, the intercept in growth models (component 2), the intercept and second slope 

(components 1, 3 and 4) or all three growth curve parameters (component 5) were associated 

with cumulative alcohol use. Smaller overall magnitudes of component scores and/or greater 

rates of the normative reduction in component scores with development are associated with 

increased levels of alcohol use across adolescence and early adulthood.

Our measures of drinking combine raw responses to improve their reliability. For instance, 

those typically having 1 to 3 drinks per occasion receive the same score, as do those 

typically having 7 to 10, which makes it difficult to quantify the magnitude of effects of 

growth curve parameters in the scale of the original variables. Nevertheless, rough estimates 

indicate that a 1-SD difference between individuals in overall level (intercept) or rate of 

change (slope) in component scores across adolescence and into adulthood is associated 

with the difference between having 1–3 drinks per occasion and more than twice that many 

across the period from adolescence into early adulthood. Individuals with smaller intercepts 

or more rapid rates of change in component scores were likely to consume more alcohol to a 

degree that appears meaningful.
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These findings support our suggestion that developmental trajectories can serve as 

endophenotypes. It may be that smaller neural ensembles giving rise to the time-frequency 

activity captured in these components or less synchronized activity within these ensembles 

underlies the association between component magnitude or rates of change therein and 

cumulative alcohol use. Intercept–drinking associations are especially consistent with 

an explanation that a preexisting liability accounts for both reduced component score 

magnitude and increased drinking. Associations between rates of change in component score 

and drinking are also consistent with confounding by a preexisting liability. However, they 

are also consistent with the possibility that alcohol exposure adversely affects component 

score magnitude, such as via a neurotoxic or other effect. Examining the interplay between 

time-frequency energy and drinking or other forms of substance use in adolescence and into 

adulthood is thus likely to be informative about the causal processes at play.

Our results also have implications for conceptualizations of reductions in P3 amplitude 

as an endophenotype for externalizing psychopathology. Component 1 is a low-frequency 

component that spans the rise of the P3. Analogs of this component have been observed 

in two studies conducted on an independent sample of older male twins from the MCTFR 

(Gilmore et al., 2010; Yoon et al., 2015). Two findings are particularly germane: scores 

at age 17 on this component (component PC3 in Gilmore et al.) improved prediction of 

externalizing psychopathology groups over P3 amplitude in one study (Gilmore et al., 2010) 

and predicted the development of externalizing psychopathology by age 29 in the other 

(Yoon et al., 2015) These findings suggest that component 1 in particular might be a useful 

endophenotype for externalizing psychopathology, despite representing the rise of the P3 

peak rather than the peak itself. Our results indicate that component 1 scores were uniformly 

and highly correlated with P3 amplitude (see Figure 6), suggesting that this early component 

is an important influence on P3 amplitude. EEG power producing the rise of P3 may 

reflect the sheer number of neurons recruited by the task, or the degree of consistency in 

recruitment of neural ensembles across trials. Accounts of P3AR as an endophenotype might 

therefore realize greater explanatory power from incorporating these findings and their 

implications. One would probably not suspect that this low-frequency activity is relevant to 

P3 amplitude and disinhibited behavior, let alone that it even exists, based purely on visual 

inspection of the observed signals: the peaks and troughs in the ERP are what are most 

salient to the eye. Yet these are due to different components, orthogonal to component 1. 

This interpretation of our findings attests to the usefulness of time-frequency representations 

of EEG signals and decomposing these representations by means of component models.

5.2.1 Normative developmental change and individual differences—Scores on 

all components decreased with development, which is consistent with findings that structural 

brain characteristics such as cortical gray matter volume and thickness decrease during 

adolescence and into early adulthood (e.g., Bethlehem et al., 2022), as well as with findings 

that gray matter volume is associated with EEG power (Smit et al., 2012). It may be 

that the brain becomes more efficient at processing information relevant to making the 

appropriate response in tasks such as the rotated heads task. Inhibitory influences may aid 

this process by suppressing irrelevant responses. Developmental changes in preparatory 

set may also be important, in that an appropriate set may facilitate efficient stimulus 
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processing. Connectivity patterns may stabilize and thus support more efficient processing. 

An “exuberant proliferation” of synapses at the onset of adolescence and subsequent process 

of synapse elimination are thought to be important determinants of normative developmental 

change, which may be reflected in decreases in structural measures and – indirectly – EEG 

activity, such that connections supporting adaptive behavior are reinforced and appropriate 

responses are prioritized.

Some caution is warranted regarding this interpretation, however. Hill and colleagues have 

observed increases in auditory ERP amplitude in early adolescence in contrast to the general 

decrease in amplitude observed in visual ERP amplitude (Hill et al., 1999), indicating 

that the normative pattern of change in amplitude is modality-specific. It is nevertheless 

possible that a general explanation for age-related change is possible. The potential extent 

of neural ensembles recruited by a task may be only weakly related to gray matter volume. 

Nevertheless, gray matter volume decreases with age in prefrontal and parietal cortices, 

the latter likely particularly relevant to parietal EEG (Sowell et al., 2003). By contrast, the 

pattern of age-related change in the supramarginal gyrus, an area implicated in auditory 

target detection (Nourski, 2017), shows an inverted U-shape with respect to age-related 

gray matter volume (Sowell et al., 2003) very similar to the pattern of change in auditory 

P3 amplitude in Hill et al. Thus, the precise nature and timing of change may depend on 

modality, which in turn is likely influenced by the nature of age-related change in the brain 

regions involved.

Smaller scores were also associated with disinhibited behavior, in the form of higher 

levels of alcohol use. Does this suggest that those higher in the liability for externalizing 

psychopathology or disinhibited behavior are more mature than those lower in the 

externalizing liability? We think not. First, it is not logically necessary that influences on 

normative change are identical to influences on individual differences at a given moment 

in time. It might be that synapse elimination begins prematurely in those with an above-

average liability for externalizing -– before some of the main developmentally relevant 

aspects of adolescence, which could compromise their capacity effectively to navigate 

developmental tasks. It might be that such individuals generally have fewer random synaptic 

connections to begin with, limiting the brain’s capacity to respond adaptively to experience. 

That is, if synapse overproduction at the very beginning of adolescence sets the stage 

for experience-expectant learning, it is reasonable to ask whether variation in the timing 

of overproduction and in the overall number of synapses produced might affect brain 

development and behavioral adaptation. Obviously, this is highly speculative, and direct 

evidence tying synapse overproduction and pruning to EEG activity is lacking. However, our 

results are consistent with this type of interpretation of individual differences in the context 

of normative developmental change.

5.3 Limitations

Our exclusive use of a single electrode limits our understanding of developmental 

trajectories in time-frequency activity in general. Raw baseline correction of time-frequency 

activity is common and allows a comparison with the approach of Chorlian et al. However, 

different baseline correction procedures might produce different age-related effects (cf. Liu 
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et al., 2014). Had we been working with a higher-density electrode array, a multiway 

component model might have been more appropriate (Helwig and Snodgress, 2019; Malone 

et al., October 2018). In addition, because participating families were representative of 

the state of Minnesota during the birth years from which the sample was drawn, the 

overwhelming majority were white (96%). It seems unlikely that developmental trajectories 

would be markedly different in other ethnic or racial groups, but this is an empirical question 

we cannot address in the current sample.

5.4 Conclusions

A common set of dimensions of time-frequency activity characterized EEG activity in a 

large, representative, population-based sample of adolescents followed into early adulthood. 

These components are related to several important cognitive and neuromodulatory 

processes. Trajectories of change in component scores suggest that those aspects of brain 

development reflected in these components comprise two distinct phases, characterized 

by marked decreases in component amplitude throughout much of adolescence followed 

by smaller yet significant rates of decreases into early adulthood. Although the structure 

of time-frequency activity was stable throughout adolescence and early adulthood, we 

observed subtle change in component loadings as well. Our findings suggest that striking 

developmental change in ERPs emerges through gradual change in the magnitude and 

timing of a stable set of dimensions of time-frequency activity, illustrating the usefulness of 

time-frequency representations of EEG signals and longitudinal designs for understanding 

brain development. In addition, we demonstrate that aspects of normative trajectories of 

change in component scores reflecting EEG responses to stimuli in an oddball paradigm are 

sensitive to a complex form of potentially problematic behavior, consistent with our notion 

that such trajectories might serve as candidate endophenotypes for disinhibited behavior or 

psychiatric disorders (Iacono et al., 2017).
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Figure 1: 
Grand-mean ERPs for each assessment wave.
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Figure 2: 
Average ERP and component loadings across assessment ages of 11 to 24. The average 

grand- mean ERP across assessment ages appears at the top. Heatmaps of loadings on 

each of the six components, averaged across assessment ages, appear below. Loadings have 

been weighted by each component’s mean score to facilitate comparison of their relative 

contribution to the total time-frequency energy. The grand mean ERP across all assessment 

ages appears in the top row.
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Figure 3: 
Component loadings by assessment wave. Heatmaps of the loadings of each of six 

components derived separately from average time-frequency energy values for each 

assessment wave. Solutions have been Varimax-rotated and ordered roughly by the timing 

of the locus of maximum loadings. The magnitude of each component’s loading on the 

different time-frequency bins is represented by means of color, with red indicating the 

largest values, blue the smallest, and green indicating intermediate values. The grand mean 

ERP for each assessment appears in the top row.
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Figure 4: 
Trajectories and distributions of component scores. Age-related features of component 

scores are represented in two ways. Components are ordered as in Figure 2. Panel a: 

Distribution of scores at each assessment wave. Mean trajectories are modeled using a loess 

regression in ggplot2. Panel b: Trajectories of scores on matched components as predicted 

by smoothing spline models, with 95% confidence intervals around mean trajectories. 

Observed means are represented by filled circles, with 95% confidence intervals as vertical 

lines. Trajectories were allowed to vary by sex. Although there was substantial variation 

in actual age at each assessment, ages as a whole tended to cluster around the target ages, 

creating non-uniform age support for the smoothing splines, which likely produced the 

occasional bump or dip in the predicted trajectories.
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Figure 5: 
Model-implied trajectories of change in time-frequency components. The change point, or 

knot, was estimated separately for each component, and trajectories are plotted separately 

for males and females. Observed (measured) means are represented by filled circles, with 

95% confidence intervals around them as vertical lines. The scale of the ordinate was 

allowed to vary across plots to emphasize detail in model- predicted trajectories.
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Figure 6: 
Correlations among components and P3. Matrices of Pearson correlation coefficients are 

depicted as heatmaps. Red indicates the most positive correlations, yellow the intermediate 

values, and light blue the smallest values (values near 0). Assessment waves are arrayed top 

to bottom and left to right.
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Figure 7: 
Stability of component scores across assessment waves. Matrices of Pearson correlation 

coefficients are depicted as heatmaps. Red indicates the most positive correlations, yellow 

the intermediate values, and light blue the smallest values (values near 0).
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Malone et al. Page 34

Table 1:

Participant characteristics and task performance at each assessment wave

Age Correct Reaction Time P3 Amplitude P3 Latency

Age N Mean SD Mean SD Mean SD Mean SD Mean SD

11 1456 11.8 0.4 76.2 4.9 1189 221 35.9 10.4 567 91

14 1187 14.8 0.5 77.9 2.8 943 166 31.4 9.1 492 75

17 963 18.0 0.6 78.9 1.6 853 144 24.7 8.6 434 54

20 1083 21.4 0.8 78.9 1.6 832 152 22.9 8.2 417 53

24 1032 25.1 0.6 79.2 1.5 795 140 21.6 7.8 408 48

Note: N gives the number of participants with usable data at each wave. The column labeled Correct gives the mean number of correct responses to 
target stimuli (out of 80). Mean and SD are the mean and standard deviation of each measure. Reaction time and P3 latency are measured in ms, P3 
amplitude in microvolts.
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Table 2:

Parameter estimates from piecewise linear regression analyses and change-point age.

Rate of Initial Change Rate of Subsequent Change

Estimate Lower Bound Upper Bound t-value Change Point Estimate Lower Bound Upper Bound t-value

PC1 −263.3 −272.0 −254.7 −59.52 17.7 −32.6 −36.3 −28.9 −17.18

PC2 −69.5 −73.1 −65.8 −37.26 19.5 −5.1 −7.4 −2.7 −4.16

PC3 −142.5 −148.2 −136.9 −49.47 18.6 −12.6 −15.4 −9.9 −9.00

PC4 −422.2 −436.8 −407.6 −56.64 17.2 −71.0 −77.0 −64.9 −22.97

PC5 −269.9 −280.5 −259.4 −50.07 16.1 −22.7 −25.9 −19.6 −14.19

PC6 −209.8 −219.7 −199.8 −41.45 16.4 −11.9 −16.2 −7.5 −5.37

Note: Parameter estimates represent the amount of change in component scores (time-frequency energy) for a year change in chronological age 
(independent of effects of sex), and these are provided separately for initial change and change after the inflection point (knot), along with lower 
and upper bounds of 95% confidence intervals. Both age effects are associated with 4027 df.
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Table 3:

Information-theoretic model fit statistics for growth models as predictors of cumulative alcohol use

Log-likelihood BIC

Baseline Intercept Int/Slopes Baseline Intercept Int/Slopes

PC1 −129808.6 −129801.6 −129762.2 259887.6 259880.7 259816.5

PC2 −126267.5 −126255.4 252805.3 252788.3

PC3 −127815.3 −127809.0 −127753.8 255900.9 255895.6 255799.8

PC4 −132220.3 −132219.8 −132168.1 264710.8 264717.1 264628.4

PC5 −128900.1 −128899.9 −128865.7 258070.5 258077.4 258023.6

PC6 −129724.4 −129723.4 259719.1 259724.4

Note: Model fit statistics for three different models predicting cumulative alcohol use. BIC is Schwarz’s Bayesian Information Criterion (Schwarz, 
1978). The Baseline model includes growth curve parameters (plus the mean and variance for cumulative drinking). The Intercept model includes 
the piecewise linear model intercept as a predictor of cumulative drinking through age 24 (one additional parameter), whereas the Int/Slopes model 
includes both slopes as predictors of drinking as well (three additional parameters relative to the Baseline model). The model best supported by the 
evidence for each component is highlighted in gray.
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