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IMPACT STATEMENT
A large multi-ancestry meta-analysis of GWAS of asthma exacerbations revealed two novel susceptibility loci located close to PANK1 
and at the intergenic region of VCAM1 and EXTL2. These loci decreased PANK1 and EXTL2 gene expression in whole blood, 
respectively. Both genetic variants were associated with DNA methylation levels at CpG sites nearby. Our results identified two gene 
targets for asthma exacerbations that should be further explored to assess their specific role in asthma.
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Background: Asthma exacerbations are a serious public health concern due to high health 

care resource utilization, work/school productivity loss, impact on quality of life, and risk of 

mortality. The genetic basis of asthma exacerbations has been studied in several populations, but 

no prior study has performed a multi-ancestry meta-analysis of genome-wide association studies 

(meta-GWAS) for this trait. We aimed to identify common genetic loci associated with asthma 

exacerbations across diverse populations and to assess their functional role in regulating DNA 

methylation and gene expression.

Methods: A meta-GWAS of asthma exacerbations in 4,989 Europeans, 2,181 Hispanics/Latinos, 

1,250 Singaporean Chinese, and 972 African Americans analyzed 9.6 million genetic variants. 

Suggestively associated variants (p≤5×10−5) were assessed for replication in 36,477 European and 

1,078 non-European asthma patients. Functional effects on DNA methylation were assessed in 595 

Hispanic/Latino and African American asthma patients and in publicly available databases. The 

effect on gene expression was evaluated in silico.

Results: 126 independent variants were suggestively associated with asthma exacerbations in 

the discovery phase. Two variants independently replicated: rs12091010 located at vascular cell 

adhesion molecule-1/exostosin like glycosyltransferase-2 (VCAM1/EXTL2) (discovery: odds ratio 

(ORT allele) =0.82, p=9.05×10−6 and replication: ORT allele=0.89, p=5.35×10−3) and rs943126 

from pantothenate kinase1 (PANK1) (discovery: ORC allele=0.85, p=3.10×10−5 and replication: 

ORC allele=0.89, p=1.30×10−2). Both variants regulate gene expression of genes where they locate 

and DNA methylation levels of nearby genes in whole blood.

Conclusions: This multi-ancestry study revealed novel suggestive regulatory loci for asthma 

exacerbations located in genomic regions participating in inflammation and host defense.

Keywords

Asthma exacerbations; EXTL2 ; GWAS; single nucleotide polymorphism; PANK1 

INTRODUCTION

Asthma is a common chronic inflammatory airway disorder affecting over 300 million 

people worldwide. The disparities in asthma prevalence across populations reflect a 

complex interplay between environmental exposures (i.e., air pollution and viral infections), 

behavioral and socioeconomic factors (i.e., treatment adherence and healthcare access), and 

genetic ancestry, which is a complex trait measured by background whole-genome variation 

that tracks with geographic and historical factors as well as the aforementioned factors 

influencing asthma prevalence (1,2).

Asthma exacerbations are defined as worsening of respiratory symptoms requiring 

hospitalization, unscheduled/emergency asthma care, and/or use of systemic corticosteroids 

(3). Prevention of asthma exacerbations is a major public health priority due to their 

associated consequences on health (i.e., decreased quality of life, accelerated decline in lung 

function, or mortality), school attendance, work productivity, and healthcare costs (1,4,5). 

To date, the best predictor of future exacerbations is the occurrence of one in the previous 

year (6). Thus, identifying potential biomarkers to guide the reduction and prevention of 
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exacerbations is a priority for therapeutics development and for precision medicine of 

asthma.

With the advent of high-throughput sequencing and genotyping technologies, the study 

of the genetic contributions to asthma exacerbations has shifted from hypothesis-driven, 

limited candidate-gene strategies to genome-wide association studies (GWAS) (7).(7–14) 

Pharmacogenomics studies of asthma exacerbations as an outcome of treatment response 

have identified five suggestive associations for asthma exacerbations despite inhaled 

corticosteroids (CMTR1 (9), APOBEC3B-APOBEC3C (8), and CACNA2D3-WNT5A 
(11)), or long-acting beta2-agonists (TBX3 and EPHA7) (10). Beyond pharmacogenomics, 

other studies have focused on asthma exacerbations independently of treatment. In 

European-descent populations, CDHR3, CTNNA3, and HLA-DQB1 have been associated 

with severe asthma exacerbations (7,13). More recently, the representation of ethnically 

diverse populations has increased in GWAS of asthma exacerbations. A meta-analysis of 

GWAS in Hispanic/Latino children identified a single nucleotide polymorphism (SNP) 

at FLJ22447 that modulated KCNJ2-AS1 expression in nasal epithelium through DNA 

methylation (12). In Hispanic/Latinos and African Americans, a genome-wide significant 

locus for asthma with exacerbations regulated LINC01913 lung gene expression and DNA 

methylation levels of the PKDCC gene in whole blood (14). However, none of those studies 

has approached the search for genetic determinants of asthma exacerbations independently 

of treatment from a multi-ancestry framework.

To improve our understanding on genetic and biological mechanisms of asthma 

exacerbations across multiple populations, we conducted the first multi-ancestry meta-

analysis of GWAS of asthma exacerbations independently of treatment and attempted 

to validate previous associations. Then, we conducted in silico and in vivo downstream 

analyses to assess the potential functional effects of the associated SNPs over DNA 

methylation and gene expression.

METHODS

Study design and study populations

We performed a two-stage study to identify genetic variants associated with asthma 

exacerbations, defined as a binary variable based on the presence of emergency care, 

hospitalizations, or administration of systemic corticosteroids because of asthma. We also 

considered a definition of moderate exacerbations (3), comprising unscheduled general 

practitioner or pulmonary specialist visits and school absence since no information on the 

former variables was available for some studies. A period of 6 to 24 months or ever was 

considered depending on the data available for each study (Table S1–S2). In the discovery 

phase, we performed a multi-ancestry meta-analysis of GWAS of asthma exacerbations in 

9,392 patients with asthma from 12 studies, including 4,989 European-descents from nine 

studies, 2,181 Hispanics/Latinos, 1,250 Singaporean Chinese, and 972 African Americans. 

We attempted to replicate the findings from the discovery phase in a total of 37,555 

participants with asthma, including 36,477 Europeans from seven studies, 877 Latinos from 

two studies, and 201 Filipinos from one study (Table S2). A detailed description of each 

study is available in the Supporting Information. All studies included were approved by 
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their respective Institutional review boards, and written informed consent was provided by 

participants or their parents/caregivers. All methods followed the Declaration of Helsinki 

guidelines.

Assessment of genetic ancestry was performed using principal component analysis. The 

Haplotype Reference Consortium (r1.1 2016) (15) was used as the reference imputation 

panel for most studies, except for Avon Longitudinal Study of Parents and Children 

(ALSPAC) and Singapore Cross Sectional Genetic Epidemiology Study (SCSGES), which 

used the phase 3 of the 1000 Genomes Project (1KGP) (16). Genotyping and imputation 

procedures for the discovery and replication studies are detailed in the Supporting 

Information and Tables S1–S2.

Association analysis

Association between genetic variants and asthma exacerbations was tested using logistic 

regression models including age, sex, and principal components from the genotype matrix 

(if needed to correct for population stratification) (Table S1). Analyses were conducted 

separately for each study using PLINK 2.0 (17), EPACTS 3.2.6 (18) or rvtests 2.1.0 (19). 

Results were filtered with the EasyQC software (20) to retain variants with a minor allele 

frequency (MAF)≥1% and imputation quality R2≥0.3, absolute value of the beta coefficient 

<10, standard error of the beta included in the interval [0,10], and minor allele cut-off ≥6.

In the discovery phase, genetic variants that were available in at least two ethnic-specific 

studies were meta-analyzed with METASOFT (21), using fixed-effects or random-effects 

models based on the heterogeneity among studies (measured by the Cochran’s Q test 

p-value). Ethnic-specific results were then combined in a multi-ancestry meta-analysis. 

Independent variants (r2≤0.8) with suggestive association at p≤5×10−5 (22) within 1 

Megabase were identified with GCTA-COJO v1.93.2 (23) using the 1KGP reference (16). 

These variants were evaluated in the replication stage, following the same procedures as 

in the discovery phase. Evidence of replication was considered if the variants showed 

consistent direction of effects with the discovery stage at p≤0.05.

Assessment of shared genetic basis of asthma exacerbations with other traits

To identify groups of genes previously associated with other traits, we used a Gene-Set 

Enrichment Analysis (GSEA), as implemented in FUMA GWAS (24) via the GENE2FUNC 
algorithm, and queried the GWAS catalog (25). SNPs with p≤1×10−4 in the discovery phase 

of the meta-analysis of GWAS were mapped to the closest gene using the UCSC Table 

Browser tool (26). A false discovery rate (FDR) of 5% was used to declare significance.

To estimate the pairwise genome-wide genetic correlations (Rg) between asthma 

exacerbations and other traits, we compared our findings with publicly-available GWAS 

summary statistics via LD score regression using LDHub (27). Since most of the GWAS 

have been conducted in European populations, the analysis was restricted to predominantly 

European-descent individuals to maximize the statistical power. A Bonferroni-corrected 

significance threshold of p<0.05/711 traits=6.48×10−5 was applied.
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Sensitivity analysis

In order to assess the robustness of the genetic associations, we conducted sensitivity 

analyses for the time-dependent probability occurrence of exacerbations, the effect of 

Body Mass Index (BMI), obesity, asthma severity, and age group. Moreover, we evaluated 

the association of the variants with asthma susceptibility, as detailed in the Supporting 

Information. Studies from the discovery stage that had covariate data available were 

considered.

Methylation profiling and quality control

Whole blood DNA methylation from Hispanics/Latinos and African Americans was profiled 

using the Infinium HumanMethylation450 BeadChip or the Infinium Methylation EPIC 

BeadChip arrays. Briefly, low-quality probes and samples, outliers of DNA methylation, and 

samples with sex mismatch or mixed genotype distributions on the control SNP probes were 

excluded. Standard background correction, dye-bias correction, inter-array normalization, 

and probe-type bias adjustment were performed, and beta values were transformed to 

M-values for better statistical performance. Quality control is detailed in the Supporting 

Information.

Functional assessment of associated SNPs

DNA methylation quantitative trait loci (meQTL) analyses were conducted using fastQTL 

(28) for CpG sites within 1 Mb of SNPs with MAF≥0.01 in at least 10 samples, separately 

in 139 Mexican Americans and 241 Puerto Ricans from Genes-Environments & Admixture 

in Latino Americans (GALA II) and 215 African Americans from the Study of African 

Americans, Asthma, Genes & Environments (SAGE) studies. Linear regression models were 

corrected for asthma exacerbations status, age, sex, genetic ancestry, ReFACTor components 

as a proxy of cell heterogeneity, and methylation batch (when appropriate). The results 

from Mexican Americans and Puerto Ricans assayed with different methylation arrays 

were then meta-analyzed for each sub-ethnic group with METASOFT (21). SNP-CpG pairs 

were considered significant at Storey q-value <0.05. In silico evidence of functional effects 

of variants on gene expression and DNA methylation was assessed using QTLbase (29), 

Genotype-Tissue Expression (GTEx) v8 Portal (30), PhenoScanner v2 (31) and eFORGE-

TF (32). Long-distance chromatin interactions were determined using the ChiCP tool (33).

Validation of previous associations

A literature search for all studies reporting genetic loci significantly associated with asthma 

exacerbations was conducted, as described in the Supporting Information. Association 

results in the discovery stage were extracted and significance threshold was defined as p 
= 0.05/number of tested SNPs to adjust for multiple testing.

RESULTS

Characteristics of the patients

In the discovery phase, we analyzed 2,781 exacerbators and 6,611 non-exacerbators; 53.1% 

were predominantly Europeans, 23.2% Hispanics/Latinos, 13.3% Singaporean Chinese, and 
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10.3% African Americans. The percentage of exacerbators ranged from 9.1% to 65.2% in 

Europeans, and reached 58.8% in Hispanics/Latinos, 46.1% in African Americans, and 3.4% 

in Singaporeans. The replication phase included 37,555 individuals with asthma (3,030 

exacerbators and 34,525 non-exacerbators) where most participants were of European-

descent (97.1%), followed by Latinos (2.3%) and Filipinos (0.5%). The percentage of 

exacerbators ranged from 4.8% to 65.2% in Europeans, reached approximately 43% in 

Latinos, and 1.3% in Filipinos (Table S1–S2). Regarding sex, 51.7% and 42.9% of 

participants were male in the discovery and replication phases, respectively.

Discovery phase

The Quantile-quantile plots did not show major genomic inflation due to population 

stratification in each individual study (Figure S1), the combined results from individuals of 

European descent (Figure S2), or the multi-ancestry meta-analysis (Figure S3). In the multi-

ancestry meta-analysis of 9,634,748 variants, 447 SNPs exhibited suggestive association 

(Table S3). The most significant association was the intronic SNP rs6888198 within the 

cadherin-12 (CDH12) gene at chromosome 5p14.3 (odds ratio [OR] for C allele: 1.37, 95% 

confidence interval [CI]: 1.23–1.54, p=1.95×10−8) (Figure 1, Figure S4).

Replication phase

Fifteen of the 126 independent variants identified in the discovery phase were not available 

for replication since they were mostly present in African Americans and Hispanics/Latinos 

(Table S3). Two of the 106 variants present in more than one ethnic group were consistently 

associated with asthma exacerbations (Table 1): rs12091010 [VCAM1/EXTL2, OR for T 

allele: 0.89 (0.82–0.97), p=5.35×10−3] (Figure 2) and rs943126 [PANK1, OR for C allele: 

0.92 (0.86–0.98), p=1.30×10−2] (Figure 3). In the meta-analysis across both phases, these 

variants reached an association p-value of 4.23×10−7 and 4.93×10−6, respectively. From five 

variants that were present only in non-Europeans in the replication stage, none exhibited 

p<0.05 in any other population group (Table S4). Even though rs6888198 reached genome-

wide significance in the discovery and showed consistent effects among Europeans in the 

replication phase, this SNP had opposite effects in Latinos and Filipinos, which resulted in 

the lack of replication in the multi-ancestry replication phase (Table 1, Figure S5).

Gene-set enrichment and genome-wide genetic correlation analysis

Enrichment analysis of associations from the multi-ancestry discovery GWAS including 959 

SNPs associated with asthma exacerbations at p≤1×10−4 revealed significant enrichment in 

several traits, including treatment response (min p=2.77×10−6), neurological conditions (min 

p=4.62×10−5), obesity (min p=6.52×10−5), or waist-to-hip ratio (min p=1.88×10−7) (Table 

S5).

A total of 16 traits exhibited genetic correlation with asthma exacerbations at p<0.05 

(Table S6), including wheeze or whistling in the last year (Rg=0.47, p=1.01×10−2), 

emphysema/chronic bronchitis (Rg=0.55, p=3.89×10−2), asthma (Rg=0.32, p=3.99×10−2), 

and BMI (Rg=0.19, p=4.76×10−2). However, the associations did not remain significant after 

Bonferroni correction.
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Sensitivity analysis

To assess the robustness of associations that replicated across stages to the time-dependent 

probability of occurrence of exacerbations, stratified analyses were performed in European-

descents from the discovery stage that reported exacerbations for 6 vs. 12 months. 

Consistent effects per period were observed across periods (Table 3).

Since the post-GWAS analyses revealed significant enrichment/correlation at p<0.05 with fat 

mass/distribution, the association of rs12091010 and rs943126 after additional adjustment 

by BMI/obesity was examined in individuals from the discovery phase with BMI data 

available. Moreover, the effect of asthma severity alone or combined with BMI/obesity 

on the genetic association exacerbations was evaluated. The effects sizes of the genetic 

association after additional adjustment by these variables remained consistent with the 

effects reported in the discovery stage (Table S7).

We next investigated if the observed effects could differ across age groups in those studies 

that analyzed exclusively children or adults, but the effect sizes remained consistent across 

age groups (Table S8). Moreover, to assess if the effects could be driven by the underlying 

asthma syndrome rather than asthma exacerbations and no significant association with 

asthma was found in results from the UK Biobank or the Michigan Genomics Initiative 

(Table S9).

Functional exploration of variants associated with asthma exacerbations

We next assessed for association DNA methylation in whole blood at 525, and 538 CpG 

sites with rs12091010 and rs943126, respectively. A total of 7 and 1 SNP-CpG pairs for 

rs943126 and rs12091010 exhibited Storey q<0.05, respectively (Table 2, Table S10). Two 

of these replicated consistently in Europeans for rs943126 (cg25770176 and cg00475140). 

In silico analyses, revealed 10 SNP-CpGs pairs, 3 of which showed consistent effects in 

Hispanics/Latinos and African Americans at Storey q<0.05 (Tables S11–S12) including 

the previous two pairs and rs943126-cg03948048. The 8 significant CpG sites in minority 

children showed significant enrichment (q<0.001) in transcription factor (TF) motifs in lung 

(Table S13). Besides, the T allele of rs12091010 was associated with decreased EXTL2 
expression in whole blood from Europeans, according to PhenoScanner (31). The C allele 

of rs943126 was associated with increased expression of PANK1 in whole blood from 

Europeans (Table S14). Both variants showed evidence of long-range chromatin interaction 

with several genes in lymphoblastoid cells, including VCAM1 and EXTL2 for rs12091010 

and PANK1 for rs943126 (Table S15).

Validation of previous associations

We next examined 47 previous genetic loci for asthma exacerbations (7,8,12,13,34–36) and 

moderate-to-severe asthma (37) for association with asthma exacerbations in the discovery 

phase. A total of 5 variants had p<0.05 in Europeans, 2 in Hispanics/Latinos, 5 in African 

Americans, and 1 in Singaporean Chinese (Table S16). These were in loci previously 

associated with asthma exacerbations (GSDMB, RAD50, HLA-DQB1, ADAM33, VDR, 

and CDHR3) or moderate-to-severe asthma (IKZF3, TSLP, MUC5AC, C11orf30, SMAD3, 
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and WDR36). However, none of the SNPs exceeded the stringent Bonferroni-corrected 

threshold for significance (p=0.05/47=1.06×10−3).

DISCUSSION

To our knowledge, this is the first multi-ancestry meta-analysis of GWAS of asthma 

exacerbations independently of treatment including European, Hispanic/Latino, Asian, and 

African American patients with asthma. In our combined analysis of 46,947 individuals with 

asthma, two regulatory SNPs were significantly and consistently associated with asthma 

exacerbations in most of the studies included in the discovery and replication phases, 

independently of the type of exacerbation and the time period for which the exacerbation 

status was assessed. The SNP rs120910109 was located in the intergenic region of the 

VCAM1/EXTL2 genes whereas rs943126 was harbored within an intron 1 of PANK1.

VCAM1 encodes a surface protein predominantly expressed in endothelial cells 

that modulates leukocyte adhesion and trans-endothelial migration in response to pro-

inflammatory cytokines, and lipopolysaccharide (LPS) among other factors (38,39). 

VCAM1 is involved in cancer progression and several immunological disorders, 

including asthma (38). In the ovalbumin mice model, anti-VCAM1 reduced airway 

hyperresponsiveness and eosinophilic inflammation (40). On the other hand, EXTL2 
encodes an enzyme that controls glycosaminoglycan (GAG) biosynthesis via transference of 

N-acetylgalactosamine and N-acetylglucosamine to the glycosaminoglycan-protein linkage 

region (41). Decreased EXTL2 causes an over-accumulation of GAGs (42) that can promote 

inflammation in injured areas (43,44). Moreover, in bone marrow-derived macrophages from 

EXTL2−/− mice, there is overproduction of key molecules involved in inflammation and 

extracellular matrix remodeling, including tumor necrosis factor α (TNFα) and several 

matrix metalloproteinases (43). In a scenario of overaccumulation of GAGs under the loss of 

EXTL2 in macrophages, GAGs act as inflammatory mediators with strong Toll-like receptor 

4 (TLR4) agonist capacity (44). Interestingly, genetic variation both VCAM1 and EXTL2 
is associated with blood cell counts, and multiple sclerosis, according to the GWAS catalog 

(25).

PANK1 catalyzes coenzyme A biosynthesis, regulated by the transcription factor 

peroxisome proliferator-activating receptor α (PPAR-α) (45), a key anti-inflammatory factor 

in asthma (46). A decrease in PPAR-α expression is accompanied by a decrease in the 

expression of PANK1 and miR-107, which is encoded within the intron 5 of PANK1. TLR4 

can also downregulate miR-107. In turn, this leads to a higher cyclin-dependent kinase 6 

(CDK6) expression and subsequently increases the adhesion of macrophages in response to 

LPS (45). Bioproducts from bacterial infections, such as LPS, can trigger an inflammatory 

response and increase airway hyperresponsiveness and risk of asthma exacerbations (47,48). 

Moreover, p53 can regulate cell cycle progression via upregulation of PANK1 after DNA 

damage (49) and metabolism (50).

To prioritize gene targets, we assessed the functional capacity of relevant SNPs (51). 

Both rs12091010 and rs943126 exhibited an association with DNA methylation at several 

nearby CpG sites in whole blood from African Americans and Hispanics/Latinos with 
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asthma. Additionally, the SNPs rs12091010 and rs943126 were associated with EXTL2 
and PANK1 gene expression in whole blood from Europeans. Specifically, the T allele of 

rs12091010, located at 6 kb downstream of the 3’ UTR of VCAM1 and 150 kb upstream 

of the transcription start site of EXTL2, was associated with lower odds of having asthma 

exacerbations and decreased EXTL2 expression (31) The T allele is more common among 

Latinos/Admixed Americans, followed by Europeans, Africans, and East Asians (Figure 

S6). The T allele of rs943126 at PANK1, which is less common among Europeans than the 

rest of populations (Figure S7), was associated with a higher risk of asthma exacerbations 

in the combined analysis of the discovery and replication phases and with decreased gene 

expression of PANK1 in whole blood from Europeans. However, these eQTL effects were 

not validated in the GTEx data (30).

In the discovery phase, the most significant association was located at the intronic SNP 

rs6888198 (CDH12), but no evidence of replication was found in the second stage (p>0.05) 

despite the consistency of the direction of the effect across study phases. Interestingly, 

rs6888198 showed variable MAF among populations, with the largest MAF among Africans 

and Latinos (Figure S8). CDH12 has been associated with angiogenesis and progression of 

several types of cancers (52–54). Specifically, in colorectal cancer, it has been suggested 

that CDH12 increases cancer cell migration by promoting epithelial-mesenchymal transition 

via activation of the Snail transcription factor pathway. CDH12 expression is positively 

modulated by the chemotactic factor CCL2 (53,54), whose levels increases in blood and 

airway smooth muscle from asthma patients compared to healthy controls (55).

We also attempted to assess previously associated loci for asthma exacerbations or 

moderate-to-severe asthma for association with asthma exacerbations in multiple ethnic 

groups. Although several variants showed association at p<0.05, none surpassed the 

stringent Bonferroni correction, which could be due to differences in study design, 

phenotype definition, ethnicity, and clinical characteristics, among others. Of note, none 

of the previous findings was initially described in Asian or African populations, which 

highlights the need to increase ethnic diversity in genomic studies of asthma exacerbations.

Our study has several limitations. First, the VCAM1/EXTL2 and PANK1 loci did not 

surpass a stringent Bonferroni threshold of 4.7×10−4 (p=0.05/106 variants) in the replication 

stage nor the genome-wide significance in the combined analysis from all studies. Second, 

these loci exhibited modest effects sizes, which could impact the clinical relevance of these 

loci. Third, the history of asthma exacerbations was based on retrospective questionnaires in 

all cohorts but COMPASS, a randomized, prospective clinical trial. Fourth, to bring together 

large sample sizes necessary to map susceptibility variants, we considered studies where 

asthma exacerbations were reported for the previous 6 to 24 months or ever, which may have 

introduced some heterogeneity in the phenotype. Moreover, the replication stage comprised 

mostly European individuals, which hindered our capability to replicate associations driven 

in the discovery stage by non-Europeans. Despite these limitations, our findings exhibited 

consistent effects for the VCAM1/EXTL2 and PANK1 loci independent of the time 

period assessed. Future studies in adequately powered and phenotypically harmonised 

cohorts should untangle the role of these loci in the time-to-first exacerbation, the annual 

number of exacerbations, or the temporal distance among events, explore other epigenetic 
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mechanisms known to be involved in asthma (e.g., histone modifications or miRNAs) (56), 

and the biological function of these genes. Moreover, although asthma exacerbation risk is 

influenced by sex in an age-dependent manner (57), and our analyses were corrected for 

sex, future genome-wide gene-by-sex interaction scans may reveal the influence of sex on 

the genetic susceptibility to exacerbations. On the other hand, we acknowledge several study 

strengths. Firstly, we leveraged clinical and genetic data from 46,947 asthma patients from 

different ethnicities from 18 independent studies. Our study had statistical power ≥80% to 

detect associations with MAF> 17% and relative risk (RR)>1.20 in the discovery stage and 

for variants with MAF≥1%, and was powered at 80% to detect associations with larger 

effect sizes (RR≥1.85). Second, we identified novel, biologically plausible genetic factors 

of asthma exacerbations demonstrated by transcriptomics and epigenomics studies and 

evidence for prior literature. Moreover, we accounted for blood cell-type heterogeneity to 

overcome the limitations of analyzing mixed cell types tissues (56,58). Third, we evaluated 

previous genetic signals from asthma exacerbations in populations from several ancestries.

We identified suggestive loci for asthma exacerbations with consistent genetic effects across 

individuals from varying ancestral backgrounds using a multi-ancestry approach. We also 

demonstrated that these loci are biologically functional and regulate RNA expression and 

adjacent CpG site DNA methylation as meQTL in whole blood cells. Our findings highlight 

VCAM1, EXTL2 and PANK1 as functional loci for asthma exacerbations applicable to 

people across different ancestral backgrounds warranting future investigation of these novel 

genomic mechanisms underlying asthma exacerbations.
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LPS Lipopolysaccharide

MAF Minor allele frequency

meQTL Methylation quantitative trait loci

OR Odds ratio

PPAR-α Peroxisome proliferator-activating receptor α

RR Relative risk

SNP Single nucleotide polymorphism

TLR4 Toll-like receptor 4

TNFα Tumor necrosis factor α
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KEY MESSAGES

A large multi-ancestry meta-analysis of GWAS of asthma exacerbations revealed two 

novel susceptibility loci located close to PANK1 and at the intergenic region of VCAM1 
and EXTL2. These loci decreased PANK1 and EXTL2 gene expression in whole blood, 

respectively. Both genetic variants were associated with DNA methylation levels at CpG 

sites nearby. Our results identified two gene targets for asthma exacerbations that should 

be further explored to assess their specific role in asthma.
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Figure 1. Manhattan plot of the results of the discovery stage of the multi-ancestry meta-analysis 
of GWAS of asthma exacerbations (represented as -log10 p-value on the y-axis) along the 
chromosome position of the variants analyzed (x-axis).
The suggestive (p=5×10−5) and genome-wide (p=5×10−8) significance thresholds are 

indicated by the black line and dark gray lines.
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Figure 2. Forest plot of the association results for rs12091010 (VCAM1/EXTL2) in the meta-
analysis of GWAS of asthma exacerbations.
ALSPAC (discovery), SCSGES (discovery), and the subset of samples from BREATHE 

genotyped with the Illumina Infinium CoreExome-24 BeadChip (replication) had no 

genotyped or imputed data for rs12091010.
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Figure 3. Forest plot of the association results for rs943126 (PANK1) in the meta-analysis of 
GWAS of asthma exacerbations.
The subset of samples from BREATHE genotyped with the Illumina Infinium 

CoreExome-24 BeadChip (replication) had no available genotyped or imputed data for 

rs943126.
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