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It is estimated that short association fibers running immediately beneath the cortex may make 

up as much as 60% of the total white matter volume. However, these have been understudied 

relative to the long-range association, projection, and commissural fibers of the brain. This 

is largely because of limitations of diffusion MRI fiber tractography, which is the primary 

methodology used to non-invasively study the white matter connections. Inspired by recent 

anatomical considerations and methodological improvements in superficial white matter (SWM) 

tractography, we aim to characterize changes in these fiber systems in cognitively normal aging, 

which provide insight into the biological foundation of age-related cognitive changes, and a better 

understanding of how age-related pathology differs from healthy aging. To do this, we used three 

large, longitudinal and cross-sectional datasets (N = 1293 subjects, 2711 sessions) to quantify 

microstructural features and length/volume features of several SWM systems. We find that axial, 

radial, and mean diffusivities show positive associations with age, while fractional anisotropy has 

negative associations with age in SWM throughout the entire brain. These associations were most 

pronounced in the frontal, temporal, and temporoparietal regions. Moreover, measures of SWM 

volume and length decrease with age in a heterogenous manner across the brain, with different 

rates of change in inter-gyri and intra-gyri SWM, and at slower rates than well-studied long-range 

white matter pathways. These features, and their variations with age, provide the background for 

characterizing normal aging, and, in combination with larger association pathways and gray matter 

microstructural features, may provide insight into fundamental mechanisms associated with aging 

and cognition.
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Introduction

Superficial white matter (SWM) is the layer of white matter immediately below the cerebral 

cortex, and is composed of short association fibers that may connect adjacent cortical areas 

(inter-gyri SWM) or run along the ridge of one gyrus (intra-gyri SWM) [1]. As summarized 

in [2], short association fibers represent a majority of the connections of the human brain 

[3, 4], occupy as much as 60% of the total white matter volume [3], are among the last 

parts of the brain to myelinate [5, 6], and contain a comparatively high density of interstitial 

white matter neurons relative to other white matter [7, 8]. The SWM serves a critical role in 

brain function, plasticity, development, and aging, and is especially affected in disease and 

disorders [9–20].

Despite its prevalence and significance, SWM has been understudied relative to the long-

range association, projection, and commissural fibers of the brain. This is largely because 

of the limitations of diffusion MRI fiber tractography [21–23], which is the primary 

methodology used to non-invasively study the white matter connections [24]. The study of 

SWM using tractography faces anatomical and methodological challenges including partial 

volume effects, complex local anatomy, and a lack of consensus on definition and taxonomy 

[23], which complicate development and validation of algorithms dedicated to studying 

these fiber systems. However, recent innovation in diffusion MRI imaging, processing, and 
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tractography methodologies [20, 21, 23, 25, 26] have made it possible to reliably study 

SWM in health and disease [13–16, 27, 28].

One promising avenue of exploration is to study SWM during aging. Studies of the aging 

brain may provide insight into the biological foundation of age-related cognitive changes, 

and a better understanding of how abnormal aging (e.g., age-related neurodegenerative 

disorders) differs from healthy aging [29]. A large body of magnetic resonance imaging 

(MRI) research has shown that the structure of the human brain is constantly changing 

with age. In the gray matter, structural MRI studies have shown heterogenous patterns 

of normal age-related changes in cortical volume and thickness [30–37], with detectable 

differences in abnormal aging and disease [37–42]. In the white matter, diffusion tensor 

imaging (DTI) analysis has shown that fractional anisotropy (FA) is negatively associated 

with age and mean diffusivity (MD) is positively associated with age across several white 

matter pathways [43–46], and tractography analysis has shown that the volume and surface 

areas of many pathways decreases with age [47]. These findings have been attributed to 

myelin loss and/or decreased axonal densities and volumes. However, with few exceptions 

[12, 48–50], studies of white matter brain aging have focused on the deep white matter and 

larger long-range pathways of the brain.

Inspired by recent anatomical considerations and methodological improvements in SWM 

tractography [23], and lack of studies of SWM during aging, we sought to characterize 

changes in these fiber systems during normal aging. To do this, we leveraged three well-

established cohorts of aging, including two longitudinal cohorts [Baltimore Longitudinal 

Study of Aging (BLSA) [51], Vanderbilt Memory & Aging Project (VMAP) [52]], and one 

cross-sectional cohort [Cambridge Centre for Ageing and Neuroscience (Cam-CAN) [53]]. 

Within these cohorts, we performed automatic tractography segmentation in 132 SWM 

bundles, characterizing both microstructural features and macrostructural features of these 

SWM systems, to describe associations between these features and age.

Methods

Data

This study used data from three datasets, summarized in Table 1, and contained a total of 

1293 participants (2711 sessions) aged 50–98 years. All datasets were filtered to exclude 

participants with diagnoses of mild cognitive impairment, Alzheimer’s disease, or dementia 

at baseline, or if they developed these conditions during the follow-up interval. Finally, in 

order to focus on the aging process, datasets were filtered to include participants aged 50+, 

due to limited samples sizes below 50 years old in each dataset.

First, was the Baltimore Longitudinal Study of Aging (BLSA) dataset, with 741 participants 

scanned multiple times ranging from 1 to 8 sessions, and time between scans ranging 

from 1 to 10 years, yielding a total of 1788 diffusion sessions. Diffusion MRI data 

was acquired on a 3T Philips Achieva scanner (32 gradient directions, b-value=700s/

mm2, TR/TE=7454/75ms, reconstructed voxel size=0.81×0.81×2.2mm, reconstruction 

matrix=320×320, acquisition matrix=115× 115, field of view=260×260mm). Second, was 

data from the Vanderbilt Memory & Aging Project (VMAP), with 187 participants, scanned 
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between 1–4 sessions, with a total of 558 diffusion datasets. Diffusion MRI data was 

acquired on a 3T Philips Achieva scanner (32 gradient directions, b-value=1000s/mm2, 

reconstructed voxel size=2×2×2mm). Third, was data from the Cambridge Centre for 

Ageing and Neuroscience (Cam-CAN) data repository [53] with 356 participants, each 

scanned once using a 3T Siemens TIM Trio scanner with a 32-channel head coil (30 

directions at b-value=1000s/mm2, 30 directions at b-value=2000s/mm2, reconstructed voxel 

size=2×2×2mm). All datasets were preprocessed using the PreQual diffusion MRI pipeline 

[54], which includes motion correction, eddy current correction, and susceptibility distortion 

correction (using the Synb0-DISCO [55] algorithm for distortion correction for Cam-CAN 

and BLSA where no reverse phase encoding scans are available). Thorough manual quality 

control was performed, and sessions with significant artifacts (excessive motion, slice 

dropout, striping artifact, inadequate alignment with structural image) were removed from 

analysis, which included four Cam-CAN, two VMAP, and thirty-two BLSA sessions. All 

human datasets from Vanderbilt University were acquired after informed consent under 

supervision of the appropriate Institutional Review Board. This study accessed only de-

identified patient information.

Tractography and SWM bundle dissection

For every subject and every session, sets of SWM pathways were virtually dissected 

using methodology similar to [23] (referred to as ‘voxel-based’ method in [23]). Figure 

1 visualizes the methodological pipeline.

This pipeline utilized MRtrix [56]. Preprocessed diffusion data were resampled to 1×1×1 

mm3 voxels [57] and fiber orientation distributions were derived using the 3-tissue response 

function estimation [58] single/multi-shell multi-tissue CSD (dependent upon the dataset) 

[58, 59].Alignment of diffusion and structural data was performed using a boundary based 

rigid registration (epi_reg) from the FSL toolbox [60] and subsequently quality checked for 

accurate alignment. Next, FreeSurfer was performed on the structural T1-weighted images 

[61] and FreeSurfer’s “aseg” volume was transformed to diffusioin space to act as input to 

MRtrix’s five tissue type (5TT) image segmentation algorithm [62]. The 5TT image was 

then manipulated so that cerebellar cortex, amygdala, hippocampus, and deep nuclei were 

set as gray matter volumes. Thus, upon creation of the white/gray matter boundary for 

streamline seeding all streamlines are forced to start and end at the neocortex. Tractography 

was performed using anatomically constrained tractography [62] and the second-order 

integration probabilistic algorithm [63] (max angle 45 degrees, step size = 0.5mm, fODF 

power = 0.25) to generate 2 million streamlines with a maximum length of 40mm to 

be consistent with the ‘short association fiber’ definition of [3] and previously validated 

tractography methods [23]. This pipeline has been shown to result in dense systems of fibers 

immediately adjacent to the cortical sheet [23].

Freesurfer [61] parcellation schemes were then transformed to diffusion MRI space. For 

this work, we chose to use the Desikan Killiany atlas [64] parcellation, utilizing only 

the neocortex labels, to assign all streamlines to edges in a connection matrix, resulting 

in a potential 84×84 potential SWM bundles. These bundles were filtered using scilpy 

tools (https://github.com/scilus/scilpy) to remove outlier streamlines using Quickbundles 
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hierarchical clustering (alpha parameter = 0.6) [65]. An empirical decision was made 

to select only those bundles that are reproducible across 95% of the studied population 

(containing a minimum of 500 streamlines), resulting in 132 SWM bundles studied.

While there is no consensus on taxonomy and classification of SWM [21] (just as for 

long range tracts [66]), we chose to visualize results of inter-gyral (connections between 

two different gyri, resulting in the traditionally described U-shaped fibers, or U-fibers) and 

intra-gyral (connections within the same gyrus, i.e. along the diagonal of the connection 

matrix) SWM separately. We also note that we do not necessarily constrain fibers to be 

immediately superficial

A list of the 132 bundles, using nomenclature derived from the Desikan Killiany atlas, is 

given in the appendix.

Feature extraction

From the final 132 bundles for each subject, 6 features were extracted including four 

DTI microstructural measures of fractional anisotropy (FA), and mean, radial, and axial 

diffusivities (MD, RD, AD) and two macrostructural measures of length and volume, 

following the procedures in [67], which are based on the average streamline length and 

volume occupied by a discretized mask of each bundle.

Analytical Plan

To investigate the relationship between age and each WM feature, linear mixed effects 

modeling was performed, with each (z-normalized) feature, Y, modeled as a linear function 

of age, y = β0 + β1Age + β2Sex + β3TICV + β3(1 + AGE | DATASET) + β4(SUB), where 

subjects (SUB) were entered as a random effect (i.e., subject-specific random intercept), and 

subject sex (Sex) and total intracranial volume (TICV) as a fixed effects. Additionally, we 

modelled the association between age and outcome variable as dataset (DATASET) specific 

due to expected differences in MR protocols [68–72], and included a dataset specific random 

slope and intercept. We note that the TICV utilized was calculated from the T1-weighted 

image from the baseline scan.

Due to multiple comparisons, all statistical tests were controlled by the false discovery 

rate [73] (132 pathways × 6 features = 792 hypothesis tested) at 0.05 to determine 

significance. Results are presented as the beta coefficient of estimate ‘β1’, or in other words 

“the association of the feature ‘y’ with Age”, which (due to normalization) represents the 

standard deviation change in feature per year. These measures are derived for each pathway 

and each feature. Additionally, results may be shown as a percent change per year, derived 

from the slope normalized by the average value across the aging population (from 50–98), 

and multiplied by 100, which represents the percent change in feature per year. These 

measures are derived for each pathway and each feature.

Comparison with long-range white matter

For comparison with the more thoroughly studied long range white matter pathways, we 

perform tractography and bundle segmentation using TractSeg [74] automatic segmentation 
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resulting in 72 association, projection, and commissural bundles. Microstructure features 

(FA, MD, AD, RD) and macrostructure (volume, length) were extracted as done for SWM, 

the analyzed using the same linear mixed effects models. The purpose of this dataset is only 

as a benchmark for associations with age, and an in-depth exploration of the microstructural 

and macrostructural features of these pathways is detailed in [47] (note based on the same 

three datasets, although the current study has and increased number of subjects/sessions due 

to the longitudinal nature of the datasets).

Results

SWM systems

Example SWM systems that were consistently identified across the population are shown 

in Figure 2 for a single example subject. In the coronal and axial slices, these fibers 

run immediately below and adjacent to the cortex in locations and geometries expected 

traditionally assigned to SWM. In the 3D visualization, SWM is represented along a large 

portion of the gray matter surface. In agreement with recent literature on tractography [23] 

and dissection [1], both inter-gyri and intra-gyri SWM systems exist throughout the entirety 

of the cortex.

What changes and where?

Figure 3 shows associations with age of all measures for 8 selected pathways (4 intra-gyri 

and 4 inter-gyri systems). In line with previous literature in both long association pathways 

and SWM, FA frequently shows negative associations with age, while the diffusivities show 

positive associations with age. In general, the averaged detected streamline length and 

volume tend to decrease with increasing age, even when accounting for TICV, although 

the effects are not statistically significant for all pathways. As expected, different datasets, 

with different acquisitions, result in different calculated DTI indices, with much smaller 

differences in bundle length and volume.

To summarize association with age for all features and all pathways, we show the beta 

coefficient associations with age for all features in a matrix in Figure 4, along with boxplots 

summarizing the beta coefficients and percent change with age across all studied pathways 

in Figure 5. DTI measures show large, robust associations with age for many pathways. 

FA in SWM shows negative associations with age, while all diffusivities (AD, MD, RD) 

show strong positive associations with age, with similar results across intra/inter-gyri 

SWM and left/right hemispheres. Measures of length generally show negative associations 

with age, although the age effect is reduced compared to microstructure. Finally, SWM 

shows mixed associations with age, where inter-gyri SWM volumes have both positive and 

negative associations with age, with median association positive. However, intra-gyri volume 

consistently shows larger decreased associations with age.

Figure 5 additionally facilitates comparisons with 72 long range white matter pathways. The 

relative change per year in microstructural indices of SWM white matter is similar to that of 

long range pathways, with decreases of −0.1 to −0.5% change per year in FA, and increases 

in diffusivities of also +0.1 to +0.5% per year. While the percent change is similar, the Beta 
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coefficients (regression coefficient) is actually larger for features of diffusivity in the SWM. 

Finally, SWM changes in length and volume are much less than those of the long range 

connections.

Visualizing change across superficial white matter

To visualize where changes in SWM occur during aging, all pathways are visualized, 

colored coded according to percent change per year, and shown in Figure 6. Again, SWM 

pathways throughout the entire cortex show statistically significant increases in diffusivities 

with age, of ~0.1–0.45% change per year, while FA shows decreases of similar magnitude 

per year. Notably, microstructural features show greatest changes in frontal and parietal 

lobes, with less changes in pre- and post-central gyri. Changes in length and volume are 

more sparse, with decreases in length with age observed throughout the entire brain, while 

decreases in volume with age are more heterogenous, with greater negative associations in 

frontal and temporal lobes.

An alternative visualization is shown in Figure 7, where each cortical region is color-coded 

based on the percent-change per year of all SWM fibers connecting that label (note that a 

single cortical region can be associated with multiple SWM systems). Again, clear patterns 

are observed in SWM associated with frontal and temporal lobes, including larger decreases 

in FA and increases in all diffusivities. Here, observed changes in volume are averaged out, 

with few noticeable patterns, for example averaged increase in middle and inferior frontal 

lobes driven by inter-gyri SWM, and decrease in inferior temporal gyrus due to intra-gyral 

connections.

Discussion

Here, we have used multiple large, longitudinal and cross-sectional datasets, and innovations 

in tractography generation and filtering, to characterize SWM systems in 3 aging cohorts, 

describing microstructural features and for the first time, macrostructural features. Our main 

findings are that (1) diffusivities show positive associations with age, while anisotropy 

has negative associations with age, in SWM throughout the entire brain, (2) larger 

microstructural changes were observed in the frontal, temporal, and temporoparietal regions, 

(3) measures of SWM length decrease with age, (4) changes in volume were more 

heterogenous, with larger decreases in volume observed for intra-gyral SWM, and (5) 

microstructural of SWM have the same age associations as long-range pathways, while the 

volume (as derived from tractography) is less associated with age than long range-pathways.

Superficial white matter in aging

Compared to the long-range association, projection, and commissural pathways, SWM 

of the brain has been underexplored in the literature, in both healthy and abnormal 

aging. Recently, due to advances in software and tools to study SWM, studies of these 

systems have started to increase. For a thorough review on SWM tractography analysis 

and applications, see work by Guevara et al. [21]. Of note, there have been few studies of 

SWM in aging using diffusion MRI. In a study of 141 healthy individuals (18–86 years 

old), Nazeri et al. [12] found widespread negative relationships of FA with age, in agreement 
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with our results. To do this, they generated a population-based SWM template, and used 

this to perform a tract-based spatial statistics (TBSS) style analysis. Similarly, in a cohort 

of 65 individuals (18–74 years old) Phillips et al. [48] found age-related reductions in FA 

and increases in RD and AD across large areas of SWM, with results more pronounced in 

the frontal SWM compared to the posterior and ventral brain regions, and they interpreted 

this as an increased vulnerability to the aging process. Rather than tractography, this was 

done using white matter/gray matter surface-based alignment from structural MRI data 

and probing the DTI indices across the population along this boundary. Finally, using 

tractography and manually placed regions of interest on 69 subjects (22–84 years old), and 

focusing on prefrontal connections, Malykhin et al. [49] found significant decreases in FA 

starting at ~60 years of age, in both SWM and association/commissural pathways. The use of 

tractography also enabled volumetric analysis, where both long range and short-range fiber 

systems showed decreased volumes with age.

Motivated by these works in SWM, the current study takes advantage of innovations 

in tractography and SWM segmentation, and incorporates multiple large cross-sectional 

and longitudinal cohorts totaling >1200 participants and >2700 sessions to study SWM 

throughout the entire brain. Specifically, constrained spherical deconvolution [75], in 

combination with probabilistic tractography [63] has become prevalent in state-of-the 

art studies of the human connectome and individual fiber bundles. Combining this with 

anatomical constraints [62] and subsequent filtering [65] enables robust delineation of 

white matter systems underneath most of the cortex (Figure 1), in alignment with current 

knowledge of SWM. Similar methodology has been shown to result in reproducible 

streamlines [23], making studies of clinical cohorts plausible. Further, we include several 

large datasets on aging, making this the largest cohort to date to study these fibers in any 

clinical study.

What changes and where

The observed associations with age include decreased FA, volume, length, and increased 

axial, radial, and mean diffusivities. The biological mechanism for these age-related changes 

is not entirely clear, due to the high sensitivity (and low specificity) of these DTI measures 

to various features of tissue microstructure. In general, these observations in white matter 

(in both health and disease) have been attributed to various biological mechanisms. Increases 

in radial and axial diffusivities are often associated with decreased axonal packing [76, 

77], allowing for increased diffusivity in all orientations, as well as myelin thinning which 

may be observed as increased radial diffusivity [78, 79]. The low specificity of DTI can 

potentially be overcome with multi-compartment modeling, which may allow disentangling 

neurite densities, compartmental changes, and geometrical configurations. For example, a 

SWM study of individuals with young onset Alzheimer’s disease (using the white matter 

and gray matter boundary to define regions, as in [48]) found that these individuals exhibited 

decreased FA and increased diffusivities [80]. However, the use of a multi-compartment 

tissue model (in this case the neurite orientation dispersion and density imaging model [81], 

showed both a decreased neurite volume fraction and higher dispersion index, suggesting 

both a loss of myelinated fibers and greater dispersion (less coherent organization) of 

these SWM systems. While these studies were able to detect differences in extreme 
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neurodegenerative cases, we found that these systems are sensitive in aging individuals 

without cognitive impairment as well. Future studies should implement similar modeling, 

in combination with the tractography generation and segmentation utilized in this study, to 

improve biological specificity of changes in healthy aging.

Identifying where changes occur during age may facilitate studying the underpinnings of 

cognitive and motor changes, and aid in identifying networks that are susceptible to disease 

and disorder. Here, much like previous studies [9, 48, 82–85] in gray matter, white matter 

pathways, and axonal diameters, there is a clear anterior-to-posterior gradient in changes of 

microstructure across age. The frontal lobe is comprised of functional networks recruited for 

a diverse range of cognitive problems, and disruption is associated with age-related declines 

in cognitive processes [86]. Our study confirms that in addition to gray matter, and the 

larger white matter pathways, the SWM of the frontal lobe also indicate strong age-related 

trends. future work should investigate relationships between these neuroimaging features 

and age-related declines in cognition.

Another unique pattern in SWM is the difference in volume associations with age between 

inter and intra-gyral bundles, and differences between all SWM and long range decreases. 

Intra-gyral bundles have been described as running tangential to a gyrus and traversing 

throughout the blade [1] (see Discussion on nomenclature below). The intra-gyral SWM 

show a greater negative association with age than inter-gyral SWM. There are possibly many 

interesting interpretations of these results. First, this could be a true biological phenomenon, 

representing relative preservation of SWM relative to long range pathways, and further 

preservation of inter relative to intra-gyri SWM. The greater decreases in intra-gyri volume 

with age are intuitively related to increases in sulcal width (i.e. the distance between 

adjacent gyri) and decreases in sulcal depth with age [87] physically constraining the 

volume that these systems can occupy. However, there are certainly partial volume effects 

related to tractography (see limitations below), and partial volume effects with the thinning 

cortex. Nevertheless, there are measurable changes in microstructure and macrostructure of 

white matter nearest the cortex, that shows heterogenous across the brain.

Towards painting a complete picture of brain aging

Noninvasive MR-imaging has slowly led to a convergence of evidence of structural and 

functional changes in aging. The main findings from decades of research are that the brain 

shrinks in overall volume and the ventricular system expands in volume [29]. The pattern 

of changes is heterogenous, as described here and elsewhere [29], with most analyses 

suggesting a 0.5%−1% reduction in volume per year in most areas of the brain. The 

changes in volume are related to neuronal loss, neuronal shrinkage, decreased length of 

myelinated axons in white matter and reduction of synapses in the gray matter. Finally, 

structural changes in healthy aging mediate, or explain, domain-specific cognitive decline 

in individuals both with and without cognitive impairment [36, 37]. The results of this 

study highlight that SWM cannot be ignored when forming a complete picture of brain 

aging. In addition, variation of these systems across populations may enable subject-specific 

analysis and identification of atypical structure, which may be used to study subject-specific 

function.
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Nomenclature and Taxonomy—Here, we have chosen to identify and analyze groups of 

SWM streamlines based on cortical connectivity defined by a commonly used parcellation 

scheme [64]. There are a number of ways that superficial bundles could be virtually 

segmented, including automated/semi-automated region placement, streamline clustering 

methods or latent space methods, or hybrid methodologies (see Guevara et al. [21], for a 

review). Much like long range connections [66] there is no clear consensus on the taxonomy 

and nomenclature of SWM systems, and different analysis methods and methodologies 

result in different bundles (see [88] for a comparison of long range white matter pathways, 

and [21] for a comparison of SWM systems). Our method resulted in 132 unique bundles 

that are reproducible across a population, in line with existing atlases or parcellation/

clustering schemes with 100 SWM bundles [20], 93 SWM bundles [89], and 198 SWM 

bundles [90].

Recent observations using Klingler’s dissection show that in addition to the commonly 

observed U-fibers connecting adjacent gyri which form the thin white matter sheet of 

the sulcal floor, there are indeed intra-gyral SWM systems that run along the edge of 

gyral crowns [1]. Utilizing a simple gyral-based parcellation scheme easily allows us to 

classify our bundles as inter or intra-gyri. Our is the first tractography study to distinguish 

and analyze these systems, finding differences in their microstructural and macrostructural 

changes with age. Optimistically, our 132 bundles is well in line with that observed with 

dissections, with a range of 73–142 (mean of 97) unique superficial systems in 7 dissected 

hemispheres.

Limitations and future direction

Because of the lack of studies on SWM, there are a number of research directions that can 

benefit from these methodologies. Understanding not only the relationship between SWM 

and the cortex, but also the SWM and long-range pathways would further our understanding 

of the complex interactions of the aging brain. Additionally, tractometry [91–93] or high 

dimensional analysis of the brain, which has been shown to enable single-subject inference 

[91], may benefit from the additional set of features provided by SWM. Understanding 

which features of the brain change first is paramount to understanding differences in 

disease. SWM has found relevant application in cohorts with autism, schizophrenia, and 

Alzheimer’s disease, [21] and may further benefit from a comprehensive examination of the 

structural changes of the brain including both white and gray matter geometric analysis and 

microstructure analysis. Similarly, inclusion of cognitive and motor variables will facilitate 

linking function to structure. Next, studies of SWM may help identify challenges for 

traditional fiber tractography of the long-range fibers – characterizing where these systems 

occur may facilitate challenges associated with gyral biases [22, 94, 95] and bottlenecks in 

streamline propagation that lead to creation of false positive pathways [96–99]. Lastly, future 

studies characterizing changes in SWM together with the long range white and gray matter 

across the lifespan should provide quantification of variation and a benchmark of normative 

trajectories across a population [100].

Several limitations should be acknowledged. First, while the use of multiple longitudinal 

and cross sectional large datasets is particular strength of this study, the use of different 
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datasets with different acquisitions is known to result in very different quantitative indices 

of microstructure and macrostructure [68–72]. Here, we included dataset as a variable 

in our mixed effects models, and consider this an advantage to the current study which 

shows these effects generalize across datasets. Uniquely, microstructural features showed the 

greatest effect sizes of dataset (both slope and intercept), although macrostructural features 

of length and volume for CAM-CAM did frequently show significant effects of estimated 

intercepts of the volume (negative effect, i.e., decreased volume), likely due to the use of a 

multi-shell acquisition enabling higher angular resolution and decrease partial volume effect. 

Alternatively, harmonization of the diffusion signal, or quantitative indices, may be used and 

is an active area of interest [72, 101, 102]. Second, the data used is neither high angular 

resolution nor high spatial resolution. The initial validation of the SWM tractography used 

here showed [23, 103] reliable results at comparable resolutions, although with a larger 

number of directions and b-values, however constrained spherical deconvolution has proven 

remarkably robust at estimating fiber orientation and crossing fibers even at low b-value 

and minimal directions [75]. Future studies should utilize higher resolution datasets (e.g., 

the Human Connectome Project [104]), which may reduce variability in quantification, 

and enable studies across the entire lifetime. Third, we chose simple linear mixed effects 

modelling, whereas changes across a lifespan have been shown to be nonlinear – therefore 

we chose to focus our analysis on age 50+. Fourth, there are several methods to segment 

and study SWM, both with and without tractography [20, 21, 90, 105], and we could have 

chosen different streamline generation and clustering algorithms. We expect that results will 

be similar, but not exactly the same, with the use of different methodologies for virtual 

dissection [88]. Next, while SWM atlases do exist [20, 25, 89, 105, 106], we choose to 

include all “U-shaped” fiber systems that exist within a certain percent of the studied 

population. This does not guarantee the existence of true anatomical connections, but has 

been used in the literature as an indicator of reliability of results.

A limitation of these techniques, and tractography in general, is related to partial volume 

effects. The process of tractography can be influenced by partial volume effects with 

gray matter and with other white matter systems [98] that traverse the same imaging 

voxel. Microstructure measures will certainly be sensitive to gray matter changes (which 

is known to change with age [107–109] as well as those of nearby white matter systems. 

Similarly, macrostructure measures of length will be highly dependent upon user-defined 

length thresholds [23], while volume is based on discretization of streamlines into voxels, 

which may be more variable for smaller SWM bundles. Because of this, measures of 

the intra-gyral volume may simply be a proxy for total white matter volume within 

a gyrus, rather than truly specific to only superficial systems. However, these changes 

are nonetheless interesting, and strongly associated with age. Because of these reasons, 

superficial white matter reproducibility is expected to be lower for superficial white matter 

than long-range pathways [110], particularly for low resolution and low angular resolution 

datasets [23]. However the streamline propagation and anatomical constraints utilized have 

been shown to have moderate reproducibility, with results dependent on scanner, acquisition, 

sampling schemes, and choices in the streamline generation process (constraints, maximum 

lengths, seeding, etc.) [23], a challenge that exists still in long range tractography [71]. 

Finally, SWM is susceptible to specificity/sensitivity tradeoffs just as long-range pathway 

Schilling et al. Page 11

Aging Brain. Author manuscript; available in PMC 2023 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



investigations [97, 111], and anatomical validation is required in the form of tracers or 

cadaveric dissection, to not only verify the existence and trajectories of these pathways, but 

features of length and volume as well. Reassuringly, both intra- and inter-gyral SWM is 

visible in cadaveric samples throughout the entire cerebral hemisphere [1], just as in our 

results (Figure 2).

Conclusion

Here, we have used a large, longitudinal dataset, and innovations in tractography generation 

and filtering, to characterize SWM systems in an aging cohort, describing microstructural 

features and for the first time, macrostructural features. We find robust associations with 

age for all features, across many fiber systems. These features, and their normal variations 

with age, may be useful for characterizing abnormal aging, and, in combination with 

larger association pathways and gray matter microstructural features, lead to insight into 

fundamental mechanisms associated with aging and cognition.
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Appendix

Below, we give the abbreviated names used in the manuscript and figure captions, and 

the Freesurfer-based name as given in FreeSurferColorLUT.txt. Here, SWM connects one 

cortical region to another indicated by a “--” in the abbreviation.
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Figure 1. 
Methodological pipeline. Fiber tractography is constrained based on anatomy and length, 

and streamlines are assigned to edges in a connection matrix. Only bundles reproducible 

across the studied population (N=132) are kept for analysis. Bundles are then filtered 

to remove outliers. Finally, for each bundle and each subject, microstructural and 

macrostructural features are extracted for analysis.
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Figure 2. 
SWM systems show expected shape and locations, and cover a large portion of the surface 

of the brain. 132 SWM bundles determined to be robust across a population are shown in a 

single subject, with distinct colors for each bundle, and separated by inter-gyri and intra-gyri 

systems.
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Figure 3. 
Microstructural and macrostructural features change with age in many pathways. Shown 

are all studied features for 8 selected pathways (4 intra-gyri, 4 inter-gyri), where all data 

points are shown (with lines connecting longitudinal datasets). A line of best fit is shown 

if there are statistically significant associations with age, where color indicates the cohort. 

Visualization of the SWM pathways for a single subject are shown overlaid on a transparent 

brain.
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Figure 4. 
What and where changes occur in SWM during aging. The beta coefficient from linear 

mixed effects modeling is shown as a matrix for all features across all pathways (inter-gyri 

top; intra-gyri bottom). Note that the beta coefficient describes “the association of the 

feature ‘y’ with Age”, which (due to normalization) represents the standard deviation change 

in feature per year. Non-significant effects are shown as diagonal line.
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Figure 5. 
Changes in superficial white matter. The percent change per year (top) and beta coefficient 

(bottom) from linear mixed effects modeling across all studied SWM pathways is shown 

in boxplot form, for inter and intra gyri SWM, separated by hemisphere, with long-range 

systems described in [47] for reference. In general, diffusivities show positive associations 

with age, while FA, and length show negative associations with age. Association of SWM 

volume and age varies based on the intra/inter gyral systems.
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Figure 6. 
Percent change per year from the population mean shown as color-coded streamlines on 

an example subject. Bundles are only shown if statistically significant trends with age are 

observed.
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Figure 7. 
Percent change per year from the population mean for short superficial SWM connecting 

individual regions of interest. Regions of an example subject are color-coded based on the 

population-averaged percent change per year of all fibers connecting that label.
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Table 1.

This study used 3 longitudinal and cross-sectional datasets, with a total of 1293 participants (2711 sessions), 

aged 50–98 years. Distributions of age at baseline, and number of sessions, are shown for each individual 

dataset.

Dataset Number of Subjects Number of Sessions Age

Baltimore Longitudinal Study of Aging
741

328 M
1788

Range [1 8]
[50 98]

74.1 +/− 9.9

Cambridge Centre for Ageing Neuroscience
365

186 M
365

Range [1]
[50 88]

68.0 +/− 10.3

Vanderbilt Memory & Aging Project
187

113 M
558

Range [1 4]
[60 95]

74.2 +/− 7.0

1293
627 M

2711
Range [1 8]

[50 98]
73.5 +/− 9.3
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