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Abstract

Artificial intelligence (AI) has been approved for biomedical research in diverse areas from 

bedside clinical studies to benchtop basic scientific research. For ophthalmic research, in particular 
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glaucoma, AI applications are rapidly growing for potential clinical translation given the vast data 

available and the introduction of federated learning. Conversely, AI for basic science remains 

limited despite its useful power in providing mechanistic insight. In this perspective, we discuss 

recent progress, opportunities, and challenges in the application of AI in glaucoma for scientific 

discoveries. Specifically, we focus on the research paradigm of reverse translation, in which 

clinical data are first used for patient-centered hypothesis generation followed by transitioning 

into basic science studies for hypothesis validation. We elaborate on several distinctive areas 

of research opportunities for reverse translation of AI in glaucoma including disease risk and 

progression prediction, pathology characterization, and sub-phenotype identification. We conclude 

with current challenges and future opportunities for AI research in basic science for glaucoma 

such as inter-species diversity, AI model generalizability and explainability, as well as AI 

applications using advanced ocular imaging and genomic data.
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1 Introduction

1.1 Reverse translation in glaucoma studies

In therapeutic development research, the conventional forward translation paradigm adopts 

a benchtop-to-bedside scheme, which aims to find genomic associations or therapeutic 

biomarkers starting from in vitro studies and animal models to validation in human subjects 

for further refinements and therapeutic development. On the other hand, reverse translation 

offers a different research paradigm that starts from human studies to identify and generate 

hypotheses for validation in animal or in vitro studies (1). This alternative research paradigm 

is poised to address several bottlenecks in conventional forward translation due to its more 

patient-centered, seamless, continuous, and cyclical process (2).

In the field of glaucoma research, there is an urgent need to develop therapeutic methods 

beyond the conventional clinically proven therapeutic intervention of lowering intraocular 

pressure (IOP). Glaucoma is the leading cause of irreversible blindness worldwide. Although 

glaucoma is characterized by progressive damage of the retinal ganglion cells and their 

axons, very little is known about its underlying mechanisms. IOP is a major risk factor, 

but not the cause of the disease. However, only a limited number of current clinical trials 

(<7%) were able to focus on novel neurotherapeutic targets (3). Such a mismatch between 

the need and reality of the sub-phenotyping therapeutic development research is in part 

hindered by the limitations embedded in the conventional forward translation paradigm. 

Reverse translation could potentially alleviate these barriers. For example, recent work 

using a transgenic mouse model based on the optineurin E50K gene mutation, originally 

discovered in human normal-tension glaucoma patients (4), discovered novel mutation-level-

dependent age effects on visual impairment (5). In another example, inspired by the 

relationship between aging and glaucoma in clinical settings, Lu et al. designed retinal 

tissue reprogramming through the induction of ectopic expression of the four Yamanaka 
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transcription factors and showed reverse age-related vision loss and eye damage in an 

aging mouse model with glaucoma (6). These and other related studies demonstrated the 

successful implication of reverse translation in glaucoma research (7–9).

1.2 Role of AI in reverse translation

Universally, machine learning and artificial intelligence (AI) in medicine have been applied 

mostly in clinical data with far fewer studies pertaining to animal models. This disparity 

in application arises largely from greater availability and standardization of bedside clinical 

data compared to benchtop data. This is particularly true in the field of glaucoma, in which 

much of the recent technology development has been established in bedside clinical settings 

(10, 11). Disparities in technological advancement that favor clinical applications present an 

ideal opportunity to apply the reverse translation research paradigm. Thus, AI applications 

in glaucoma are poised for technical adaptations that can pioneer reverse translation from 

human to animal models. In this perspective, we summarize several areas of research 

opportunities for reverse AI translation in glaucoma. We also point out current challenges in 

the field, and identify several research directions to achieve successful reverse translation for 

scientific discoveries in glaucoma in the future.

2 Areas of research opportunities for reverse translation of AI in 

glaucoma

This perspective is structured in the following order: We first review the latest research using 

supervised classification AI models to predict glaucoma-related clinical and pathological 

conditions, such as rapid glaucoma progression (Section 2.1) and optic nerve head 

(ONH) abnormality detection (Section 2.2). Parallelly, we summarize the applications of 

unsupervised clustering AI algorithms to identify glaucoma subtypes (Section 2.3), such 

as novel archetypal visual field loss patterns and ONH-abnormality structural patterns. 

The next sections focus on AI algorithms to identify glaucoma-related risk factors 

(Section 2.4) and endophenotypes (Section 2.5–2.7). Specifically, we take a close look 

at AI-derived phenotypic biomarkers for glaucoma using ophthalmic imaging techniques 

including structural optical coherence tomography (OCT) (Section 2.5–2.6) and vascular 

OCT-Angiography (OCTA) (Section 2.7). Finally, we review recent glaucoma AI research 

that addressed some of the common AI challenges including AI model generalizability 

(Section 2.8), model explainability (Section 2.9), and model transferability through federated 

learning techniques (Section 2.10) to train aggregated models across multiple sites without 

the need of sharing data among participating sites. We conclude by discussing current 

opportunities and challenges for reverse AI translation in glaucoma (Section 3.1), and share 

our perspective on future research directions (Section 3.2) incorporating state-of-the-art 

explainable AI method development into cutting-edge ophthalmic imaging and genomic 

techniques.

2.1 Predicting the risk of rapid glaucoma progression

Predicting the disease progression or risk is important for patient stratification and guiding 

early intervention. Visual field measurement is a low-cost diagnostic tool for evaluating 

visual function. By using a deep neural network trained on low dimensional, baseline 2D 
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visual field measurements, recent studies showed promising predictive power in forecasting 

the risk of rapid glaucomatous progression (12, 13). On the other hand, OCT may be 

capable of predicting visual field progression (14). The important question for future 

studies of reverse translation would be: which approaches would be more appropriate? 

Would visual field measurements predicting glaucoma risk have more promising values 

for clinical applications such as early screening or clinical trial participant stratification, 

while using OCT to predict visual fields fits better in animal studies to understand the 

structural-functional relationships within the pathogenic mechanisms of glaucoma? To 

answer these questions, longitudinal experiments could be designed in transgenic animal 

models to simultaneously evaluate the progression of functional and structural abnormalities 

and model their pathogenic cascades as a function of time.

2.2 Optic disc and optic nerve head abnormality detection in glaucoma

The ONH represents the confluence structure for the entire visual system. Glaucoma is 

associated with elevated IOP, whereas the ONH is heavily affected by the biomechanical 

forces due to elevated IOP and is therefore susceptible to structural damage and the 

associated functional loss. Han et al. trained a convolutional neural network (CNN) model 

on a large dataset of 282,100 images from both the UK Biobank and the Canadian 

Longitudinal Study on Aging - CLSA for automatic AI labeling of the ONH (15). Their 

study was able to extract two key ONH parameters: vertical cup-to-disc ratio and vertical 

disc diameter. Using OCT, Heisler et al. demonstrated auto-peripapillary region extraction in 

a clinical cohort with a much smaller dataset using a composited approach of peripapillary 

layer segmentation and Faster R-CNN-based object detection of Bruch’s membrane opening 

(BMO) (16). Accurate segmentation of the optic disc region and peripapillary retinal 

boundaries has also been demonstrated by combining CNN and multi-weights graph search 

(17). These results showed promising potentials for reverse translation to animal glaucoma 

models in which the sample size is much smaller compared to large-scale population studies 

such as the UK Biobank. It is worth noting that special care should be taken in the 

experimental design that, such reverse translation might mainly be applicable in animals 

with ONH anatomy similar to human eyes.

2.3 AI-derived data-driven glaucoma sub-phenotyping

Understanding disease subtypes is important to achieve precision medicine. For example, 

different subtypes of primary open-angle glaucoma (POAG) showed different patterns of 

visual field progression (18). Distinctive glaucoma sub-phenotypes were discovered based 

on visual field read patterns (19) or structural descriptions of the ONH shape models (20) 

through data-driven clustering and feature reduction methods such as Uniform Manifold 

Approximation and Projection (UMAP) and non-negative matrix factorization (21). Such 

clinically informed POAG sub-phenotypes provide opportunities for new frontiers of reverse 

translation. Existing AI studies in animal models are mainly limited to discriminating 

between glaucomatous and healthy eyes via OCT (22). With the reverse translation of 

AI findings from clinical studies, novel animal models can be developed or identified to 

understand the distinctive disease mechanisms for each of the POAG subtypes.
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2.4 Genotype-associated genomic risk for glaucoma

Genotype-phenotype associations are an important inter-species bridge to connect benchtop 

and bedside studies. A recent study has identified 14 archetypes of POAG using data-driven 

clustering methods based on the visual field measurement patterns (19) (Figure 1). By 

connecting the discovered sub-phenotypes with the ancestry data, the authors discovered 

the African-descendant ethnicity as the risk factor for specific POAG sub-phenotypes for 

both early and advanced loss archetypes. In another study, a genome-wide meta-analysis 

identified 127 open-angle glaucoma loci (23). AI-driven algorithms can also be used for 

assigning vertical cup-to-disc ratios to extend our knowledge about the genetic architecture 

of glaucoma (15). Such findings may guide the development of novel transgenic mouse 

models that are highly relevant to the human disease process. However, given the difference 

in ocular anatomy between the mouse and humans, it would be important to determine the 

inter-species translatability of the glaucoma sub-phenotypes, and animal-specific glaucoma 

sub-phenotyping models would need to be carefully trained and interpreted.

2.5 Morphological and biomechanical phenotype of the glaucomatous ONH

Describing the morphological and biomechanical phenotype of the ONH is critical for the 

field of glaucoma. Changes in ONH structure have been considered a central event in 

glaucoma, and the fragile ONH is constantly exposed to 3 major loads: IOP, cerebrospinal 

fluid pressure (CSFP), and optic nerve traction during eye movements. To better describe 

ONH structure in patients, Devalla et al. has proposed several deep learning approaches 

(e.g. DRUNET and ONH-Net) to simultaneously segment both connective and neural tissues 

of the ONH from OCT images (24), one of which was device-independent (25). Panda et 

al. and Braeu et al. employed these AI-driven approaches to identify novel morphological 

biomarkers for glaucoma in humans (20, 26). These technologies were then successfully 

‘reverse-translated’ in the tree shrew model (27) to better understand non-linear optical 

distortions present in OCT images. This knowledge could ultimately improve our glaucoma 

predictions in patients.

Several technologies have been developed in humans to assess the biomechanics of the 

ONH. As it is now possible to observe IOP-induced (or gaze-induced) ONH deformations 

with OCT, techniques such as digital volume correlation, the virtual fields method, and 

other AI-driven approaches have been used to map local ONH tissue strain, biomechanical 

properties, and robustness (28–32). In a large glaucoma population, Chuangsuwanich et al. 

identified key biomechanical trends: (1) IOP-induced deformations were associated with 

visual field loss in high-tension glaucoma but not normal-tension glaucoma (33); and (2) 

normal-tension glaucoma ONHs were more biomechanically sensitive to changes in gaze, 

while high-tension glaucoma ONHs appeared more sensitive to changes in IOP (34). Similar 

techniques have in turn been used to test biomechanical hypotheses in non-human primates, 

allowing for a greater degree of freedom, and simultaneous control of IOP, CSFP, and blood 

pressure (35, 36). The knowledge gathered in those animal tests could ultimately help us 

refine a viable clinical test to assess ONH biomechanics in patients.
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2.6 Retinal morphology and shape analyses for glaucoma

Biological and clinical explainability is important for both forward and reverse translations. 

Lee et al. developed a computational morphometric analysis pipeline to measure the 

individualized glaucoma-induced retinal structural changes through the estimation of retinal 

layer thicknesses and shape deformation over time (37). Such measurements require 

registration-based computation using a longitudinal dataset (38). Recent work by Shaini 

et al. used non-negative matrix factorization, an unsupervised dimensionality reduction and 

clustering method, to derive distinctive subphenotypes of ONH and peripapillary retinal 

nerve fiber layer (RNFL) surface-shape-based features, which could further improve the 

prediction accuracy of subsequent glaucomatous visual field loss (21).

Focusing on the RNFL bundles, Leung et al. developed an optical texture analysis (39), 

and illustrated its diagnostic assessments for both glaucoma and non-glaucoma optic 

neuropathies (40). Such mathematical-driven modeling tools can be applied to both clinical 

studies and animal models to understand the relationships between RNFL integrity and other 

structural pathologies such as retinal vascular disruption. Furthermore, the model can further 

benefit from more accurate RNFL segmentation using deep-learning-based segmentation. 

Deep learning-based methods enable the automatic segmentation of retinal layers with high 

accuracy (41). Compared to clinical OCT, animal studies have a limited sample size and 

labeled ground truth data for training. In this sense, transfer learning and pseudo-labeling are 

proven to be beneficial in utilizing deep-learning models pre-trained on larger-scale clinical 

OCT data in animal studies. They require limited training data and minimal ground truth 

labels (42) (Figure 2).

Recent work by Brau et al. incorporated state-of-the-art geometric deep learning to train 

classifiers using point-cloud data derived from segmented ONH boundaries (26, 43). By 

using a dynamic-graph convolutional neural network (DGCNN), an explainable AI method, 

the authors were able to identify the critical 3D structural features of the ONH that are 

important to provide an improved glaucoma diagnosis. Some of those regions showed a 

great level of colocalization to the central retinal vessels, which aligns with their findings 

that the central retinal vessel trunk and branches have stronger diagnostic power for 

glaucoma compared to RNFL thickness (44). This model is also currently under clinical 

assessment (45). Importantly, this model can become a useful area of analysis with recent 

AI developments in glaucoma animal models. In OCT images, Choy et al. employed AI 

technology to delineate Schlemm’s canal lumens in mouse eyes (46). Similar segmentation 

and shape analysis approaches were recently applied to fixed tissues for automated analysis 

of multiple retinal morphological changes, including RNFL thickness (42), optic nerve 

density, and retinal ganglion cell soma density in animal models (47, 48). These studies 

suggest that, while population sizes for ground truth training may impose an obstacle to 

reverse translation of AI technology, they are not insurmountable.

2.7 AI in OCT angiography for glaucoma

OCT Angiography (OCTA) is a functional extension of OCT, which allows the detection of 

vascular-related retinal and optic nerve diseases (49, 50). OCTA has been used to quantify 

ONH blood flow in glaucoma since 2012 (51). Clinical studies show that OCTA-based 
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vessel density and flow index are lower in glaucomatous eyes in the regions of the optic 

disc (52), peripapillary retina (53), and macular retina (54). OCTA-based vessel density 

can also reflect the severity of visual field loss in glaucoma patients (55). Recently, OCTA-

derived nerve fiber layer plexus measurements have been used to further correlate with 

visual functions by simulating sector-wise visual field (56). Now, it is possible to detect 

glaucomatous focal perfusion loss using OCTA (57). Given the close relationship between 

the glaucoma-related pathologies and the retinal vascular regions (26), validated by other 

imaging modalities (44), we believe OCTA may serve as a new tool for glaucoma diagnosis 

and monitoring, and also understanding the mechanism of disease development (58, 59).

However, OCTA data may suffer from projection artifacts and motion artifacts (60). AI 

methods (61) have been applied for projection artifact removal (60, 62). AI has also been 

applied to enhance the retinal capillaries (63, 64), segment retinal vessels (65, 66), quantify 

the avascular zone (67–71), and map arteries and veins (72) in OCTA. There are potential 

opportunities for side-by-side development in humans with the intent to reverse translate.

2.8 AI model generalizability

Model generalization across devices is a crucial but challenging issue in AI development. 

Devalla et al. proposed a “3D digital staining” approach (25) that uses an “enhancer” 

neural network to learn the mathematical morphological operations to enhance the raw 

OCT images, which enables the application of a pre-trained segmentation of the ONH on 

different devices, thereby reducing variability. Similar approaches can be achieved through 

domain-adaptation using the generative adversarial network (GAN), with the potential 

to add additional shape or feature priors and constraints into pre-trained segmentation 

models (41) such as the source domain, structural similarity, signal-to-noise ratio, and 

high-level perceptual feature (73). Such data harmonization approaches can be important 

when translating to animal studies to account for different experimental setups and eliminate 

potential batch effects.

2.9 Explainable AI for glaucoma

The explainability of AI modeling is crucial for translational applications in both clinical 

and pre-clinical animal studies. Recent studies have shown that explainable visualization 

can identify previously non-reported regions surrounding ONH that may be associated 

with glaucoma pathogenesis (74, 75). Some of the conventional explainable AI methods, 

such as Grad-CAM, are limited in terms of showing localized feature-important saliency 

maps due to the lack of resolution. With the integration of B-scan aggregation and enface 

projection for AI model visualization method (76), it is feasible to identify localized 

pathological signatures that differentiate retinal disease subtypes with a relatively small 

training set using feature agnostic AI classifier without the need for labeling of pathological 

regions. More excitingly, the newly proposed biomarker activation map (BAM) is an 

explainable visualization method specifically designed for AI-based disease diagnosis 

(77). The generated BAMs were designed to only localize the AI model-utilized unique 

biomarkers belonging to the positive class and showed much higher localization capability 

(77) than Grad-CAM or other conventional explainable AI methods, such as attention maps. 
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It is foreseeable that such techniques can also be used to identify glaucoma pathogenesis and 

validate biomarkers in future preclinical studies.

2.10 Federated learning for glaucoma

The development of robust and generalizable deep learning models usually requires large 

samples of representative training data, which might demand the aggregation of data 

from different location sources. However, data sharing for clinical data is often restricted 

due to patient privacy concerns. Federated learning, or collaborative learning, helps to 

resolve such barriers through the training of an aggregated model without the need for 

data transfer, and is important for accelerating AI glaucoma research. The work by Lo et 

al. demonstrated the successful implementation of the federated framework to train more 

generalizable aggregated models of retinal vessel segmentation and diabetic retinopathy 

classification using OCT data from three different institutions and different OCT machines 

with distinctive distributions of disease severity (78). With regard to glaucoma, the work 

by Christopher et al. exemplified the successful training of federated models for glaucoma 

detection using data from two institutions containing distinctive racial populations (79). For 

accelerating reverse translation into basic science, future studies are envisioned that involve 

collaborative efforts and openness in building shared data sources of preclinical imaging, 

biochemical, and behavioral modalities in healthy animals across species, age, and gender, 

as well as experimental high-tension and normal-tension glaucoma disease models for 

establishing robust baselines and predicting neurobehavioral changes for further research. 

For pre-clinical animal data, the barriers to data sharing would be lower without privacy 

concerns. Moreover, the techniques developed in the federated learning framework, such 

as parallel model training with normalized weighted sharing and dataset-specific domain 

adaptation, would be beneficial for reverse translation.

3 Discussion

3.1 Opportunities and challenges for reverse translation of AI in glaucoma

In the recent decade, extensive efforts have been put into the development and investigations 

of AI methods for glaucoma research in clinical settings. Not only did these studies show 

promising results in improving clinical outcomes on the bedside, they have also provided 

precious first-hand experiences that researchers can learn from towards reverse translation 

to animal studies. The data-driven findings of glaucoma-related genomic loci and glaucoma 

sub-phenotypes provide information for potential novel transgenic animal models to further 

study the biological mechanisms for precision medicine. The effectiveness of using OCT to 

predict visual field progression, as well as using visual field measurements to predict the 

risk of accelerated glaucoma progression, indicates strong functional-structural correlations 

towards the disease progression. Such insights will likely guide the experimental design 

of future animal studies to focus on specific pathophysiological and functional pathways 

of the disease mechanisms. Furthermore, many imaging-based AI models are readily 

translatable to animal-based pre-clinical studies, from structural segmentation to shape and 

biomechanical models for the ONH and optic disc, peripapillary retinal vascular pathology 

and avascular zone abnormality detection, as well as retinal nerve fiber bundle texture 

analysis. Finally, AI methods for model generalizability, domain adaptation, and explainable 
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AI are crucial for reverse translation to evaluate the applicability of animal models to 

monitoring glaucomatous conditions.

To date, most of the AI method developments in glaucoma are focused on clinical 

applications, leaving much room for reverse translation to benchside basic science research. 

Some of the current challenges in reverse translation research include the anatomical 

differences in the visual system between human and animal models. For example, human 

and rodent eyes have different sizes, with fovea and lamina cribrosa being present in humans 

but not in rodents (though they possess the pseudofovea and glial lamina), and with optic 

nerve fibers decussating at the optic chiasm to the contralateral hemisphere to different 

extents between humans (52%) and rodents (above 90%). Finally, like other biomedical and 

clinical applications, AI applications in glaucoma research also inherit some of the current 

limitations, such as model interpretability and generalizability.

3.2 Future research directions

Future research on reverse translation for glaucoma can further benefit from integrating 

state-of-the-art developments in AI methods. Advanced AI models such as vision 

transformers have shown better generalizability in tasks depicting POAG when applied to 

diverse independent datasets (80). The fast-growing self-supervised learning techniques have 

shown promising applications for efficiently utilizing relatively large amounts of unlabeled 

data to learn pathological features that are not specific to certain diseases but generalizable 

to other diagnoses, such as patients with both glaucoma and diabetic retinopathy or age-

related macular degeneration. Although this approach can be more practical as comorbidities 

often occur in patients, care should be taken when applying self-supervised learning in 

medical image data in which pathology-related variations are highly localized. This often 

causes the algorithm subject to shortcut learning, detecting non-clinically-relevant easy 

features to drive prediction (81). Therefore, it is essential to incorporate domain-specific 

information when developing self-supervised learning methods to avoid contamination 

by spurious features (82). This can also improve robustness when training on clinical 

problems with small sample sizes by bootstrapping the performance to achieve diagnosis-

level explanation (83). Future research on explainable AI should not only resolve where the 

model focuses, but also how the changes in those locations affect the model performance. 

The counterfactual approach (84) could potentially help to unveil the blackbox of the deep 

learning models by interrogating the explainability of the internal layers of the neural 

network, leading to the causal explanation inside the model (85, 86).

Successful efforts in the reverse translation of AI may also benefit the development and use 

of large animal models of glaucoma (87–90). While larger animals, such as dogs, swine, 

and primates, have greater anatomical homology to humans, their use is limited by the 

cost of cohorts and ethical considerations. Tree shrews may be considered as an alternative 

glaucoma animal model given the presence of the laminar cribrosa in the eyes of these 

small animals (27). The ability to access refined measurements of glaucoma pathology in a 

longitudinal and non-invasive manner could improve the usability of these models moving 

forward (91–93).
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In addition, the recent development of novel imaging techniques has resulted in huge 

opportunities for data-driven AI approaches for basic science studies. For example, the 

recent advancements of adaptive optics, which is adopted from telescope technology, and 

two-photon imaging (94–96) have enabled in vivo visualization of glaucoma-related ocular 

structures such as the retina, ONH and trabecular meshwork in unprecedented detail (97). 

These data can facilitate efficient and accurate retinal layer segmentations (98, 99), cellular-

level imaging of photoreceptors (100), and detect subtle pathological protein deposition in 

RNFL in both human (101) and animal studies (102). Furthermore, transmission electron 

microscopy and laser scanning microscopy can image the ultrastructural morphology of 

the ONH (103, 104), trabecular meshwork (105), and RNFL (106) from mouse and non-

human primate models of glaucoma, enabling more in-depth understanding of the glaucoma 

pathogenesis (105) including astrocytic responses (104). While the large amounts of high-

resolution imaging data pose analytic challenges using traditional image analysis methods, 

the fast-growing field of AI application in digital pathology offers a potential solution 

(107–109). Increased collection and digitalization of ophthalmic imaging from both human 

and experimental animal specimens provides great opportunities for harnessing reverse AI 

translation to evaluate glaucoma pathogenesis on a large scale with improved robustness.

Finally, the recent development of efficient sequencing techniques has enabled AI 

applications on multi-omics data for basic glaucoma research. For instance, genome-wide 

association studies (GWAS) have revealed hundreds of POAG-related genetic loci with 

consistent effects across ancestries (23, 110, 111); and whole-genome-based polygenic 

risk score enables the prediction of future glaucoma risks (112). Furthermore, multi-omics 

investigations can help identify the molecular signature for glaucoma predisposition (113), 

patient-specific tear composition (114), mechanical stress-derived trabecular meshwork 

cytoskeletal changes (115), and risk factors for IOP elevation (116). Integrating image 

data with multi-omics data (e.g., genomics, transcriptomics, proteomics, and metabolomics) 

using approaches such as spatial transcriptomics (117) may reveal novel genotype-

phenotype associations and causal inferences, allowing the understanding of glaucoma-

related disease etiology in a highly localized manner as well as the identification of more 

biologically-related glaucoma phenotypes.
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FIGURE 1. 
The 14 archetypal visual field loss patterns derived from visual fields of the 1957 incident 

primary open-angle glaucoma cases (2581 affected eyes). The integer at the top left of each 

archetype (AT) denotes the archetype number. The percentage at the bottom left of each 

archetype indicates this pattern’s respective average decomposition weight. The algorithm 

identified 14 archetypes: four representing advanced loss patterns, nine of early loss, and one 

of no visual field loss. African-American patients made up 1.3 percent of the study but had 

a nearly twofold increased risk of early visual field loss archetypes, and a sixfold higher risk 

for advanced field loss archetypes, when compared to white patients. [excerpted from (19)].
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FIGURE 2. 
Representative images of deep learning-assisted automatic retinal layer segmentation (A) 
and the thickness measurements of 5 retinal layers for both injured and control rat eyes 

(B) before and 28 days after unilateral N-methyl-D-aspartate (NMDA) injection. Automatic 

retinal layer segmentation was achieved using LF-UNet - an anatomical-aware cascaded 

deep-learning-based retinal optical coherence tomography (OCT) segmentation framework 

that has been validated on human retinal OCT data (42). In this work, two techniques 

were applied to improve the efficiency and generalizability of the LF-UNet segmentation 
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framework when training with a small, labeled dataset – 1) composited transfer-learning 

and domain adaptation, and 2) pseudo-labeling. [excerpted from (42)]. (RNFL, retinal nerve 

fiber layer; GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; 

ONH, optic nerve head).
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