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Abstract

Repair of genomic DNA is a fundamental housekeeping process that quietly maintains the 

health of our genomes. The consequences of a genetic defect affecting a component of this 

delicate mechanism are quite harmful, characterized by a cascade of premature aging that 

injures a variety of organs, including the nervous system. One part of the nervous system that 

is impaired in certain DNA repair disorders is the peripheral nerve. Chronic motor, sensory, 

and sensorimotor polyneuropathies have all been observed in affected individuals, with specific 

physiologies associated with different categories of DNA repair disorders. Cockayne syndrome 

has classically been linked to demyelinating polyneuropathies, whereas xeroderma pigmentosum 

has long been associated with axonal polyneuropathies. Three additional recessive DNA repair 

disorders are associated with neuropathies, including trichothiodystrophy, Werner syndrome, and 

ataxia-telangiectasia. Although plausible biological explanations exist for why the peripheral 

nerves are specifically vulnerable to impairments of DNA repair, specific mechanisms such as 

oxidative stress remain largely unexplored in this context, and bear further study. It is also 

unclear why different DNA repair disorders manifest with different types of neuropathy, and why 

neuropathy is not universally present in those diseases. Longitudinal physiological monitoring of 

these neuropathies with serial electrodiagnostic studies may provide valuable noninvasive outcome 

data in the context of future natural history studies, and thus the responses of these neuropathies 

may become sentinel outcome measures for future clinical trials of treatments currently in 

development such as adeno-associated virus gene replacement therapies.
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1 | INTRODUCTION

Peripheral neuropathy represents one of the many complex clinical manifestations that 

can be present in patients with DNA repair disorders and, as such, symptoms related to 

this may be overshadowed by other complications.1 As these are inherited disorders that 

impair ubiquitous biological processes, the peripheral neuropathy that occurs tends to be 

a polyneuropathy rather than a mononeuropathy. Although the true incidence is likely 

underreported, a review of current literature shows documentation of sensory, motor, and 

sensorimotor peripheral neuropathies in patients with DNA repair or genome instability 

disorders. Depending on the specific underlying deficiency, these can present as either 

demyelinating or axonal peripheral neuropathies. In each of these cases, differences exist 

among patients regarding the age of susceptibility, precise anatomical distribution of the 

neuropathy, and overall severity. Regardless of the specific manifestations, peripheral 

neuropathies add to the burden of patients with DNA repair disorders and an improved 

understanding of how the underlying disease mechanisms influence the development of 

neuropathies in these patients would support the development and assessment of effective 

therapies.

The human body relies upon multiple levels of quality control mechanisms that serve 

to correct injuries that occur due to both endogenous and exogenous factors. Oxidative 

DNA base damage from reactive oxygen species (ROS) represents one of the most 

common endogenous sources of DNA damage and is an inevitable, constant byproduct of 

normal cellular metabolism.2 In healthy cells, ROS are generally maintained at manageable 

levels. However, in situations of persistent cell stress, such as that found in DNA repair 

disorders and other diseases, ROS can become problematic due to increased production and 

decreased abilities to manage its effects. A nonexhaustive list of exogenous factors that 

activate DNA repair pathways includes: DNA lesions caused by ultraviolet (UV) radiation 

(cyclobutane pyrimidine dimers [CPDs] and pyrimidine [6–4] pyrimidone photoproducts), X 

ray and gamma-ray exposure, mutagenic chemicals (hydrogen peroxide, vinyl chloride, and 

polycyclic aromatic hydrocarbons), viruses, and heat stress.3–5

A variety of DNA damage response (DDR) pathways exist, each of which is responsible 

for a specific DNA-editing function. These pathways include nucleotide excision repair 

(NER), base excision repair (BER), mismatch repair, homologous recombination (HR), 

non-homologous end joining (NHEJ), single-strand break repair, and double-strand break 

repair (DSBR).6 DNA repair disorders occur when genetically inherited mutations lead 

to dysfunctions in proteins that are responsible for a particular component of the DDR 

mechanism. Among these, neuropathies have been observed specifically in patients with 

deficiencies in proteins involved in NER and DSBR and as well as those involved in the 

maintenance of genome stability.
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Due to the high energetic burden associated with maintaining precise ion gradients across 

long distances and relaying electrophysiological signals on a regular basis, the metabolic 

activity of neurons and other cells associated with the nervous system is more robust when 

compared with many other cell types throughout the body. This exposes both the central 

and peripheral nervous systems to high levels of oxidative stress that are associated with 

vulnerability to an accumulation of DNA damage. Thus, it is not surprising that DNA repair 

disorders are frequently associated with neurological complications, including peripheral 

neuropathies.

The neuropathies associated with DNA repair disorders vary regarding sensory, motor, or 

sensorimotor involvement. It remains a puzzle why defects in the same overall biological 

process can have different manifestations, often in consistent patterns depending on the 

subtype. One possible explanation is that some of these proteins involve overlapping but 

somewhat distinct aspects of DNA repair defects. Another possible explanation is that 

individual proteins involved in these diseases have functions distinct from their direct role in 

DNA repair.7

The following is a review of the current literature regarding the association of neuropathies 

with these disorders. We discuss five diseases in detail---xeroderma pigmentosum (XP), 

trichothiodystrophy (TTD), Cockayne syndrome (CS), Werner syndrome (WS), and ataxia 

telangiectasia (AT)---due to evidence in the literature for peripheral neuropathy presentation. 

In this review we highlight aspects of these disorders that are relevant to neuromuscular 

specialists.

2 | DNA REPAIR AND GENOME STABILITY PATHWAYS

These repair pathways have been extensively reviewed elsewhere,8–12 but we briefly 

summarized these in what follows. NER is responsible for the removal of lesions caused 

by ultraviolet (UV) rays and other environmental carcinogens. It is divided into two forms: 

global genomic (GG) and transcription-coupled (TC) and is the only DNA repair system 

capable of removing sun-induced UV DNA damage in mammals.13,14 The sequential 

steps involved include lesion recognition, lesion removal, DNA repair patch synthesis, and 

ligation. Each of these steps proceeds with a careful orchestration of recruitment, binding, 

and release of repair machinery components.

GG-NER is the subpathway that is able to detect helix distortions caused by structural 

nucleotide lesions and can function anywhere in the genome.15 In GG-NER, once the DNA 

helix distortions are recognized, repair is initiated by the GG-NER–specific DNA-damage–

binding XP type C (XPC)-Rad23B complex and sometimes the UV-damaged DNA-binding 

complex (UV-DDB).15 After damage recognition, the remaining steps occur in a manner 

similar to TC-NER as other repair proteins are recruited to the lesion to verify the damage, 

unwind the helix, excise the damaged DNA strand, and fill in the repair patch using the 

complementary strand as a template.16 When the DNA-damage recognition machinery is 

deficient, recognition of the DNA helix distortion does not occur and repair machinery fails 

to localize to the lesion. Defects in the GG-NER pathway–specific proteins typically lead to 

cancer predisposition and associated disorders, such as XP.15
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TC-NER is responsible for the repair of lesions located on the transcribed strand of active 

genes and does not require XPC or DDB proteins for lesion recognition in mammalian 

cells.15 TC-NER initiation differs from GG-NER in DNA damage recognition step, as 

the recognition signal is the stalling of RNA polymerase at a lesion in DNA. Defects 

in TC-NER are associated with TTD, CS, XP, and XP-CS. Although some DNA repair 

disorders reveal clear deficiencies in only GG or TC-NER, studies have revealed that some 

deficiencies impact the function of both repair pathways.17

Double-strand break repair is one of two repair mechanisms that involve HR repair.9 

DNA double-strand breaks (DSBs) are the primary form of DNA lesions responsible 

for formation of chromosomal aberrations and can be induced by ionizing radiation, 

topoisomerase-mediated DNA cleavage, spontaneous DSBs during DNA replication, various 

recombination mechanisms, and BER when operating on near but opposite strands.9 Two 

different DSBR repair strategies exist: HR and NHEJ.18 In HR, a mechanism involving 

DNA resection, strand invasion, and exchange provides primers for repair synthesis. It is 

this requirement for a homologous template that restricts HR to the S and G2 phases of the 

cell cycle. NHEJ, however, requires no homology with a second DNA duplex and little to 

no homology between the two severed DNA ends.18 Although more efficient, NHEJ is also 

more error-prone and, in contrast, although less efficient (slower), HR is more accurate.19

The affected gene in AT, AT-mutated (ATM), encodes a serine/threonine protein 

kinase important for damage signaling in response to DSBs.20–22 Clinical observations 

demonstrated chromosomal instability, immunodeficiency, and radio-sensitivity that 

suggested impaired DSBR in AT patients.23 Previous studies using different models and 

experimental conditions reached conflicting conclusions regarding the precise role for 

ATM in DSBR, but compelling evidence has shown that it facilitates repair of DSBs 

associated with heterochromatin.24,25 Other studies focused on the telangiectasias in AT 

have uncovered a key role for oxidative stress in the disruption of cellular responses in this 

disorder.26–28

The accelerated aging disorder WS is caused by defects in the WS protein (WRN). Although 

WRN has a role in the maintenance of genomic DNA stability, its precise function has 

yet to be elucidated. The WRN protein has been shown to have DNA-binding capabilities 

and is recruited to DSBs, where it may play a role in DNA unwinding through its helicase 

activities.29–31

3 | NEUROPATHIES IN DNA REPAIR AND GENOME INSTABILITY 

DISORDERS

3.1 | XP

Xeroderma pigmentosum is a rare, autosomal recessive genetic disorder that affects an 

estimated 2.3 per million livebirths in Western Europe, 1 in 22 000 in Japan, and 1 per 

million in the United States.32,33 The disease affects males and females equally and is 

statistically more common in certain regions, including Japan, North Africa, and the Middle 

East.32 Patients with XP are hypersensitive to DNA damage from UV radiation and typically 
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experience severe sunburns, increased freckles, and increased susceptibility to skin cancer.34 

In 60% of XP cases, extreme sensitivity to sunlight is apparent within the first few weeks of 

life. The remaining 40% of cases typically display freckle-like pigmentation on sun-exposed 

skin by 2 years of age.35

The degree of UV sensitivity can vary between XP patients and basal- and squamous-cell 

carcinomas are the most prevalent types of skin tumors.36 XP is caused by pathogenic 

variants in one of multiple XP genes that encode proteins involved in NER (Table 1).37 

Although the resulting deficiency in NER is consistent throughout XP, the various functions 

of specific XP proteins and the severity of the pathogenic variant (null variants versus 

partial impairments) can both influence disease presentation in XP patients.38 The central 

nervous system is affected in ~25% of XP patients, and an estimated 20% to 30% 

display sensorineural abnormalities that include ataxia, hearing loss, as well as sensory and 

sensorimotor peripheral neuropathies (Table 2).35,39–45 Of the XP genetic subtypes, XPA, 

XPB, XPD, XPF, and XPG are those that have been found to be associated in some cases 

with neurological symptoms, with XPA and XPD being the genetic subtypes most frequently 

associated with neurological degeneration.46 Conversely, patients with XPC and XPE rarely 

display neurological manifestations, although there is one published case of an XPC patient 

developing a peripheral neuropathy at age 47.41,47

One recent study showed that 78% of XPA patients evaluated had an axonal sensorimotor 

polyneuropathy, whereas 50% of XPD patients evaluated had an axonal sensory 

neuropathy.46 The investigation also showed that the development of neuropathy in XPA 

tended to be earlier than in XPD patients and that sensorineural hearing loss may precede 

abnormal nerve conduction studies in XP.46

The main course of treatment for XP is prevention of complications through protective 

measures against UV radiation. In utero XP screening for families with a history 

of the disease is recommended and facilitates early implementation of sun protection 

measures.35,39,40 Regular multidisciplinary clinical evaluations that include dermatology, 

neurology, and ophthalmology can help capture various symptoms in the early stages 

and identify beneficial preventive strategies to minimize the detrimental effects of DNA 

damage.48 As of yet, there are no reports of medications that are effective for the 

neurological aspects of XP.

3.2 | TTD

Trichothiodystrophy is a rare, autosomal recessive disorder that is characterized by sulfur-

deficient, short, brittle hair and nails, with a range of disease severity and a prevalence in 

the United States of ~1 per 1 000 000 with males and females being equally affected.14,49,50 

The age of onset is early and often associated with premature birth and low birth-weight 

with prenatal diagnoses documented in some patients with a family history of the 

disease.51 Mildly affected patients may only display the characteristic tiger-tail-banding 

hair phenotype, whereas more severely affected patients will often develop photosensitivity, 

ichthyosis, intellectual impairment, developmental delay, hematological abnormalities, 

microcephaly, decreased fertility, accelerated aging, and recurrent infections.14,52 Forty to 

50% of TTD patients have photosensitivity.53 The photosensitive form of this disorder is 
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caused by pathogenic variants in any one of the three genes: ERCC2, ERCC3, or GTF2H5 
(Table 1). Each of these genes encodes a subunit of the DNA repair and transcription factor 

TFIIH.52,54 Genetic variants in ERCC2 XPD are the most common causes of photosensitive 

TTD.55 TFIIH is important for both NER and transcription initiation. Although TFIIH’s role 

in NER can explain the photosensitivity observed in TTD, the other features of this disease 

are thought to be a result of deficiencies in TFIIH’s ability to initiate transcription.14

Neurological complications associated with TTD include peripheral neuropathy, intellectual 

impairment, developmental delays, and impaired motor control/psychomotor skills.51,56 A 

systematic review of TTD showed a 2% frequency of peripheral neuropathies in TTD 

patients.51 In one published case study, motor nerve conduction studies performed at 6, 14, 

and 24 months of age demonstrated a slow conduction velocity, indicating demyelinating 

physiology (Table 2).56

As with many of the other disorders in this review, TTD patients typically have 

complex health-care needs and require multidisciplinary clinical care that can include 

neurology, dermatology, ophthalmology, orthopedics, rehabilitation medicine, immunology, 

and genetics.51 Treatments for mildly affected TTD patients typically include symptomatic 

management using sun-protection measures and moisturizers for the dermatological aspects 

of the disease (ichthyosis, dry skin, and UV sensitivity).50 A recent study has demonstrated 

successful treatment of the skin features of TTD (improved erythema and reduced itching) 

with the monoclonal antibody dupilumab.57 As of yet, there are no reports of medications 

being effective for the neurological aspects of TTD.

3.3 | CS

Cockayne syndrome is a rare, autosomal recessive, multisystem disorder with an estimated 

incidence of 1 in 250 000 live births in the United States, with no known gender, 

ethnic, or racial clustering.1,58 The genes affected in this disorder are CSA (ERCC8) 

and CSB (ERCC6), which encode proteins responsible for TC-NER (Table 1).59 CS is 

characterized by microcephaly, failure to thrive (in weight and size), progressive dementia, 

and developmental delay. CS is divided into three types based on age of onset. In CS type 1, 

the progressive symptoms are typically apparent after 1 year of age. CS type 2 is congenital 

and typically a severe form of the disease. CS type 3 is characterized by a late onset after the 

age of 2 years and is typically a milder form of the disease.58

Cockayne syndrome is recognized as the first NER disorder associated with mitochondrial 

impairment and it is thought that this dysfunction contributes to the accelerated aging and 

neurodegeneration phenotypes observed in CS.60 Other compelling data suggest that CSB is 

involved in the regulation of gene expression and that this (as opposed to deficient TC-NER) 

may be the main cause of neurological dysfunction in CS.61 In addition, the CS proteins 

also appear to play a role in the maintenance of mitochondrial homeostasis through NAD+ 

signaling.62,63

Among CS patients, ~25% of cases result from pathogenic variants in CSA/ERCC8, 

whereas 75% of cases are caused by CSB/ERCC6.58 In the setting of CSA or CSB 

deficiency, DNA damage remains unrepaired and RNA polymerase progression halts at 
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lesion sites on the transcribed strand of active genes. The detrimental effects of unrepaired 

DNA damage accumulate, simultaneously impeding expression of many active genes, 

causing various degrees of cellular dysfunction. This continuous accrual of unrepaired 

DNA damage likely compounds CS neurological abnormalities that include brain atrophy 

(Table 1), brain calcifications and vascular defects, demyelinating peripheral neuropathy, 

hypomyelination (central and peripheral), and the accelerated aging phenotype, all common 

characteristics of CS (Table 2).64–69

The most common form of peripheral neuropathy observed in CS patients is 

sensorimotor demyelinating polyneuropathy, although other polyneuropathies have also been 

described.1,70,71 CS patients display white matter demyelination in the central nervous 

system (CNS), atrophy of the cerebrum and cerebellum, and perivascular calcifications in 

the basal ganglia and cerebellum.1 One study assessed peripheral nerve involvement in CS 

through a retrospective evaluation of neurophysiological data on a series of 25 CS patients 

to determine whether there was evidence of correlations between neurophysiological, 

clinical, and molecular data.71 The study showed that all 25 patients displayed an 

electrophysiological pattern that was suggestive of primary sensorimotor demyelinating 

neuropathy with a correlation between the severity of the neuropathy and overall disease 

severity.

Supportive care and regular evaluations with a multispecialty clinical team will help 

facilitate management of complications.72,73 Specialties that may be helpful for CS patients 

include audiology, cardiology, dentistry, dermatology, otolaryngology, endocrinology, 

gastroenterology, genetics, neurology, nephrology, nutrition, ophthalmology, pulmonology, 

and urology.73 Some CS patients develop tremors, which could originate from basal ganglia 

lesions, neuropathy, or both. Tremors due to basal ganglia lesions may in some cases be 

managed successfully with the dopamine agonist carbidopa-levodopa, which is used in 

Parkinson’s disease.70

3.4 | WS

Werner syndrome is an autosomal recessive disease that causes dramatic, progressive, 

accelerated aging and is estimated to affect 1 in 200 000 individuals in the United States and 

1 or 2 per 40 000 in Japan.74 Affected individuals typically undergo healthy development 

until puberty, when no growth spurt materializes.74 The accelerated aging aspects of the 

disease typically begin to appear in the third decade of life. Additional WS characteristics 

include cataracts, skin ulcers, osteoporosis, type 3 diabetes, and some forms of cancer.74

WS is caused by pathogenic variants in the WRN gene, which encodes a helicase 

protein that is important for the unwinding of DNA (Table 1).74,75 This important protein 

supports genome stability and telomere maintenance.76,77 Myelopathy and polyneuropathy 

have been reported in WS for over 30 years.78,79 Based on electrophysiological and 

biopsy studies, the polyneuropathy in WS has variable sensorimotor involvement with 

axonal and demyelinating physiology, accompanied at least in some cases by clinical and 

electrophysiological evidence for long tract and dorsal column dysfunction in the spinal cord 

(Table 2).80–83 This association suggests that WS can affect both the CNS and peripheral 

nervous system. Current treatments for WS involve symptomatic and supportive care 
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with a multidisciplinary clinical team of specialists able to meet the affected individual’s 

needs.75 Specialty clinicians who may be needed include orthopedists, cardiologists, 

ophthalmologists, endocrinologists, and neurologists.75 As of yet, there are no medications 

known to be effective for the neurological aspects of WS.

3.5 | AT

Ataxia telangiectasia, also known as Louis-Bar syndrome, is a rare, inherited disorder 

that affects 1 or 2 per 100 000 live births worldwide.84 AT is an autosomal recessive 

disorder caused by mutations in the ataxia telangiectasia mutated (ATM) gene that 

encodes the protein ATM (Table 1). AT impacts multiple systems throughout the 

body including the nervous and immune systems and is associated with an increased 

predisposition for cancer and neurodegeneration.60 The initial presentation of AT is typically 

an unsteady gait at around 1 or 2 years of age.85,86 Patients with AT can develop 

a broad range of clinical phenotypes, including progressive cerebellar ataxia, axonal 

polyneuropathy, oculocutaneous telangiectasia, variable immunodeficiencies, tremors, 

increased susceptibility to malignancies, and metabolic dysfunction.87,88

The ATM gene is located on 11q22-q23 and encodes a serine/threonine protein kinase that 

assists in recognizing damaged or broken DNA strands.21,22 When ATM is deficient, p53 

signaling is not activated and the cell cycle continues without allowing for DNA repair or 

activating apoptosis. This allows for replication of abnormal cells and, ultimately, leads to 

complications that include a primary immunodeficiency disease involving both cellular and 

humoral immune systems.89 Due to the increased susceptibility of AT patient cells to X 

rays, radiotherapy, and some forms of chemotherapy, these exposures should be avoided if 

possible.84 Sensorimotor axonal polyneuropathy has been observed in AT patients (Table 

2).90 Although it can develop as young as 5 years of age, the acquired deformity of the feet 

(pes cavus) is common in AT patients and becomes apparent by 10 or 11 years of age.84,91

Investigators have studied the ability of several pharmacological interventions to mitigate 

neurological manifestations in AT patients.92 Amantadine, fluoxetine, and buspirone can 

improve balance, speech, and coordination, whereas tremors in AT patients have been 

mitigated with gabapentin, clonazepam, and propranolol, and dystonia has been successfully 

treated with trihexyphenidyl.92,93

The use of glucocorticoids (dexamethasone and betamethasone) has also been shown to 

improve neurological symptoms in AT.94 However, the use of these medications can increase 

the frequency of infections and have an influence on inflammatory and immune responses.94 

The use of nutritional antioxidants is another approach that may slow the progress of 

neurodegeneration. Vitamin E and alpha-lipoic acid have both been shown to improve 

mitochondrial function in ATM-deficient lymphoblastoid cells.95 Clinically, current disease 

management for AT is focused on symptomatic and supportive care.

4 | MANAGEMENT AND TREATMENT

Currently, there are no US Food and Drug Administration–approved therapies for any 

of the DNA repair disorders, so management of these diseases and their complications, 
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including the neuropathies, remains challenging. As these diseases have multiorgan system 

involvement, and diagnostic testing for neuropathy, particularly electrodiagnostic (EDx) 

testing and nerve biopsy, is not uniformly performed, the incidence of these neuropathies 

is likely underrecognized and underreported. The variable origins of pain due to individual 

physiological, emotional, or cognitive states is another factor that can impede recognition 

that one of these patients may be experiencing symptoms of a neuropathy.96,97 Although 

more research has been performed to evaluate neuropathic pain in diabetic patients, 

understanding the underlying mechanisms associated with pain has been challenging even 

in such a common disease.98 An added diagnostic difficulty in younger children within 

this population involves the struggle they experience in effectively communicating specific 

discomforts.

Despite the challenges, many patients with DNA repair disorders do receive comprehensive 

multidisciplinary care. A common thread throughout the five DNA repair disorders 

described herein is the importance of increased awareness among patients, families, 

and health-care providers of the importance of obtaining the most up-to-date clinical 

care for the patient. Having multidisciplinary care further advances patient needs in a 

collaborative setting.99 This benefits patient quality of care through the development of 

disease management plans that anticipate symptoms and provide disease-specific supportive 

care and advice whenever possible.72,73

Although the supportive approaches just described are important, other existing neuropathy 

therapies have been tested in some of these disorders and may be worth considering on an 

individual basis. Knowing that a therapy is effective and has been safely administered to 

other patients with specific DNA repair disorders can help to avoid tragedies such as those 

that have occurred after metronidazole use in both CS and XP/TTD patients.100,101

One potential therapeutic target for these disorders may be mitochondrial function. Multiple 

research groups have documented mitochondrial deficiencies in CS, WS, and AT and 

observed how multiple disease phenotypes (including peripheral neuropathies) overlap with 

those of certain classic mitochondrial disorders.102–107 Several of these observations point 

toward a possible increase in ROS, suggesting that antioxidants may be beneficial in these 

disorders, which have been supported by studies in disease models.104,108–110 Thus far, 

however, antioxidant therapy has not been studied systematically in human patients. Another 

aspect of mitochondrial dysfunction that is relevant for CS, XP, AT, and WS is defective 

mitophagy, which is a decreased ability to degrade damaged mitochondria.102,103,106,111–115 

NAD+ augmentation has been shown to restore some functions in WS, AT, and CS disease 

models, likely through improved mitophagy mechanisms.63,113,115 Such an approach has not 

yet been tested in human patients but is likely on the horizon. It will be of interest to see the 

impact of such NAD+ supplementation strategies on neuropathies.

Other therapies are currently under development for DNA repair disorders. Gene therapies 

are designed either to transfer a healthy copy of a defective gene to cells and tissues 

impacted by a disorder or to transfer genome-editing machinery to correct specific 

pathological variants.116 Gene replacement strategies are broadly applicable across patients 

with pathogenic variants in the same affected gene, but, depending on factors such as 
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the target tissue(s) and the timing of treatment, the therapeutic effect may be diluted 

over time due to growth and cell division. In contrast, most genome editing techniques 

are designed in variant-specific ways that potentially benefit subsets of patients harboring 

specific pathogenic variants, sometimes also including biologically related variants. Either 

approach could potentially prevent or improve neuropathies in these disorders and we are 

pursuing active preclinical studies testing gene replacement strategies for treatment of the 

neurological aspects of CS and XP-CS.117 Other investigators have shown promising results 

after ATM cDNA delivery to fibroblasts where the cell-cycle abnormalities and cellular 

radiosensitivity were restored in the treated cells.118

Another interesting therapeutic approach that is dependent on the specific type of pathogenic 

variant is read-through of aberrant stop codons (nonsense mutations) and the potential for 

epigenetic therapies. A preclinical study using cells from patients with WS demonstrated 

successful read-through of nonsense mutations using pharmacological treatments. Both 

aminoglycosides and ataluren restored full-length protein expression and WRN function 

in cellular disease models of WS.119 Another study demonstrated successful readthrough of 

XPC mRNA, functional XPC protein expression, localization of XPC to sites of UV-induced 

DNA damage, and successful repair in XP-C–deficient patient cells using G418 sulfate and 

gentamicin, and subsequently similar efficacy with reduced toxicity using small-molecule 

non-aminoglycoside compounds (PTC124, BZ16, or RTC14).120 Although promising results 

have been achieved in preclinical models for a variety of disorders, it is not yet clear how 

efficacious these approaches are in human patients.120–122

A major question as new therapies are being developed is how feasible it will be for the 

peripheral nerves to be a target organ for these treatments, and whether the status of any 

neuropathy should be an outcome measure for human clinical trials, either for the sake 

of improving the neuropathy itself or as a surrogate marker for improvement in the CNS. 

If the latter, the peripheral nerves have the distinction of being more easily accessible for 

direct functional testing than the CNS. There is precedent for using various configurations of 

EDx as outcome measures for human clinical trials. For example, compound muscle action 

potentials were used in a pivotal trial of gene therapy for spinal muscular atrophy (SMA),123 

and motor unit number estimation has been studied as a potential outcome measure in the 

setting of SMA124,125 and amyotrophic lateral sclerosis.126,127 The use of these noninvasive 

neurophysiological measures and derivatives of these measures in clinical trials will likely 

expand to other diseases in the future, including DNA repair disorders.

5 | CONCLUSIONS

The DNA repair deficiencies are a category of rare disorders representing multiple 

individual ultrarare populations that can display overlapping disease phenotypes, including 

neuropathies. Although significant advances are being made to better understand the natural 

progression of these disorders and their underlying disease mechanisms, more detailed 

preclinical experiments and human natural history studies for DNA repair disorders are 

needed to prepare novel therapies for translation into human clinical trials and to determine 

optimal outcome measures for such trials, respectively. We anticipate that the peripheral 

nerves will have an important role in the development of new therapies, either as a target 
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organ or as the nexus for a surrogate biomarker. There is cause to be optimistic about future 

therapeutic development for these serious inherited disorders.
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