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Abstract

Purpose—Brain shift that occurs during neurosurgery disturbs the brain’s anatomy. Prediction of 

the brain shift is essential for accurate localisation of the surgical target. Biomechanical models 

have been envisaged as a possible tool for such predictions. In this study, we created a framework 

to automate the workflow for predicting intra-operative brain deformations.

Methods—We created our framework by uniquely combining our meshless total Lagrangian 

explicit dynamics (MTLED) algorithm for computing soft tissue deformations, open-source 

software libraries and built-in functions within 3D Slicer, an open-source software package widely 

used for medical research. Our framework generates the biomechanical brain model from the 

pre-operative MRI, computes brain deformation using MTLED and outputs results in the form of 

predicted warped intra-operative MRI.

Results—Our framework is used to solve three different neurosurgical brain shift scenarios: 

craniotomy, tumour resection and electrode placement. We evaluated our framework using nine 
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patients. The average time to construct a patient-specific brain biomechanical model was 3 

min, and that to compute deformations ranged from 13 to 23 min. We performed a qualitative 

evaluation by comparing our predicted intra-operative MRI with the actual intra-operative MRI. 

For quantitative evaluation, we computed Hausdorff distances between predicted and actual intra-

operative ventricle surfaces. For patients with craniotomy and tumour resection, approximately 

95% of the nodes on the ventricle surfaces are within two times the original in-plane resolution of 

the actual surface determined from the intra-operative MRI.

Conclusion—Our framework provides a broader application of existing solution methods 

not only in research but also in clinics. We successfully demonstrated the application of our 

framework by predicting intra-operative deformations in nine patients undergoing neurosurgical 

procedures.
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Introduction

During neurosurgery, the brain undergoes significant deformation known as brain shift, 

making it challenging to precisely locate the surgical target, such as a tumour or epileptic 

seizure onset zone. Intra-operative magnetic resonance images (MRIs) can provide the 

location of the surgical target during neurosurgery. However, the cost of intra-operative 

magnetic resonance imaging scanners is high (over $10 million) [1] and brain MRI 

acquisition takes a long time (about 45 to 60 min) [2], which interferes with the surgical 

operation. Furthermore, intra-operative MRI cannot be acquired for patients with electrodes 

implanted within the brain in epilepsy surgery.

Brain shift, which refers to the significant deformation of the brain during neurosurgery, 

can be analysed in purely mechanical terms using established methods of continuum 

mechanics [3]. To solve the equations of continuum solid mechanics, suites of computational 

biomechanics finite element and meshless algorithms [4, 5] exist to predict organ 

deformation, including brain deformations. An example is a suite of meshless total 

Lagrangian explicit dynamics (MTLED) algorithms based on the total Lagrangian 

formulation of nonlinear solid mechanics and explicit time domain integration [5–7] 

developed by our research group (Intelligent Systems for Medicine Lab). The MTLED 

algorithm has been extensively evaluated in previous studies for computing soft tissue 

deformations [7–9]. However, it is very sophisticated and requires specialised knowledge of 

computational biomechanics and numerical methods to set up a simulation. MTLED uses 

a cloud of points to discretise the problem domain. It is comparatively easy to generate 

a biomechanical model with a cloud of points rather than a high-quality finite element 

mesh but defining boundary conditions and loading and assigning material properties to 

intra-cranial constituents are still required.

In this study, we created a framework to automate the workflow for generating a patient-

specific brain biomechanical model and computing the intra-operative deformations using 

the MTLED algorithm. We implemented our framework as an extension, SlicerCBM 
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(Computational Biophysics for Medicine in 3D Slicer), for the 3D Slicer medical imaging 

platform [10]. SlicerCBM is freely available from our GitHub repository (https://github.com/

SlicerCBM/SlicerCBM). The framework computes brain deformations for three different 

neurosurgical brain shift scenarios: craniotomy-induced brain shift (due to opening of 

the skull), tumour resection-induced brain shift (due to removal of the tumour) and 

electrode placement-induced brain shift (due to placement of electrocorticography electrodes 

on the brain surface after craniotomy in epilepsy surgery). We evaluate our framework 

for predicting brain deformations for nine patients (Table 1) undergoing three different 

neurosurgical brain shift scenarios. The data for this study were obtained from the 

databases of the Surgical Planning Laboratory (SPL) at Brigham and Women’s Hospital, 

Computational Radiology Laboratory (CRL) at Boston Children’s Hospital and Montreal 

Neurological Institute’s Brain Images of Tumours for Evaluation [11].

Methods

Figure 1 describes the workflow of our framework for craniotomy-induced and electrode 

placement-induced brain shift, whereas Fig. 2 describes the workflow for tumour resection-

induced brain shift. The developed framework modules corresponding to each component of 

the framework are discussed in Sects. “Patient-specific biomechanical model generation” to 

“Image warping ”.

Image pre-processing

We used the rigid registration algorithm [12] in the “General-Registration” module of 3D 

Slicer to obtain the pre-operative brain anatomy in the intra-operative brain orientation. 

We automatically extracted the brain parenchyma (known as skull stripping) from the high-

quality rigidly registered pre-operative MRI using the watershed algorithm of FreeSurfer 

(http://surfer.nmr.mgh.harvard.ed), an open-source software suite for analysing medical 

resonance images (MRIs) [13]. Following skull stripping, the cropped pre-operative MRI 

contains only the brain tissues, tumour and ventricles. To segment the tumours, we used the 

“GrowfromSeeds” feature of 3D Slicer’s built-in module “SegmentEditor”, which utilises 

the “FastGrowCut” algorithm to generate a tumour mask [10]. Generation of this tumour 

mask is automatic but may require corrections by an analyst. We used the tumour mask to 

locate the nodes and integration cells that represent a tumour within the brain (see Sect. 

“Computational grid generator”).

Patient-specific biomechanical model generation

Computational grid generator—To discretise the problem domain, which is the brain 

parenchyma extracted from the pre-operative MRI, we used a cloud of points. We developed 

a patient-specific tetrahedral integration grid using our “ComputationalGridGenerator” 

module, which takes the cropped pre-operative MRI as input and automatically generates 

the integration grid (Figs. 2 and 3).

The procedure implemented in our “ComputationalGridGenerator” module involves the 

following steps: first, it takes the pre-operative MRI after skull stripping and generates a 

brain mask using Kittler-Illingworth [14] thresholding algorithm. Next, it generates a brain 
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surface model using the marching cubes algorithm [15]. Then, it generates a uniformly 

triangulated brain surface using the Voronoi clustering algorithm [16] of PyACVD (https://

github.com/pyvista/pyacvd). Finally, it generates a tetrahedral grid using the 3D Delaunay 

algorithm of Gmsh [17]. To smooth the brain surface, we used the Laplacian filter [18] (Fig. 

2). It is crucial to understand that the tetrahedral integration cells are not finite elements 

and do not have to adhere to the strict quality requirements of a finite element mesh. Table 

2 lists the number of nodes, integration cells and integration points generated using our 

“ComputationalGridGenerator” module for all nine patients.

To predict the tumour resection-induced brain shift, a computational grid of the brain with 

a tumour cavity is required. This grid is used to apply traction forces at the boundary of 

the tumour cavity, as described in our previous study [9]. To automate the construction of 

a brain computational grid with a tumour cavity, we developed the “TumourResectionAnd-

BrainRemodelling” module (shown in Fig. 4). This module takes the brain computational 

grid and the tumour mask as inputs, and identifies the nodes within the tumour mask to 

generate a brain computational grid with a tumour cavity. The coordinates of these identified 

nodes are saved and used to construct the new brain computational grid with the tumour 

cavity.

Brain–skull contact interface—To account for the difference in stiffness between the 

skull and brain tissues, a frictionless sliding contact interface is defined between the rigid 

skull surface and the deformable brain model in neurosurgical brain shift scenarios. This 

approach prevents brain nodes from penetrating the skull while allowing the brain to slide 

along the inner surface of the skull [19].

To define the contacts automatically, we developed our module “SkullGenerator” to 

construct a skull surface model using the triangulated brain surface model generated in 

Sect. “Computational grid generator”; and to extract the brain surface nodes in contact with 

the skull surface model.

Loading—In craniotomy-induced and electrode placement-induced brain shift, loading is 

defined as prescribed displacements on the exposed part of the brain due to neurosurgical 

procedures. In tumour resection-induced brain shift, loading is defined as gravity forces. 

To define the load, information about the deformation of the exposed brain surface can be 

obtained using cameras or the pointing tool of a neurosurgical station [20]. In this study, 

we acquire such information using sparse intra-operative MRI. To define the prescribed 

loading, selection of the exposed surface area of the brain is an essential step. Our automated 

procedure for selecting brain surface nodes exposed due to craniotomy is implemented in the 

modules “CranGenerator” and “NodeSelector”, which streamlines the process of identifying 

loaded nodes. It comprises the following steps (Fig. 5): (1) auto-thresholding is used to 

select the patient’s head in pre-/intra-operative MRIs to create a pre-/intra-operative head 

mask, (2) wrap solidify effect is used to shrink wrap [10] and remove any gaps in pre-/

intra-operative head masks generated in step 1, (3) Gaussian smoothing (3 mm) is used 

to smooth the created head masks, and Island filter [10] is used to remove small islands 

(1000 voxels), (4) logical operator (subtract) is used to create a craniotomy region mask, 

(5) marching cubes algorithm [15] is used to generate the craniotomy surface model, and 
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(6) brain surface cells exposed due to craniotomy are selected using the craniotomy surface 

model from step 5, and finally, the brain surface nodes are selected.

To compute the prescribed displacements for the selected brain surface nodes, we use 

a procedure that involves several steps. Firstly, we extract sparse pre-operative and intra-

operative MRI information, which we then use to compute the B-Spline transform using a 

rigid registration algorithm [12]. Secondly, we apply the B-Spline transform to the selected 

brain surface nodes that are exposed due to craniotomy, resulting in the position of the brain 

surface nodes in an intra-operative (deformed) brain configuration. Finally, we compute 

the prescribed displacements by calculating the difference between the coordinates of the 

brain surface nodes in the deformed brain configuration and those in the undeformed 

configuration. This procedure enables us to accurately determine the necessary displacement 

values for the nodes on the brain surface, which is crucial for simulating the deformation of 

the brain during neurosurgery.

For electrode placement-induced brain shift, we extracted the electrode locations 

(coordinates) from the computed tomography (CT) image using our electrode extraction 

procedure implemented as “ElectrodesToMarkups” module. The steps involved in our 

electrode extraction procedure are: (1) creating a binary label volume from binary CT 

image using PolySeg software library, (2) splitting the binary label volume into segments 

corresponding to each electrode using the “SplitIsland” filter and (3) adding a point 

(3D space) at the centroid of each segmented electrode using “SegmentStatistics” [10]. 

After extracting electrode locations from the CT image, prescribed displacements are 

computed using our automated procedure, which comprises the following steps (Fig. 6): 

(1) projection of electrodes on the undeformed brain surface extracted from pre-operative 

MRI, (2) creating the electrode sheet model (representing the silastic substrate of the 

electrocorticography electrode grid placed on the brain surface in epilepsy surgery) using 

the projected electrodes, (3) selecting brain surface nodes (known as loaded nodes) under the 

electrode sheet model and (4) computing prescribed displacements.

In step 1, we projected the extracted electrodes onto the surface of the brain extracted 

from the pre-operative MRI using our “MarkUpsToDistance” module. This module 

determines the points corresponding to the location of electrodes (referred to as projected 

electrodes) in the undeformed (pre-operative) brain configuration. The module uses the 

“ImplicitPolyDataDistance” method of the Visualization Toolkit (VTK) [21] to compute the 

distance for each of the electrodes identified in the post-operative CT to its corresponding 

nearest triangle on the undeformed brain surface. We created projected electrode locations at 

the centroids of the identified nearest triangles on the undeformed brain surface (extracted 

from pre-operative MRI). In step 2, we used these projected electrode locations to create 

an electrode sheet model by means of the PolyData algorithm [22], implemented in our 

“SheetFromPoints” module. We uniformly triangulated the electrode surface sheet model 

using the PyACVD software library (https://github.com/pyvista/pyacvd) implemented in 

our module “SurfaceTriangulation”. In step 3, we used the vertices of each triangle of 

the electrode sheet model to select the corresponding brain surface cells (triangles) in the 

undeformed brain surface model using our “NodeSelector” module. We used the selected 

brain surface cells to select the corresponding nodes (vertices) of these selected brain surface 
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cells. We applied prescribed displacements on the selected nodes of the selected triangles. In 

step 4, to compute prescribed displacements, the original and projected electrode coordinates 

were used as an input to the “ScatteredTransform” [23] module to compute a B-Spline 

transform. We applied the computed B-Spline transform to the undeformed brain surface 

nodes located under the electrode sheet to determine the position of the corresponding nodes 

in the deformed (due to electrode implantation) brain geometry. We computed the prescribed 

displacements as the difference between the coordinates of the corresponding brain surface 

nodes in undeformed and deformed brain geometry. The prescribed displacements were 

applied using a smooth (3-4-5 polynomial) loading curve [24].

In tumour resection-induced brain shift scenarios, we consider the load as a gravity force 

and calculate the internal forces acting at the interface nodes between the tumour and 

nearby healthy brain tissues. Once the tumour is removed from the biomechanical model, 

the reaction forces are applied in the opposite direction to the interface nodes. This approach 

allows us to simulate the deformation of the brain tissue caused by the tumour and its 

subsequent removal during surgery.

Assignment of material properties using fuzzy tissue classification—In patient-

specific computational biomechanics modelling, the material properties are typically 

assigned using image segmentation [25, 26], where each image voxel is assigned to 

a specific brain tissue class using semi-automatic procedures. However, this process is 

time-consuming and clinically incompatible [25]. We used fuzzy tissue classification 

[27] to automatically assign material properties of intra-cranial constituents to integration 

points within the problem domain. To assign material properties to brain tissues, we 

used our “FuzzyClassification” module that takes a brain mask (see generated brain 

mask in Sect. “Computational grid generator”), pre-operative MRI and tumour mask (if 

present) as inputs and produces fuzzy classified brain tissue classes, which are used by 

our “MaterialPropertiesAssignment” module to automatically assign material properties to 

integration points corresponding to brain constituents.

For all nine case studies, we used a mass density of 1000 kg/m3 for all tissue types. 

Craniotomy and electrode placement-induced brain shift simulations correspond to a 

subclass of problems known as “displacement–zero traction” problems, where the load is 

defined by prescribing the displacement on the boundary, and we do not know anything 

about the deformation field within the analysed continuum. Problems of this type depend 

very weakly on the material properties and material model. Therefore, we used a neo-

Hookean constitutive model, with initial Young’s modulus E, and initial Poisson’s ratio ν, 

listed in Table 3 [26].

Poisson’s ratio is a mechanical property that describes the compressibility of a material. A 

low Poisson’s ratio suggests strong compressibility, whereas a high Poisson’s ratio of 0.5 

indicates that the material is fully incompressible. We consider the parenchyma of the brain 

to be a nearly incompressible structure [28]. In the tumour resection-induced brain shift, 

since the load is due to gravity and traction forces, the computed deformations depend on 

the tissue “stiffness” as determined by the material properties and material model. Therefore, 

an Ogden constitutive model is used, with shear modulus μ, initial Poisson’s ratio ν and 
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material parameter α, listed in Table 4 [29], because it adequately accounts for the brain 

tissue material properties under both tension and compression. The shear modulus for the 

tumour was assigned a value three times larger than that of healthy brain tissue [28].

Model solution

To compute brain deformations using MTLED, we developed the “MTLEDSolver” module 

that uses the meshless total Lagrangian explicit dynamics (MTLED) algorithms [5].The 

module predicts intra-operative deformations and generates a solution in the form of a 

deformed brain biomechanical model. The MTLED solution algorithm is described in detail 

in our previous studies [5, 7]. MTLED solves the weak form of the elasticity equations 

and can be used with different shape functions, including moving least squares (MLS) [5], 

modified moving least squares (MMLS) [7] and interpolating modified moving least squares 

(IMMLS) [30]. The methodology for computing brain deformations has been extensively 

validated in our previous studies [7, 8, 31]. We use IMMLS shape functions [30] as they 

accurately enforce the essential boundary conditions and provide robust computations for 

large deformations and strains.

Image warping

To perform image warping, we extracted undeformed and predicted deformed brain model 

nodal coordinates and used the “ScatteredTransform” module [23] to compute a B-Spline 

transform which is used to warp the pre-operative MRI to obtain the predicted intra-

operative MRI.

Results

In this section, we apply our framework to solve three neurosurgical brain shift scenarios: 

craniotomy, tumour resection and electrode placement-induced brain shift.

Methods for evaluating predicted intra-operative deformations by our framework

We evaluated our framework qualitatively and quantitatively by analysing the predicted 

intra-operative MRI and the actual intra-operative MRI of nine patients. For qualitative 

evaluation, we visually compared the predicted brain contour with the actual intra-operative 

brain contour. For quantitative evaluation, following [26, 32], we use the Hausdorff distance 

(HD) to objectively measure the differences between the ventricle surfaces of the brain 

predicted by our framework using the MTLED algorithm and the ventricle surfaces obtained 

by segmentation of the actual intra-operative MRI.

The purpose of this study is to create a framework for automating the workflow for 

predicting intra-operative brain deformations rather than to conduct evaluation of the 

framework performance using patient cohort sufficiently large for comprehensive statistical 

analysis. We have made our open-source framework freely available through GitHub, which 

opens avenues for other research groups to use the framework and conduct its independent 

evaluation. In this study, we demonstrate the application of the framework by predicting 

intra-operative deformations in nine patients undergoing neurosurgical procedures. Given 

this relatively small cohort size, we conduct only rudimentary statistical analysis of the 
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results by reporting the average and standard deviation of the percentage of successfully 

registered points/nodes (i.e. the nodes for which the registration error is lower than twice the 

in-plane resolution of the intra-operative image).

Craniotomy-induced brain shift

Qualitative evaluation—The pre-operative MRI was warped to obtain the predicted intra-

operative MRI using the B-Spline transformation described in Sect. “Image warping” such 

that it corresponds to the actual intra-operative anatomy of the brain. We visually compared 

the brain contour predicted by our framework (from a warped pre-operative MRI) with the 

actual intra-operative MRI. The ventricle contours predicted by our automated framework 

(Fig. 7) for case studies 1, 2 and 3 are very close to the actual intra-operative ventricle 

contours.

Quantitative evaluation—We used the 95th, 75th, 50th and 25th percentile HD to 

measure the similarities between the actual ventricle surfaces (obtained from segmentation 

of actual pre-/post-operative MRIs) and the predicted ventricle surfaces (obtained from the 

segmentation of the predicted MRIs, see Table 5). The image resolution limits the precision 

of neurosurgical image guidance. Therefore, registration is considered successful if the 95% 

HD is lower than twice the actual in-plane resolution of the intra-operative MRI (2.5 mm, 1 

mm and 2.5 mm for case studies 1, 2 and 3, respectively). For case studies 1, 2 and 3, about 

96%, 98% and 99% of the nodes on the ventricle surfaces, respectively, were successfully 

registered (Fig. 8). The results obtained using our automated framework are very close 

to those reported in our previous studies [8, 26] (see Table 5). The mean 95th percentile 

Hausdorff distance between the ventricle surfaces for the three craniotomy-induced brain 

shift case studies is 1.9 mm with a standard deviation (SD) of 0.464 mm. This means that the 

overall agreement between the ventricles is reasonably good, with most of the points falling 

within one standard deviation of the mean.

Tumour resection-induced brain shift

Qualitative evaluation—For case study 4, the predicted intra-operative brain contour 

extracted from the predicted intra-operative MRIs was compared to the actual intra-operative 

MRI brain contour (Fig. 9). Likewise, we qualitatively evaluated our framework’s predicted 

contours of the brain parenchyma extracted from predicted post-operative MRIs for case 

studies 5, 6 and 7 to the actual brain contours extracted from the actual post-operative MRI 

(Fig. 9). The predicted maximum displacement observed in case studies 4, 5, 6 and 7, was 

11 mm, 7 mm, 7.2 mm and 6.5 mm, respectively.

Quantitative evaluation—We used the 95th, 75th, 50th and 25th percentile HD to 

measure the similarities between the actual ventricle and the predicted ventricle surfaces 

(Table 6). Registration is considered successful if the 95% HD is lower than twice the 

actual in-plane resolution of the intra-operative MRI (2.4 mm, 2 mm, 4 mm and 2 mm for 

case studies 4, 5, 6 and 7, respectively). For case study 4, about 77% of the nodes on the 

ventricle surfaces were successfully registered. For case studies 5, 6 and 7, about 92%, 99% 

and 89% of the nodes on the ventricle surfaces, respectively, were successfully registered 

(Fig. 10). The mean 95th percentile Hausdorff distance between the ventricle surfaces for 
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the four tumour resection-induced brain shift case studies is 3.1 mm (SD = 0.842 mm). 

This shows that the overall agreement between the ventricles is reasonably good, with 

most points falling within one standard deviation of the mean. However, the slightly higher 

values of mean HD indicate that the tumour resection-induced brain shift is more difficult to 

compensate for than craniotomy-induced brain shift.

Electrode placement-induced brain shift

The predicted maximum displacement in case studies 8 and 9 was 11.7 mm and 21.5 mm, 

respectively. Using the deformation field predicted by our framework, we warped the pre-

operative MRI to obtain the corresponding brain configuration with electrodes implanted. 

We used the “Scattered Transform” module [23] to obtain the transform for image warping. 

Figure 11 shows the computed deformation field of case 8 (Fig. 11a) and case 9 (Fig. 11b). 

Figure 11 shows the transforms used to warp the pre-operative MRI of case 8 (Fig. 12a) and 

case 9 (Fig. 12b). The results of the registration are shown in Fig. 13a for case 8 and in Fig. 

13b for case 9.

Computational efficiency

The simulations were performed on an HP Pro-Book laptop with an Intel Core i7 (2.7 

GHz) processor and 8 GB physical memory. The time required to automatically generate 

a patient-specific brain biomechanical model using our framework was less than 3 min for 

each case. However, in tumour resection, there is an additional step of the construction of 

a brain model with a tumour cavity, which takes approximately 20 min. The solution to the 

biomechanical models ranged from 13 to 23 min.

Discussion and conclusion

We developed a framework to automatically generate a brain biomechanical model and 

compute intra-operative brain deformations. Our framework, SlicerCBM, is implemented 

as an extension in 3D Slicer, freely open-source software, and contains modules that can 

be used in combination to solve three neurosurgical brain shift scenarios: craniotomy, 

tumour resection and electrode placement-induced brain shift. The main modules of the 

framework are “ComputationalGridGenerator” to generate a patient-specific computational 

grid, “CranGenerator” to create a craniotomy model, “Surface-Triangulation” to generate 

a uniformly triangulated surface (craniotomy and electrode sheet), “ElectrodeToMarkups” 

to extract the original electrode locations from CT, “MarkUpsToDistance” to create the 

projected electrode locations on the undeformed brain surface, “SheetFromPoints” to 

generate an electrode sheet model, “NodeSelector” to select the exposed brain surface due to 

a neurosurgical procedure, “DisplacementLoading” to compute loading, “SkullGenerator” to 

define the boundary conditions, “FuzzyClassification” and “MaterialPropertiesAssignment” 

to assign material properties to intra-cranial constituents and “MTLEDSolver” to compute 

brain deformations. These modules uniquely combine various algorithms working behind 

3D Slicer modules and open-source software libraries. The “MTLEDSolver” module 

integrates our MTLED algorithm to provide an interface to this robust and efficient solution 

algorithm.
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We evaluated the accuracy of our framework by performing nine simulations belonging to 

three neurosurgical brain shift scenarios. For craniotomy and tumour resection, the actual 

ventricle contours (yellow) and the ventricle contours predicted by our framework (red) 

show good similarity (Figs. 7 and 9). The 95% HD for ventricles surfaces for all case 

studies is less than two times the original in-plane resolution of the intra-operative MRI, 

which confirms successful registration. The 95% HD of the ventricle surfaces between the 

predicted and actual intra-operative MRIs for case study 2, between the results produced by 

our automated framework and the results obtained in our previous studies [8, 26], is less 

than 0.1 mm. The results obtained using our automated framework are very close to those 

reported in our previous studies [8, 26].

Our framework needs further verification against large cohort patient studies. Furthermore , 

the quantitative evaluation of displacements for electrode placement-induced brain shift was 

not possible due to the lack of intra-operative MRI data, as MRIs with electrodes implanted 

within the brain cannot be obtained for patient safety reasons. Our framework has significant 

potential for clinical applications. Qualitative and quantitative comparisons of ventricle 

surfaces in predicted and intra-operative MRIs for craniotomy and tumour resection-induced 

brain shift, and qualitative comparisons of brain contours for electrode placement-induced 

brain shift, lead us to conclude that the results are accurate enough to be useful in clinical 

applications because the accuracy of the results that we obtained for all case studies is within 

the limits typically required in image-guided surgery [33].
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Fig. 1. 
Workflow of our framework for generating and solving a patient-specific model of 

craniotomy and electrode placement-induced brain shift scenarios, a craniotomy and 

electrode placement-induced brain shift, b patient-specific computational grid generation, 

c model solution using meshless total Lagrangian explicit dynamic (MTLED) algorithm and 

d image warping
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Fig. 2. 
Workflow of our framework for generating and solving a patient-specific model of tumour 

resection-induced brain shift scenarios, a tumour resection-induced brain shift, b patient-

specific computational grid generation, c patient-specific computational grid generation 

(with tumour cavity), d model solution using meshless total Lagrangian explicit dynamic 

(MTLED) algorithm and e image warping
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Fig. 3. 
Workflow for automatic patient-specific brain integration grid generation within our 3D 

Slicer module a pre-operative MRI after skull stripping, b brain mask generation using 

threshold, c brain surface model generation using marching cubes algorithm, d brain surface 

model triangulation (yellow) using Voronoi clustering algorithm (yellow line around brain 

surface model (green) represents the brain triangulation) and e 3D tetrahedral integration 

grid (yellow) generation using 3D Delaunay algorithm
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Fig. 4. 
Procedure for generating a brain computational grid with tumour cavity as implemented in 

our module “TumourResectionAndBrainRemodelling”
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Fig. 5. 
Procedure for automatically creating a craniotomy region and selecting brain surface nodes 

exposed due to craniotomy
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Fig. 6. 
Procedure for selecting brain surface nodes under electrode sheet and computing the 

prescribed displacements
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Fig. 7. 
Intra-operative MRI overlaid with contours (red) of the deformed ventricle and brain 

extracted from the predicted intra-operative MRI which is obtained by warping the pre-

operative MRI with the computed transform. Comparison of the brain contours (red) from 

the predicted intra-operative MRI along with the brain contours (green) extracted from the 

pre-operative MRI. Predicted red ventricle contours and intra-operative ventricle contours in 

yellow
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Fig. 8. 
Hausdorff distance between predicted and actual intra-operative ventricles at different 

percentiles. The in-plane resolution of the intra-operative image for all patients is indicated 

by the red line. a For patient 1, the acceptable registration error is 2.5 mm, which 

corresponds to 96-percentile HD, b for patient 2, the acceptable registration error is 1 mm, 

which corresponds to 98-percentile HD, and c for patient 3, the acceptable registration error 

is 2.5 mm, corresponds to 99-percentile HD
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Fig. 9. 
Intra-operative (case 4) and post-operative (cases 5, 6 and 7) MRIs overlaid with brain 

and tumour contours. The yellow in the tumour region denotes the pre-operative tumour 

cavity, whereas the green denotes the true intra-operative tumour cavity in case 4 and the 

post-operative tumour cavity in cases 5, 6 and 7. For the brain contours, yellow denotes 

pre-operative brain contour, green represents intra-operative brain contour for case 4 and 

post-operative brain contour for cases 5, 6 and 7, and red denotes predicted brain contour
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Fig. 10. 
Hausdorff distance between predicted and actual intra-operative ventricles at different 

percentiles. The in-plane resolution of the intra-operative image for all patients is indicated 

by the red line. a For patient 4, the acceptable registration error is 2.4 mm, corresponding to 

78-percentile HD, b for patient 5, the acceptable registration error is 2 mm, corresponding 

to 92-percentile HD, c for patient 6, the acceptable registration error is 4 mm, corresponding 

to 99-percentile HD, and d for patient 7, the acceptable registration error is 2 mm, 

corresponding to 89-percentile HD
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Fig. 11. 
Visualisation of deformation field computed using our automated framework for cases 8 and 

9
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Fig. 12. 
Visualisation of pre-operative image transformation for cases 8 and 9 using deformation 

field from Fig. 10a and b, respectively, and predicted deformed brain model surface (red 

line) overlaid with predicted image
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Fig. 13. 
Visualisation of predicted intra-operative MRIs for case 8 and case 9 registered on CT with 

implanted intra-cranial electrodes along with predicted deformed brain model surface (red 

line)
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Table 1

Pre-operative (pre-op), intra-operative (intra-op) and post-operative (post-op) patient data analysed in this 

study

Case Application 3D image data type Slice thickness (mm)

1 Craniotomy Pre-op MRI and intra-op MRI 2.5

2 Craniotomy Pre-op MRI and intra-op MRI 2.5

3 Craniotomy Pre-op MRI and intra-op MRI 2.5

4 Tumour resection Pre-op MRI and intra-op MRI 2.2

5 Tumour resection Pre-op MRI and post-op MRI 4.0

6 Tumour resection Pre-op MRI and post-op MRI 2.0

7 Tumour resection Pre-op MRI and post-op MRI 2.0

8 Electrode placement Pre-op MRI and post-op CT with electrodes implanted 0.7

9 Electrode placement Pre-op MRI and post-op CT with electrodes implanted 1.0
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Table 2

Summary of computational grids generated with respect to the patient-specific brain

Case No. of nodes No. of integration cells No. of integration points

1 33,273 141,935 567,740

2 40,767 169,026 676,104

3 49,195 210,196 840,784

4 22,507 119,170 119,170

5 24,675 129,486 129,486

6 26,189 136,825 136,825

7 23,961 126,417 126,417

8 33,363 136,477 545,908

9 21,788 55,470 221,880
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Table 3

Neo-Hookean material model parameters for each tissue type in the biomechanical brain model used for 

computing craniotomy and electrode placement-induced brain shift

Tissue type ρ (kg/m3) E (Pa) ν

Parenchyma 1000 3000 0.49

Tumour 1000 9000 0.49

Ventricle 1000 10 0.1
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Table 4

Ogden material model parameters for different tissue types (CSF, parenchyma, tumour) in the biomechanical 

brain model used for computing brain shift due to tumour resection. Note that for α = 2 the Ogden model is 

similar to the neo-Hookean model

Tissue type μ (Pa) ν α

Parenchyma 842 0.49 − 4.7

Tumour 2526 0.49 − 4.7

CSF (case 4) 4.54 0.1 2

CSF (cases 5, 6, 7) 4.54 0.49 2
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Table 5

Quantitative evaluation for craniotomy-induced brain shift. 95th, 75th, 50th and 25th percentile (millimetres) 

of HD between the predicted and actual ventricle surfaces. The 95% HD was utilised as the measure of 

registration error. The results are compared to finite element and MTLED results from our previous studies [8, 

26]

Case H95 (mm) H75 (mm) H50 (mm) H25 (mm)

1 1.7 0.9 0.5 0.2

1 [32] 1.3 0.6 0.4 0.3

2 1.5 0.9 0.5 0.2

2 [32] 2.8 1.2 0.8 0.4

2 [10] 1.4 N/A N/A N/A

3 2.5 0.6 0.3 0.2

3 [32] 1.9 1.1 0.6 0.4
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Table 6

Quantitative evaluation for tumour resection-induced brain shift. 95th, 75th, 50th and 25th percentile 

(millimetres) of HD between the predicted and actual ventricle surfaces

Case H95 (mm) H75 (mm) H50 (mm) H25 (mm)

4 4.10 2.29 1.27 0.58

5 2.67 1.15 0.62 0.27

6 2.34 1.26 0.68 0.33

7 3.44 1.01 0.54 0.25
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